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Abstract—This study presents a Sequential quadratic 
Response Surface Method(SRSM) using inherited Uniform 
Design(UD), to reduce the computational burden in 
optimization process and improve the computational 
efficiency of engineering optimization. The program 
comprises a low accuracy global quadratic response surface 
modeling and a precision increasing sequential quadratic 
response surface modeling, which were consturcted by the 
1.5 and 1 times saturated sampling points, respectively. The 
initial sub-region of the sequential response surface is 
determined by the global response surface, according to the 
optimum point in the sample set. A new move limit criterion 
based on the relative position of normalized optimum is 
proposed to achieve sub-region planning and zooming. Three 
test mathematic functions and a buckling optimization 
design problem are solved to show the numerical 
performance of the proposed method. The calculated data 
show that the inherited UD and the move limit criterion 
introduced into approximate modeling can effectively 
improve the efficiency and the conergence accuracy of the 
method presented. The results exhibit the progressive in the 
computation-inte nsive engineering application. 

Keywords- response surface method; uniform design; move 
limit; buckling optimization; modeling method 

I. INTRODUCTION 
As today's engineering design have widely used the 

optimization method to improve the structure 
performances, many elaborate analyses and simulation are 
necessary for design process. It is a very time consuming 
process if design analysis and simulation is computation-
intensive. Especially an optimization process combined 
with direct search algorithm becomes more expensive, 
which needs a great many analyses. In order to raise an 
efficiency of design process by reducing the number of 
computation-intensive analyses, Response Surface 
Method (RSM) was commonly introduced to approximate 
complex system. RSM is one of the most popular methods 
to generate the explicit approximate expression instead of 
the implicit relationship between the inputs and outputs of 
complex system, based on the experimental design and the 
statistical principle. For the optimization design using 
RSM, the system responses are only conducted at the 
sampling points, and others system analyses use the 
approximate model instead of computation-intensive 
analyses, so the simulation time is saved. But RSM has 
two disadvantages[1]. First, as the increase of design 
variables, the number of sampling points would increase 

exponentially. It leads the optimization to the lower 
efficiency. Secondly, it‟s difficult to get a global optimum 
via a quadratic response surface model when the problem 
is highly non-linear, because the low order response 
surface model cannot estimate the non-linearity accurately. 
Current RSM related research is roughly along three 
directions: refining experimental design[2-4], constructing 
suitable approximate model[5-7] and better sub-region 
management approach[2,4,6,8-10] to overcome these 
obstacles and to develop a sequential response surface 
modeling[4,6,8-10] to improve iteratively the approximate 
accuracy and optimization efficiency. 

This paper presents an efficient sequential approximate 
modeling called Sequential quadratic Response Surface 
Method (SRSM) based on inherited Uniform 
Design(UD)[11]. The SRSM mainly consists of three 
distinctive aspects. Firstly, it constructs a low precision 
global response surface using UD in the design domain. 
Secondly, it determines the initial sub-region of sequential 
quadratic response surface through global response surface, 
and reuses previous sampling points for constructing the 
sequential response surface. Finally, it implements the sub-
region management based on the relative position of 
normalized optimum, so the approximate accuracy is 
iteratively improvement in optimization process and the 
global convergence is guaranteed. 

II. SEQUENTIAL RESPONSE SURFACE MODELING 

A. Design of Experiment  
UD as a multifactor Design of Experiment, is 

proposed by K.T. Fan[11] to seek sample points that are 
uniformly scattered on the design domain. UD firstly 
generates the samples according to Uniform Table(UT) 
notated as Up(qn), where U represents UD, p is the number 
of sample points, q the number of levels for each factor, 
and n the number of variables. A p n  matrix ,( )i juU , 
where ,i ju ( 1, ,i p K , 1, ,j n K ) is the j-th variable 
values of the i-th sample point in UT, is called U-type 
design. Then, ix , the actual values of the i-th sample 
point in the design domain is defined as 

L U L( ) ( ) 1, ,i i n i p    x x U E x xo L         (1) 

where iU is the column vector values of the i-th sample 
point in UT, T(1, ,1)E L  is the n dimensional vector. 
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„o ‟ is  Hadamard multiplier. Ux  and Lx  are the upper and 
lower limit of x , respectively. 

B. Approximate Method 
Polynomial response surface is one of the most 

popular approximate models utilized effectively in a 
variety of applications, because it can be easily 
constructed and quick convergence in optimization. A 
quadratic polynomial response surface model has the form 

0
1 1

( )
n n

i i ij i j
i i j n

y x x x
   

   x                        (2) 

where ( )y x , with T
1( , , )nx xx K , is the predicted 

value. ix  ( 1, ,i n K ) is the i-th design 
variable. 0 , i and ij  ( 1 i j n   ) are undetermined 
coefficients of quadratic polynomial, total 

min ( 1)( 2) / 2N n n   . The coefficient 
T

0 1( , , , )pβ L    is calculated with least squares 
regression, by minimizing the sum of squares of the errors 
between the predicted values ( )y x  and the analysis 
values ( )f x , using the equation T 1 T( )β X X X f . 
Where X  is the matrix of variable data at the sample 
points, T

1 2[ ( ), ( ), , ( )]pf f ff x x xL  the corresponding 
analysis values at each sample point. The equation 

minp N is necessary to keep  matrix TX X  non-
singularity. 

C. Model Management Approach 
Sizes of sequential sub-regions are highly influential 

on the approximate accuracy of model. When the 
approximate accuracy is not enough to ensure model 
convergence to a true optimum, the size of the sub-region 
should be zoomed and the position be adjusted. Model 
management approach proposed in the paper is composed 
of planning of the initial sub-region and moving and 
zooming of the sequential sub-region. The position of the 
initial sub-region is determined by the point with smallest 
value of the sample set, which contains the 
optimum 0

optx of global response surface. And  the size is 
determined  by the space around the point with smallest 
value and containing the Nmin+1 sample points, as shown 
in Fig .1.  The “  ”denotes the sample points designed by 
U13(132), the “ ”denotes 0

optx  and the gray area including 
seven points is the initial sub-region. Space mapping of 
the sub-region to the normalized space [-1,1] is used in 
optimization process to eliminate the variable scale effect 
on approximate accuracy and to unify the sequential 
response surface modeling. 
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 Figure 1. The initial sub-region 
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Figure 2. The moving and zooming of k+1-th sub-region 

Updating scheme of  the moving and zooming of sub-
region is shown as Fig .2 for two variables problem. The 
size of the k+1-th sub-region is a proportion of the size of 
the k-th sub-region, and the proportional parameter 1k

i
 is 

calculated based on the normalized optimum k
i  as below 

1 0.8 0.125 tan[0.4 (2 1)] 1,2,k k
i i k         (3) 

the values of 1k
i
 is limited within [0.42, 1.18]. 

1 0.8k
i
   for shrinking slowly the size of the k+1-th sub-

region when k
i  nears to 0.5 or -0.5. If k

i  is close to 1, -1 
or zero, the 1k

i
 should get 1.18 or 0.42 respectively to 

fast zoom the size of the k+1-th sub-region. The curve of 
parameter 1k

i
 versus the  normalized optimum k

i  is 
shown as Fig .3. The k+1-th sub-region size 1k

is   is 
chosen from the smaller value between 1k k

i ia s  and 1
is , 

where k
is and 1

is  are the size of the range of the i-th 
variable in k-th sub-region and initial sub-region, 
respectively, and can be formula as 

1 1 1min{ , } 1,2,k k k
i i i is a s s k   K        (4) 

The center position 1ko  of the k+1-th sub-region is 
determined by the optimum opt

kx and the normalized 

optimum opt
kξ  of the  k-th sub-region. Utilizing 1k

is  , the 
upper and lower bounds of the i-th variable for  k+1-th 
sub-region can be determined by  
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max( 0.5 [1 ] , )

k k k k
i i i i i
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i i i i i

x x s x

x x s x

   

   

     


    




      (5) 

1 0.5 max(0,| | 0.5) ( )k k k
i i isign               (6) 

where the k
ix  is the optimum of the i-th variable in the k-

th sub-region. The Uix and Lix are the upper and lower 
bounds of the i-th variable for the design domain. The 

( )sign   is sign function. The offset of the center of the 
k+1-th sub-region from the optimum k

ix is controlled by 
1k

i
 , which indicates the relative position of normalized 

optimum k
i from the 0.5 or -0.5, and the offset direction 

is decided by the symbol of k
i . The offset in (5) and (6) 

reduces the overlap of two adjacent sub-regions and 
accelerates the optimization convergence.  

The convergence criteria of the optimization process is 

1
opt opt opt

1
opt opt opt

( ) ( ) ( ) 1%

1%

k k k

k k k

f f f



  


 

x x x

x x x
                (7)  

where 1
opt( )kf x  and opt( )kf x  are the optimum values for 

the k+1-th and k-th sub-regions, respectively. 
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Figure 4.  Inherited sample points in the sub-region: (a) Ne < 0.6Nmin;   
(b)  0.6Nmin < Ne < Nmin 

D. Inherited Method  
The total sample size evaluated in the optimization 

process consists of the initial sample size in the design 
domain and the supplemental sample size generated in 
iterative process. It is necessary to elaborately choose the 
appropriate amount of initial samples for reducing the 
total sample size and improving the efficiency. In this 

work, the economy initial sample size is chosen as 1.5Nmin 
based on literature[2-3] and experimental test. 

In the optimization process. the sequential optimum is 
added to the sample set and the point in the set will be 
inherited as long as it falls into the sub-region. The 
sequential response surface model is fitted by no less than 
Nmin+1 samples in the sub-region. If Ne, which denotes the 
number of inherited points, is less than Nmin+1, the 
additional points will be generated as follow: When Ne is 
less than 0.6Nmin, create Nmin sampling points by UD and 
remove the ones nearing the inherited points until 
remaining Nmin+1 points. When Ne falls into [0.6Nmin, 
Nmin], design the additional points by the principle of 
maximizing the minimum distance. For two variables, the 
sampling points were generated as shown in Fig 4.  The 
“ ” denotes inherited points and the “ ” denotes 
additional points. 

E. Optimization Procedure of SRSM 
Combined the NSGA-II algorithm[12] as RSM sub-

optimizer to obtain global optimum, The overall system 
optimization procedure of the proposed SRSM is 
represented as following:  

Step 1. Define the design  variables, the objectives and 
the constraints of optimization problem.  

Step 2. Set k=0, Generate 1.5Nmin  sample points by 
UD in design domain, evaluate the function 
values at these points and record these points 
into the sample set.  

Step 3. Construct the quadratic polynomial model by 
least square regression and execute an 
approximate optimization by NSGA-II to get 
an optimum opt

kx . 

Step 4. Evaluate actual function value at opt
kx  and add 

opt
kx  to the sample set. if k=0 then select the 

reference point with the smallest value in the 
sample set, define the initial sub-region that 
contains Nmin+1 points around the reference 
point with the minimum distance and go to 
Step 6.  

Step 5. If the process satisfies the convergence criteria  
(7), stop the program. Otherwise, calculate the 
k+1 th sub-region by (3)-(6). 

Step 6. Generate Nmin+1 sample points based on the 
inherited points Ne  at the k+1-th sub-region: 

 If Ne<0.6Nmin, create Nmin candidate points by 
UD and maintain Nmin+1 sample points 
through removing the candidate ones close to 
the inherited points, as shown in Fig .5(a). 

 If 0.6Nmin≤Ne<Nmin, generate the 
supplementary points by the principle of 
maximizing the minimum distance, as shown 
in Fig .5(b). 

 If Ne≥Nmin, no sample points would be added. 
Step 7. Set k=k+1 and go to Step 3. 

III. NUMERICAL EXAMPLES 
The proposed SRSM has been tested with two widely 

accepted test functions and a engineering design. First of 
all, the test functions is performed to verify an accuracy 
and efficiency of the SRSM. 
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A. Test functions  
(1) Six-hump Camelback function(SC)  

6
2 4 2 41

SC 1 1 1 2 2 2

1,2

4 2.1 4 4
3

[ 2,2]

xf x x x x x x

x

     

 

 (8) 

(2) Rastrigin function(RS) 

2 2 2 2
RS 1 2 1 2

1,2

cos18 cos18
[ 1,1]

f x x x x
x

   

 
                (9) 

(3) Nonlinear function(NL) 

2 2
1 22 2

NL 1 2

1

2

1 2

2.4
[0.8 0.35sin( )]

2

{1.5sin[1.3arctan( )]}

[0.01,1], [0,1]

x x
f x x

x
x

x x


  

 



 (10) 

The optimal results are tabulated in Table 1. Nf  notates 
the number of function evaluations. From Table 1, it 
shows that first the SRSM can converge to a very near-
global optimum. Second, the SRSM has achieved better 
accuracy with much fewer function evaluations than the 
ARSM-II[4]. For function NL, the SRSM needs fewer 
function evaluations at a same accuracy as the Radial 
Basis Functions (RBF)[5]. Therefore, the SRSM is 
efficient and high accuracy in terms of the number of 
computation-intensive function evaluations and the 
optimization results, respectively. 

TABLE 1.  Optimal results of three test problems 

Test 
Func. 

# Local 
Min. Anal. solu. Method Optimum Nf 

SC 6 -1.032 SRSM -1.032 41 
ARSM II -1.029 44 

RS 50 -2.000 SRSM -1.879 51 
ARSM II -1.854 60 

NL 1 1.6519 SRSM 1.6519 29 
RBF 1.6519 38 

 

B. Engineering design 
The following section will show how the SRSM is 

applied to buckling optimization of conical shell with hole 
as shown in Fig .5. Shell wall thickness is 0.8mm. 
Material modulus of elasticity is 204GPa. and P denotes 
the pressure load on the structure. The hole boundary is 
described as the super-elliptic function in parametric form 
as[13] 

2
0

2 2
0

cos ( )
(0 2 )

(1 cos ( ))sin ( )

x x a

y y b ca

  
 

  



 


 

 
    (11) 

where the shape parameter ƞ, distortion factor c and  the 
ellipse axes a or b constitute the design variables. Based 
on the parametrical mapping method[14], the 

parameterized geometry model with hole is established 
and the structural stability analysis is conducted using the 
finite element method. Maximization of conical shell 
carrying capacity can be expressed as 

  

T 3
crMax  P ( ) [ , , ]

s.t.  ( ) 80384
60 300
2 6

0.0033 0.0033

a c R
A

a

c

 



 

 

  

x x
x





              (12) 

where the objective crP ( )x  is the critical buckling load of 
conical shell. The constraint ( )A x  is for maintaining 
constant area of hole in conical shell. 

Table 2 shows the optimization results for SRSM and 
NSGA-II. The optimal hole shape is shown in Fig .6. 
Population size and genetic algebra is set to 40 and 30 
respectively in NSGA-II. The optimal results show that 
the SRSM  only requires 5 iterations with 71 function 
evaluations to reach the optimum, whereas  the NSGA-II 
algorithm needs 1200 function evaluations. The SRSM 
reduced function evaluations dramatically at a loss of little 
accuracy compared with the NSGA-II. 

TABLE 2. Comparison of optimal results for SRSM and NSGA-II 

Methods Optimal design  
(a,η,c) 

Predicted 
values(N) 

Analysis 
values(N) errors Nf 

SRSM (223.2, 2.60, 3.28) 31123 29814 4.39% 71 
NSGAII (247.8, 2.48, 3.27) -- 30764 -- 1200 
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H
=8

00
h=396.5r2=700

P

    
Figure. 5  Schematic of the conical shell with hole 

     
Figure. 6  The optimal hole shape on conical shell 

IV. CONCLUSIONS 
In this paper, an efficient SRSM was presented using 

inherited UD as a design of experiment, a quadratic 
polynomial model as an approximate model, and a new 
move limit criteria as a model management approach. The 
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SRSM achieves the high efficiency and accuracy because 
it reuses a previous data by using inherited UD and adjusts 
adaptively the sub-region to accelerate the convergence. 
Two functions and a design problem are solved and the 
availability of SRSM is proved by comparing the accuracy 
and efficiency of it with that of existing algorithms. 
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