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Abstract 
As a continuation of our research work on resolution-
based automated reasoning approaches for lattice-
valued logic systems with truth-values in a lattice-
valued logical algebraic structure – lattice implication 
algebra (LIA), in the present paper, we prove thatα -
resolution for lattice-valued first-order logic ( )LF X  
based on LIA can be equivalently transformed into 
that for lattice-valued propositional logic ( )LP X based 
on LIA, and then prove that α -resolution for lattice-
valued propositional logic 2 ( )nL P X which is linguistic 
truth-valued propositional logic based on a lattice 
implication algebra based on LIA can be equivalently 
transformed into α -resolution for lattice-valued 
propositional logic ( )nL P X  based on another 
linguistic-valued LIA. Finally, the determination table 
of α -resolution of any two generalized literals under 
49 cases for lattice-valued propositional logic ( )LP X  
is given so that the determination ofα -resolution for 
lattice-valued first-order logic ( )LF X as a key issue, 
can be accordingly resolved, which, at the same time, 
provide the key support for α -resolution automated 
reasoning algorithms in linguistic truth-valued logic 
based on LIA. 

Keywords: Lattice implication algebra, Lattice-valued 
propositional logic ( )LP X , Lattice-valued first-order 
logic ( )LF X , Linguistic truth value, α -resolution  

1. Introduction  
It is well known that incomparability is a kind of 
uncertainty often associated with human’s intelligent 
activities in the real world, and it exists not only in the 
processed object itself, but also in the course of the 
object being dealt with. In fact, it is a kind of overall 
uncertainty of objects caused due to the complexity of 
objects itself, associated with many factors and the 
inconsistent token among those factors each other 
presents overall uncertainty of objects. Hence, the  

incomparablity occurs inevitably during dealing with 
the complex objects. 

In order to deal with incomparability, we started 
investigation from 1993 from the symbolism point of 
view based on the following academic routine:  based 
on symbolism from 1993: logical algebra — lattice 
implication algebra (LIA)[1], algebric logic — lattice-
valued logic based on LIA [3, 4, 12-14], approximate 
reasoning — uncertainty reasoning and automated 
reasoning in  lattice-valued logic based on LIA [5, 10, 
15]. One of the fundamental goals is to provide 
scientific and reasonable logical framework and 
practical and efficient inference methods based on 
appropriate symbolic logical system for dealing with 
both comparability and incomparability in the 
intelligent information processing.  

This paper aims at resolution-based automated 
reasoning under incomparability in lattice-valued first-
order logic ( )LF X  based on LIA. Since the 
introduction of resolution principle in 1965 by 
Robison [19], automated reasoning based on 
resolution principle for classical logic has been 
extensively studied[19-21, 30-33], which has the 
following three obvious characteristics: firstly, forms 
of literals are simple, and literals usually contain no 
constants and implication connectives; secondly, there 
is only a kind of resolution , that is O -resolution; 
thirdly, it is easily to judge if two literals is O -
resolvent, that is to judge if the two literals are 
complementary pair. There have also been many 
investigations on resolution-based automated 
reasoning in many-valued logical framework [16, 22, 
34]. In essence, this kind of resolutions is to transform 
the resolution in many-valued logic to the resolution-
based automated reasoning in classical logic. How to 
deal with incomparability, which is complex and not 
described by chain-type logic, leads to the complexity 
of logical formula in lattice-valued logic based on 
lattice implication algebra. Correspondingly the 
logical formula have the following new characteristics: 
(1) there exist generalized literals which contain 
constants and implication connectives; (2) resolution 



level α  can be chosen from truth-valued field—
lattice implication algebra L , that is α -resolution; (3) 
it is difficult to judge if two generalized literals are 
resolvent. Because of these new characteristics, it is 
not feasible to directly apply the resolution-based 
automated reasoning theory and methods for classical 
logic and chain-type many-valued logic into that of 
lattice-valued logic with incomparability. Hence, since 
1996, we started investigation on resolution-based 
automated reasoning with incomparability in lattice-
valued logic based on lattice implication algebra.α -
resolution principle based on lattice-valued 
propositional logic ( )LP X are established [5,7]. Later, 
theα -resolution algorithms are discussed based on 
lattice-valued propositional logic ( )LP X  [6, 8, 17, 18, 
23]. Resolution-based automated reasoning methods 
based on filters for lattice-valued propositional 
logic ( )LP X are proposed [24, 26].  

On the other hand, the course of human behavior 
or thinking resolving some real problems can be 
treated as a proof of soft theorems(some conclusions 
with uncertainty), which a lot of natural language 
reasoning got involved. Therefore, it is necessary to 
study theories and approaches of linguistic-valued 
based automated reasoning under uncertainties during 
the investigation of the machine intelligence. In [25], 
some opinions on fuzzy logic from the view of 
machine intelligence are presented, characteristics of 
fuzzy logic that adapted to investigate machine 
intelligence are analyzed, and the following opinions 
are proposed: (1) machine intelligence requires 
uncertain reasoning with linguistic expressions; (2) 
study uncertain reasoning based on logic is one of 
scientific methodologies; (3) machine intelligence 
demands uncertain reasoning with linguistic 
information under the guidance of logic; (4) machine 
intelligence also requires automated reasoning with 
linguistic information based on logic. In order to 
establishing algebraic structure of linguistic truth 
values, linguistic truth-valued lattice implication 
algebra [9] is established and its properties are 
discussed. In [11], weak completeness of α -
resolution in a linguistic truth-valued propositional 
logic based on lattice implication algebra are discussed. 
In [27], a linguistic truth-valued propositional logic 
based on LIA is proposed, the properties of logical 
formula in it are given, J -true， J -false， J -similar 
and J -complementary literals based on filters are 
defined and the J -resolution method are given. A soft 
resolution method in linguistic truth-valued first-order 
logical system with six elements based on lattice 
implication algebra is proposed [29]. 

In order to establish practical and efficient 
resolution-based automated reasoning methods under 
incomparability based on lattice-valued logic, the key 
problem is to judge the α -resolution of any two 

generalized literals, i.e., their resolution at certain 
resolution level. 

In this paper, we finally provide with a 
determination table from which we can clearly and 
directly get the resolvability among generalized 
literals at some resolution level. Hence, the key 
problem for the determination of α -resolution of 
lattice-valued first-order logic ( )LF X based on lattice 
implication algebra is basically resolved, which 
provide key support as well for establishing 
resolution-based automated reasoning algorithms of 
linguistic truth-valued logic. 

The remainder of the paper is organized as 
follows: in Section 2, the proofs that α -resolution 
in ( )LF X can be equivalently transformed into that in 

( )LP X and α -resolution in 2 ( )nL P X can be 
equivalently transformed to that in ( )nL P X  are given. 
In Section 3, four kinds of typical inequality of 
generalized literals are given. In Section 4, α -
resolution determination table under 49 cases between 
two generalized literal is given. The paper is 
concluded in Section 5. 

2. Transformation of α -resolution 
Definition 2.1[11] Let α ∈ L  satisfy the following 
conditions:  

(i)  α is a dual molecule; 
(ii) ( )a L a a Iα∈ ′∨ ∧ ≤ < ; 
(iii) there exists β ∈ L such that 

( )β β β α′∧ → ≤/ . 
Then α is called a appropriate resolution level. 

Remark 2.1 It follows from [11] that the 
appropriate resolution level set in 2 2n nL L L= × is 
{ 2( , )ka b ( 1) 2 (2 2) 3+ ≤ < −n k n }. 

Theorem 2.1 [11] In ( )LP X ， if α is a 
appropriate resolution level, then  the Weak 
Completeness Theorem of α -resolution principle 
holds. 

Theorem 2.2 (Equivalence between α -
resolution in ( )LP X and α -resolution in ( )LF X ) 
In ( )LP X , q ∈ ( )αD g iff Q ∈ ( )D Gα in ( )LF X , 
where q , g are ground instances of Q , G respectively. 

Proof. (Necessity) It is easily proved according 
to Theorem 11.4.6 (Lift Theorem) in [2]. 

(Sufficiency) SupposeQ ∈ ( )D Gα  in ( )LF X , 
then for any interpretation I , ( )G Qν α∧ ≤ . Since by 
substituting Q and G  will have no common variables, 
we assume that Q and G  have no common variables 
without lose of generality. Let q , g  be ground 
instances of Q , G respectively, u  their corresponding 



interpretation. For any interpretation I  in which u  is 
part of interpretation of constants and functions 
in Q , G , ( )g qν α∧ ≤ . Therefore, for any H -
interpretation HI , αν ≤∧ )( qgH . 

Remark 2.2 It follows from Theorem 2.2 that the 
determination of α -resolution in ( )LF X can be 
equivalently transformed into that of α -resolution 
in ( )LP X . So the focus is given on the determination 
of α -resolution in ( )LP X . 

In order to deal with widely used linguistic values 
in intelligent information processing with the base of 
logical framework, in [9,11] a linguistic truth-valued 
LIA 2 2( )n nL L L× = and the corresponding linguistic 
truth-valued propositional logic 2 ( )nL P X were 
investigated. 

Theorem 2.3 v is a valuation in ( )nmL P X  iff 
there exist valuations μ and σ in ( )nL P X and 

( )mL P X  respectively such that  μ σ= ×v , 
where = ×nm n mL L L . 

Proof. Notice that any symbol p  in ( )LP X  can 
be seen as different logical formula when p is 
interpretated in different valuation field L . 

(Necessity). Let v be a valuation in ( )nmL P X . 
(1) for arbitrary a ( )∈ np L P X , it is a formula 

in ( )nmL P X  when it is interpreted in the valuation 

field nmL . Let ( ) ( )μ =
nLp v p , then it is easily proved 

that μ  is a valuation in ( )nL P X . 
(2) for arbitrary ( )mp L P X∈ , it is a formula 

in ( )nmL P X when it is interpreted in the valuation field 

nmL . Let ( ) ( )σ =
mLp v p , then it is easily proved that 

σ  is a valuation in ( )mL P X . Hence, for arbitrary a 
( )∈ nmp L P X ,  

( ) ( ( ) , ( ) )=
n mL Lv p v p v p = ( ( ), ( ))μ σp p = ( )( )μ σ× p . 

 (Sufficiency) It only needs to prove that for arbitrary 
formula p ,  q in ( )nmL P X , 

( ) ( ) ( )→ = →v p q v p v q . In fact,   
( ) ( )( )μ σ→ = × →v p q p q  

= ( ( ), ( ))μ σ→ →p q p q  
= ( ( ) ( ), ( ) ( ))μ μ σ σ→ →p q p q  
= ( ( ), ( )) ( ( ), ( ))μ σ μ σ→p p q q  
= ( )( ) ( )( )μ σ μ σ× → ×p q = ( ) ( )→v p v q . 

Theorem 2.4 In 2 2× =n nL L L , letα = 2( , )ka b  
(( 1) 2 (2 2) 3)+ ≤ < −n k n , 2 ( )∈ ng L P X . Then 

( )α∈t D g = { 2 ( )∈ nh L P X : α∧ ≤g h }  

iff ( ) ( )( )
n nL P X L P Xt D gα∈  

= { ( ) ( ) ( ):
n n nL P X L P X L P X kh g h a∧ ≤ },  

where ( )nL P Xp ) denotes the restriction of p  on 

( )nL P X . 
Proof. In 2 2n nL L L× = , α = 2( , )ka b  

(( 1) 2 (2 2) 3)+ ≤ < −n k n , 
( )t D gα∈ = { 2 ( )nh L P X∈ | g h α∧ ≤ }  

iff  for arbitrary a valuation ν in 2 ( )nL P X , 
( )g tν α∧ ≤   

iff  for arbitrary a valuation ν in 2 ( )nL P X , 
( ) ( )g tν ν α∧ ≤ (According to Theorem 2.3, if 

v μ σ= × , then ( ) ( ( ), ( ))g g gν μ σ= , 
( ) ( ( ), ( ))t t tν μ σ= ) 

iff  for arbitrary a valuation μ  in ( )nL P X , 
( ) ( ) kg t aμ μ∧ ≤  

iff ( ) ( )( )
n nL P X L P Xt D gα∈ =  

{ ( ) ( ) ( ):
n n nL P X L P X L P X kh g h a∧ ≤ }. 

Remark 2.3 It follow from Theorem 2.4 that 
α = 2( , )ka b -resolution in the linguistic truth-valued 
propositional logic 2 ( )nL P X  based on LIA is 
equivalent to ka -resolution in the linguistic truth-
valued propositional logic ( )nL P X  based on LIA, 
where ( 1) 2 (2 2) 3+ ≤ < −n k n .  

From the above analysis, for 
( 1) 2 (2 2) 3n k n+ ≤ < − , α = 2( , )ka b -resolution in 
the linguistic truth-valued first-order logic 2 ( )nL F X  
can be equivalently transformed into that in in the 
linguistic truth-valued propositional logic 2 ( )nL P X , 
and further can be equivalently transformed to the ka -
resolution in the linguistic truth-valued propositional 
logic ( )nL P X . 

3．Typical inequality of generalized 
literals 

Theorem 3.1 Let 1( , , )mF x xL  be an s-IESF with 
propositional 1x ,…, mx  and constants 1a ,…, ta . Then 
there exist literals p  and q , and constant a  such that 
(1) 1( , , )mF x x p q≥ →L , or 
(2) 1( , , )mF x x a p≥ →L , or 
(3) 1( , , ) ( )mF x x p q ′≥ →L , or 
(4) 1( , , ) ( )mF x x a p ′≥ →L . 

Proof. The conclusion is straightforward when s=1 
or s=2.  
When s>2, by Lemma 11.3.2 in [2], there exist (s-2) 



IESF 1 1( , , )L mG x x  and 1-IESF 2 1( , , )L mG x x  such 
that 

1( , , )L mF x x = 1 1( , , )L mG x x → 2 1( , , )L mG x x ≥

2 1( , , )L mG x x . 
Notice that there exist literals p  and q , and constant 
a such that 

2 1( , , ) = →L mG x x p q , or  

2 1( , , ) = →L mG x x a q , or  

2 1( , , ) ( )′= →L mG x x p q , or  

2 1( , , ) ( )′= →L mG x x a p . 
It follows the conclusion. 

Theorem 3.2 Let 1( , , )mF x xL be an s-IESF 
with propositional 1x ,…, mx  and constants 1a ,…, ta . 
Then  

(1) there exists a valuation v such 
that 1( ( , , )) =L mv F x x I , or 

(2) there exists a constant a , for arbitrary 
constant b , when a b≥ , there exists a 
valuation v such that 1( ( , , )) ≥L mv F x x b . 

Proof. (1). By Theorem 3.1, there exist literals p  
and q , and constant a such that 

(i) 1( , , )mF x x p q≥ →L , or 
(ii) 1( , , )mF x x a p≥ →L , or 
(iii) 1( , , ) ( )mF x x p q ′≥ →L , 

For (i), by the proof of Theorem 3.1, p q≠ , then there 
exists a valuation v such that ( ) =v q I , so ( ) =v F I . 
For (ii), there exists a valuation v such that ( ) =v p I , 
so ( ) =v F I . 
For (iii), by the proof of Theorem 3.1, p q≠ , then 
there exists a valuation v such that ( ) =v p I , ( ) =v q O , 
so ( ) =v F I . 
(2) By Theorem 3.1, there exist literal p  and constant 
a such that 1( , , ) ( )′≥ →L mF x x a p . For arbitrary a 
constant b , when a b≥ , there exists a 
valuation v such that ( ) =v p O , it follows that 

1( ( , , )) ≥L mv F x x b . 
Theorem 3.3 Let 1( , , )L mF x x  be an IESF with 

propositonals 1x ,…, mx  and without any constant, 
then there exists a valuation v such 
that 1( ( , , )) =L mv F x x I . 

Proof. The forms of 1( , , )L mF x x  are only (1) or 
(3) in Theorem 3.1. By theorem 3.2, it concludes the 
proof. 

4．The determination table of α -
resolution in ( )LP X  

In ( )LP X ,  we denote the sets of all the constants, all 
the propositional variables and their negations, and all 
the generalized literals by C 、 L and W respectively. 
Let 

1W ={ f f be a generalized literal, and there 

exist ,r s L∈ , r s≠  such that f r s≥ → }. 

2W ={ f f  be a generalized literal，and there exist 

a C∈ ， s L∈ such that f a s≥ → }. 

3W ={ f f  be a generalized literal, and there exist 

,r s L∈ , r s≠ such that ( )f r s ′≥ → }. 

4W ={ f f  be a generalized literal, and there exist 

a C∈ , s L∈ such that ( )f a s ′≥ → }. 
By Theorem 3.1, 1W ∪ 2W ∪ 3W ∪ 4W =W . 

Theorem 4.1 Let α ∈C , ( )∈g LP X and 
( )α =D g { ( )∈h LP X α∧ ≤h g }(Noted： ( )α∈h D g  

iff  ( )α∈g D h ). We can get the following α -
resolution table: 
 Case [1]: 
(i)  Let ( ') α

∈

∧ ≤∨
t L

t t . If ( )h g g′ ′= → or ( )g q′ ′→  or 

( )p g ′→ , then ( )h D gα∈ ; 
(ii) If ( )h g g′ ′> →  and d α≤/  where d is the 
maximum value of ( )g g g′ ′∧ → , or 

( )h g q′ ′> → and d α≤/ , where d is the maximum 
value of ( )g g q′ ′∧ → ,  then ( )h D gα∉ ; 
(iii) Others, ( )h D gα∉ . 
Case [2]: 
(i)  Let ( ')

t L
t t α

∈

∧ ≤∨ . If ( )h a g ′= → ， then 

( )h D gα∈ ; 
(ii) If ( )h a g ′> → and d α≤/  , where d is the 
maximum value of ( )g a g ′∧ → ,  then ( )h D gα∉ ; 
(iii)  Others,  if a α≤/ , then ( )h D gα∉ . 
Case [3]: 
(i)  Let ( ') α

∈

∧ ≤∨
t L

t t . If g r s= → , ( )h r s ′= → ,  

then ( )h D gα∈ ; 
(ii) If g r s> → or ( )h r s ′> → and d α≤/ , where 
d is the maximum value of ( ) ( )r s r s ′→ ∧ → , 
then ( )h D gα∉ ; 
(iii) If there exists β ∈ L such that ( ')β β β α∧ → ≤/ , 
and g r r′≥ → or ( )h r q ′≥ → , then ( )h D gα∉ . 
(iv) Others, ( )h D gα∉ . 
Case [4]: 



(i)  If g r r′≥ → , ( )h a r′ ′≥ → , and d α≤/ , where 
d is the maximum value of ( ) ( )r r a r′ ′ ′→ ∧ → , then 

( )h D gα∉ ; 
(ii)  Others, if a α≤/ , then ( )h D gα∉ . 
Case [5]: 

(i)  If g b s≥ → , h a s′≥ → , and d α≤/ , where d is 
the maximum value of ( ) ( )b s a s′→ ∧ →  , then 

( )h D gα∉ ; 
(ii)  Others, ( )h D gα∉ . 
 

C∈  g h∧  h       
≤α ? 
 
g     

≤α  ≤/ α  
L∈  p q≥ →  a q≥ →  ( )p q ′≥ →

 
 

( )a q ′≥ →  

α≤
 

Yes Yes Yes Yes Yes Yes Yes C∈
 

α≤/
 

Yes Ifα is a 
dual 
molecule
, then No 

No No No No If α is a 
dual 
molecule, 
and 
a α≤/ , 
then No. 

L∈  Yes No If
( )t L t t α∈ ′∨ ∧ ≤

, h g ′= , 
then Yes; 
others, No. 

If 
h g g ′= →  
and there 
exists β ∈ L ,

( ')β β β∧ →
α≤/ , then 

No; others, 
No 

If q g ′=  
and a α′ ≤/ , 
then No; 
others, No. 

[1] [2] 

r s≥ →  Yes No If
g h h′= →  
and there 

exists β ∈ L
( ')β β β∧ →

α≤/ ，then 
No; others, 
No. 

If
g r r′≥ → ,
h r r′≥ → , 
and there 
exists, β ∈ L  

( ')β β β∧ →
α≤/ , then 

No; others, 
No 

If
g r r′≥ → ,
h a r≥ → , 
and there 
exists β ∈ L , 

( ')β β β∧ →
α≤/ , then 

No; others, 
No 

[3] [4] 

b s≥ →  Yes No If s h′= , 
and b α′ ≤/ , 
then No; 
others, No. 

If
h p p′≥ → ,
g b p≥ → , 
and there 
exists β ∈ L ,

( ')β β β∧ →
α≤/ , then 

No; others, 
No. 

[5] [6] [7] 

( )r s ′≥ →  Yes No [8] is similar 
to[1] 

[9] is similar 
to [3] 

[10] is 
similar to [6]

[11] [12] 

( )b s ′≥ →  Yes Ifα is a 
dual 
molecule
, and 

b α≤/ , 
then 
No 

[13] is 
similar to [2]

[14 is similar 
to [4] 

[15] is 
similar to [7]

[16] is 
similar to 
[12] 

[17] 



Table 1:  The determination table of α -resolution in ( )LP X . 
Remark 4.1: In Table 1, “Yes” represents that g and 

h  are resolvent while “No” represents 
that g and h  are not resolvent. 

Case [6]: 
(i) If g b s≥ → , ( )h s q′ ′≥ → , and d α≤/ , where d is 
the maximum value of ( ) ( )b s s q′ ′→ ∧ →  , 
then ( )h D gα∉ ; 
(ii)  Others, ( )h D gα∉ . 
Case [7]: 
(i) If g b s≥ → , ( )h a s ′≥ → , and d α≤/ , where d is 
the maximum value of ( ) ( )b s a s ′→ ∧ → , 
then ( )h D gα∉ ; 
(ii)  Others, if a α≤/ , then ( )h D gα∉ . 
Case[8]: 
(i) Let ( ') α

∈

∧ ≤∨
t L

t t . If ( )g h h′ ′= →  or ( )h s′ ′→  or 

( )r h ′→ , then ( )h D gα∈ ; 
(ii) If ( )g h h′ ′> → and d α≤/ , where d is the 
maximum value of ( )h h h′ ′∧ → , or  ( )g h s′ ′> → and 
d α≤/  where d is the maximum value of 

( )h h s′ ′∧ → , then ( )h D gα∉  ; 
(iii)  Others, ( )h D gα∉ . 
Case[9]: 
(i) Let ( ') α

∈

∧ ≤∨
t L

t t . If h p q= → , ( )g p q ′= → , 

then ( )h D gα∈ ; 
(ii) If h p q> → or ( )g p q ′> → and d α≤/  , 
where d is the maximum value of ( ) ( )p q p q ′→ ∧ → , 
then ( )h D gα∉ ; 
(iii) If there exists β ∈ L such that ( ')β β β α∧ → ≤/ , 
and h p p′≥ →  or  ( )g p s ′≥ → , then ( )h D gα∉ . 
(iv) Others, ( )h D gα∉ . 
Case [10]: 
(i) If h a q≥ → , ( )g q s′ ′≥ → ,and d α≤/ where d is 
the maximum value of ( ) ( )a q q s′ ′→ ∧ → , 
then ( )h D gα∉ ; 
(ii) Others, ( )h D gα∉ . 
Case [11]: 
(i) If ( )g r r′ ′≥ → , ( )h r q′ ′≥ → and d α≤/ , where 
d is the maximum value of ( ) ( )r r r q′ ′ ′ ′→ ∧ → , then 

( )h D gα∉ ; 
(ii) If ( )g r s ′≥ → , ( )h r s′ ′≥ → and d α≤/ , where 
d is the maximum value of ( ) ( )r s r s′ ′ ′→ ∧ → , then 

( )h D gα∉ ; 
(iii)  If ( )g r s ′= → , ( )h r s′ ′ ′= → , then g h O∧ = . 

(iv)  If ( )g r s ′> → , or  ( )h r s′ ′ ′> → , then we can 
not judge if h belongs to ( )D gα ; 
(v) If ( )g r s ′≥ → , ( )h r q′ ′≥ → and d α≤/ , where 
d is the maximum value of ( ) ( )r s r q′ ′ ′→ ∧ → , then 

( )h D gα∉ ; 
(vi) If ( )g h r s ′∧ ≥ → , ( )g h s q ′∧ ≥ → , and 
d α≤/ where d is the maximum value of 
( ) ( )r s s q′ ′→ ∧ → , then ( )h D gα∉ ; 
(vii)  Others, ( )h D gα∉ . 
Case[12]: 
(i) If ( )g r r′ ′≥ → , ( )h a r ′≥ → and d α≤/ , where 
d is the maximum value of ( ) ( )r r a r′ ′ ′→ ∧ → , then 

( )h D gα∉ ; 
(ii)  If ( )g r r′ ′≥ → , ( )h a q ′≥ →  and a α≤/ , 
then ( )h D gα∉ ; 
(iii) If ( )g r s ′≥ → , ( )h a r ′≥ → and d α≤/ , where 
d is the maximum value of ( ) ( )r s a r′ ′→ ∧ →  , then 

( )h D gα∉ ; 
(iv)  If ( )g r s ′≥ → , ( )h a q ′≥ → and a α≤/ , 
then ( )h D gα∉ . 
Case[13]: 
(i) Let ( ') α

∈

∧ ≤∨
t L

t t . If ( )g b h ′= → , then 

( )h D gα∈ ; 
(ii)  If ( )g b h ′> → and d α≤/ , where d is the 
maximum value of ( )h b h ′∧ → , then ( )h D gα∉ ; 
 (iii) Others, if b α≤/ , then ( )h D gα∉ . 
Case [14]: 
(i) If h p p′≥ → , ( )g b p′ ′≥ → , and d α≤/ where 
d is the maximum value of ( ) ( )p p b p′ ′ ′→ ∧ → , 
then ( )h D gα∉ ; 
(ii)  Others, if b α≤/ , then ( )h D gα∉ . 
Case [15]: 
(i) If h a q≥ → , ( )g b q ′≥ →  and d α≤/ , where d  
is the maximum value of ( ) ( )a q b q ′→ ∧ → , then 

( )h D gα∉ ; 
(ii) Others, if b α≤/ , then ( )h D gα∉ . 
Case [16]: 
(i) If ( )h p p′ ′≥ → , ( )g b p ′≥ → and d α≤/ , where 
d is the maximum value of ( ) ( )p p b p′ ′ ′→ ∧ → , 
then ( )h D gα∉ ; 
(ii)  If ( )h p p′ ′≥ → , ( )g b s ′≥ → and b α≤/ , 
then ( )h D gα∉ ; 



(iii) If ( )h p q ′≥ → , ( )g b p ′≥ → and d α≤/ , where 
d is the maximum value of ( ) ( )p q b p′ ′→ ∧ → , 
then ( )h D gα∉ ; 
 (iv) If ( )h p q ′≥ → , ( )g b s ′≥ → and b α≤/ , 
then ( )h D gα∉ . 
Case[17]: 
(i)  If ( )g b s ′≥ → , ( )h a s ′≥ → and b a α∧ ≤/ , 则

( )h D gα∉ ; 
(ii) If ( )g b s ′≥ → , ( )h a s′ ′≥ → and d α≤/ , where 
d is the maximum value of ( ) ( )b s a s′ ′ ′→ ∧ → , then 

( )h D gα∉ . 
Remark 4.2 It follows from Theorem 4.1 that 

whether two generalized literals g , h are resolvent 
can be checked through  the determination table of α -
resolution in ( )LP X . 

5. Conclusions 
In this paper, the following results were obtained: 
(1) The difficult and key problem of α -resolution of 
any two literals or two generalized literals in lattice-
valued first-order logic ( )LF X  based on lattice 
implication algebra can be transformed equivalently to 
that for lattice-valued propositional logic ( )LP X , 
which much simplified the problem. 
(2) α -resolution in linguistic truth-valued 
propostional logic 2 ( )nL P X  based on lattice 
implication algebra can be transformed equivalently 
into α -resolution for linguistic truth-valued 
propostional logic ( )nL P X  based on lattice implication 
algebra. Hence α -resolution of two literals or two 
generalized literals in linguistic truth-valued first-order 
logic 2 ( )nL F X  can be transformed into α -resolution 
of two literals or two generalzied literals in linguistic 
truth-valued propositional logic ( )nL P X . 
(3) The provided determination table with 49 cases for 
two generalized literals in lattice-valued propositional 
logic ( )LP X based on lattice implication algebra 
provided criteria to determine if any two literals or two 
generalized literals areα -resolution pair  in ( )LP X . 
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