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Abstract—In order to investigate the stocking decision for a 
two-echelon inventory system of non-repairable spare parts 
with multiple demand distributions, we present a universal 
model to calculate non-repairable spare parts fill rate. 
Because of the diversity of non-repairable spare parts, the 
assumption of general demand distribution is made instead 
of Poisson demand distribution. The two-echelon inventory 
system consists of a warehouse and several locations. To 
obtain a high fill rate level of the system in limit cost, an 
optimization stocking decision model of the system is 
established by setting total cost as optimization target and 
systematic fill rate as constraints. The optimal stocking 
scheme is solved by Genetic Algorithm. Normal distribution 
and logistic distribution are taken for numerical examples to 
demonstrate the performance of universal model. The result 
shows that fill rate of system can be 95.02% with the 
minimum total cost. Sensitivity analyses give the relationship 
between parameters and fill rate. The research result can 
offer the decision basis for military supply chain.  

Keywords-inventory; spare parts; fill rate; optimization; 

demand distribution  

I. INTRODUCTION 
As one of important fields in equipment 

accommodation indemnification, the research and 
optimization of spare parts supply chain need be paid more 
attention with the development of equipments and 
improvement of operational readiness requirement.  
Inventory systems usually satisfy demands from more than 
one type. The types of demands derive the characteristic of 
spare parts, such as spare parts contain repairable spare 
parts and non-repairable spare parts. Thus, the real 
situations drive us to consider the inventory system with 
multiple demand classes. 

The practices of stocking decision face spare parts 
demands. Most literatures considered an inventory policy 
for solving the problem of repairable spare parts with 
Poisson distribution [1-4], since the repairable spare parts 

usually are valuable to influence the total inventory cost. 
Wang Naichao et al studied  inventory configuration optimization 
problems in multi-echelon inventory with (s-1,s) policy[5]; Tao 
Xiaochuang et al considered fill rate of spare parts as research 
objective[6]; Lee L H and Cheng Hailong analyzed models using 
expoentially distribution with Poisson demand, and then 
established a expected cost function[6,7]. 

Even though there are some models in the literature 
that incorporate Poisson distribution and (s-1,s) policy, 
there is a lack of studies considering general distributions 
except for Poisson distribution, as well as other inventory 
policy except for (s-1, s) policy. Three major differences 
from the literature are outlined here. Firstly, our paper 
takes the non-repairable spare parts as research objects, 
which includes diverse types of spare parts and demands. 
Secondly, our paper establishes a fill rate model with 
general distributions and (t0, s) policy. Lastly, we establish 
a optimization model, and conduct numerical experiments 
for investigating the optimal stocking decision. 

II. ASSUMPTIONS AND NOTATION 
In this section, a two-echelon system containing 

N locations ( 1,2, ,i N L ) and one center warehouse 
( 0i  ) is presented. The system also supplies n types of 
spare parts. The following notations are used in developing 
the models. 

jC   per configuration cost of spare parts j  as 
T   support period of spare parts 

 ijSOH t   inventory level of spare parts j at location 
i  in any fixed interval of length, t  

 ijD t   demand quantity of spare parts j at location i  
in any fixed interval of length, t  

 ijIN t   supply quantity of spare parts j at location i  
in any fixed interval of length, t  

ijL   purchase lead time of spare parts j at location i   
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The supply process of system can be described as 
follows: when a failure occurs, it can be replaced by a new 
one from corresponding location, and the failure one will 
be disposed. If there is no spare part being replaced at the 
corresponding location, the backorder will be occurred, 
and the inventory level of location can be returned to the 
original level after next period. Therefore, the relationship 
among ijSOH ,

ijIN and
ijD can be expressed as follows: 

       1ij ij ij ij ijSOH t SOH t IN t L D t         (1) 
In order to simplify the stocking decision model, some 

assumptions are defined as follows: 
 Equipments contain Line Replaceable Units 

(LRU), which can be defined as 1,2, ,j J L . 
 There is no lateral transshipment among locations. 
 Let 

tD denotes demand distributions, 
where 1,2,t  L , and are independent identically 
distribution, the mean value is  . 

 Lead time must be considered. 
 Supply time and delay time can be neglected. 
 Lead time must be considered. 
 Equipments in system are identical. 

III. SYSTEMATIC FILL RATE MODEL 

A. Fill Rate Definition  

According to (t0, s) policy, we define |a b  as 
a modulo b for integers a and b , so 0| 0t t  can be 
denoted as a review period, which including 0 00, ,2 ,t t L . 
Meanwhile, the definition of fill rate can be described as 
the fraction of demand that can be satisfied immediately 
from on-hand inventory, so its model can be established as 
(2)[8-9]. 
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where    max ,0IN INS t S  . 

B. Fill Rate Model based on General Distribution 

For the proposed system in this paper, the fill rate 
model on spare part j  at location i can be (3). 
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For (3), it is too difficult to calculate spare parts fill rate 
with practical data. Thus, (3) must be transformed as (4), 
which refers to renewal theory.  
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             (4) 
where   0 0| 0,1, ,ijt L t t  L  when 

ijt L . 

The supply quantity is determined by periodical 
demand and on-hand level at a location, so  
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According to (4) and (5), ijP can be obtained by (6). 
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Let    1ij ijK S P S     , then  
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where    ijL k
F

  can be the distribution function of 

1

ijL k

j
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According to Leibnitz formula [10], then  
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Since  0 0ijP  ,    0 1 0ij ijK P     , ijP can be  
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Obviously, fill rate ijP  can be determined by parameters, 

such as inventory level ijS , demand distribution  F , 
review period 0t and lead time ijL . 

The general model of fill rate usually is not applied in 
practice, because the model needs numerous data to 
calculate fill rate. However, there is only a small sample of 
data being collected, demand distribution assumption can 
be made before model calculation. For non-repairable 
spare parts, it is irrational to make assumption that the 
demand distribution is Poisson distribution, since the 
demand is always in a batch [11-13]. So it is assumed that 
demand distribution of non-repairable spare parts can be 
Normal distribution, log-Normal distribution or logistic 
distribution. 

Logistic distribution is close to Normal distribution. 
When the form of Normal distribution is  N ,  , where 
 denotes mean value and denotes standard deviation. 
For Logistic distribution, its cumulative distribution 
function follows [14]. 
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where m  ; 3r   . 
So the fill rate model of logistic distribution can be 

obtained by (11). 
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              (11) 
As above mentioned, the fill rate model of Normal 

distribution also can be obtained in similar way. 

IV. STOCKING DECISION OPTIMIZATION MODEL 

A. Model Establishment 

Systematic fill rate model can be established as (12) 
according to [15-16]. 
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where P  can be systematic fill rate; 0,1,2, ,i N L ；

1,2, ,j J L .  
In this section we extend this research to handle the 

inventory problem, which can be considered to be an 
optimization problem with a deterministic objective 
function and multiple stochastic constraints. The stocking 
decision optimization model can be established as (13) and 
(14). 
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0,1,2, ,i N L ; 1,2, ,j J L .                 ( 1 4 ) 
Where C  denotes the total cost; 0 jP denotes the lower 
bound of fill rate on j ; n j can be constant. 

B. Optimization Algorithm 

Although marginal algorithm is often used to solve the 
spare parts optimization problem, it can hardly tackle 
above model, since the model is too complex to calculate. 
We thus propose using a genetic algorithm (GA), which is 
one kind of metaheuristics, and develop a GA-based 
algorithm when given a large amount of sampling budget. 

In what follows the main solution process of the GA 
employed in this research are described, Fig .1 shows the 
program flowchart of the proposed GA [17]. 

 There are  1N J   parameters in objective 
function, multi-parameter cascade coding may be 
applied. According to constraints, the limited 
research space method is used to determine the 
range of parameters. 

 For optimization model, it can be adopted to 

establish fitness function:
1 1

1
N J

ij ij

i j

f S C
 

  . 

 Identifying selection operators. All individuals can 
be chosen in probability mp to make crossover. 
Then, the chosen number can be identified by 
simulated roulette wheel operation. 

 Crossover operators are employed in one-point 
crossover strategy. For each pair of individuals, 
the parts of two individuals’ chromosomes are 
interchanged in their intersection to produce new 
individuals, according to probability cp . 

 Mutation. The original gene value may be replaced 
in the mutation locations of individuals, which are 
chosen by random sampling with default 
probability, and new populations and individuals 
can be produced. 

 The last step in a GA is to check whether the 
algorithm has found a solution that is good enough 
to meet the expectations. Stopping criterion in this 
research is default evaluation number. 
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Figure 1.  Flowchart of Genetic Algorithm. 

V. NUMERICAL STUDY 
To assess the quality and accuracy of the proposed 

model and algorithm, a numerical study have been 
performed. The system under study contains one 
warehouse B0 and three locations B1，B2，B3, which B0 
supplies spare parts to three locations. The spare parts are 
non-repairable, and are denoted as LRU1, LRU2, LRU3. 
Take Normal distribution and logistic distribution for 
example, the demand of locations are independent. 
Demand of LRU1 is assumed as logistic distribution and 
that of LRU2, LRU3 is assumed as Normal distribution. 
The supply period is assumed to be constant at 180 days. 
The requirement for systematic fill rate is not below 0.95. 
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The corresponding parameters of example are shown in TABLEⅠ. 

TABLE I.  EXAMPLE PARAMETERS 

Spare Parts 
Number 

Demand Distribution Parameters 
L  0t  C  0 jP  

B1 B2 B3 B0 

LRU1 Log(1300,12) Log (1600,9) Log(2400,20) Log (5300,25) 4 180 50 0.90 
LRU2 N(1800,50) N(2600,62) N(2520,50) N(6920,94) 9 180 150 0.95 
LRU3 N (3350,60) N (1930,40) N (2850,20) N (8130,75) 9 180 200 0.95 

According to data in TABLE Ⅰ , the optimization 
stocking scheme of the system is obtained by proposed GA 
program, which solve model (13) and (14). Thus, Table 2 
shows the optimization stocking scheme, where the 
systematic fill rate meet the requirement, 0.9502P  ; the 
total cost equals 5.825 million yuan. At the same time, the 
fill rates of locations also meet the requirements 
respectively. Fig .2 shows the relationship between total 
cost and systematic fill rate. 

TABLE II.  OPTIMIZATION STOCKING SCHEME 

Location LRU1 LRU2 LRU3 Cost 
/Million Yuan 

B1 1261 1801 3350 1.00320 
B2 1552 2601 1931 0.85395 
B3 2328 2520 2850 1.06700 
B0 5141 6920 8130 2.92105 

Total - - - 5.82520 
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Figure 2.  Relationship between systematic fill rate and total cost. 

From Fig .2, the systematic fill rate increase along with 
the total cost, but amplitude decrease gradually, which is 
the same as that of locations.  

In what follows, we present sensitivity analyses for 
systematic fill rate by simulations. For optimization model, 
to fixed inventory level, systematic fill rate will increase 
when ijL decreasing and 0t  remaining the same, because 
the less ijL , the faster supply will be serviced to system. 
Furthermore, if 0ijL t equals constant, systematic fill rate 
increase with less ijL . 

In order to verify the rationality of proposed model, we 
use OPUS 10 to calculate the systematic fill rate in the 
optimal stocking scheme. The result shows the systematic 
fill rate is above 95%, which is in accordance with that in 
this paper. Therefore, the proposed model is creditable. 

VI. CONCLUSION 
In this paper, we present a two-echelon inventory 

system. The system consists of a warehouse and locations. 
We develop a fill rate model for inventory system with 
general demand, not only Poisson distribution. An 
optimization inventory decision model is established based 

on fill rate model. We obtain the optimal inventory level at 
locations and a warehouse by GA. Numerical example and 
sensitivity analyses are also provided. 

The followings are some possible research issues 
which may be addressed in the future. Firstly, the current 
work can be extended by considering a multi-echelon 
inventory system instead of a two-echelon inventory 
system. Lastly, only Normal distribution is considered in 
numerical example. It is interesting to investigate demands 
consisting of multi-distribution.  
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