

A Multi-objective Particle Swarm Optimization
for Assembly Line Design with Station

Paralleling

Jianping Dou
School of Mechanical Engineering

Southeast University
Nanjing, China

djpseu@gmail.com

Xia Zhao

Center for Food Security and Strategic Studies
Nanjing University of Finance and Economics

Nanjing, China
txzhaoxia@163.com

Abstract—To solve bi-objective assembly line design problem
(ALDP) considering station paralleling and equipment
selection, a Pareto-dominance-based method is presented. The
two objectives are minimization of investment cost and
maximization of availability of the assembly line. A multi-
objective particle swarm optimization (MoPSO) is proposed to
obtain a set of Pareto solutions through combining the
techniques of crowded distance and external Pareto solution
archive. The developed solution representation and relating
updating mechanism of MoPSO ensures each particle to be a
feasible solution. The performance of MoPSO was compared
with that of NSGA-II against two cases. The comparison
results show the effectiveness of the MoPSO. The computation
results also indicate that the MoPSO is superior to the NSGA-
II for the ALDP with respect to solution quality and
computational efficiency.

Keywords- assembly line design; multi-objective optimization;

partticle swarm optimization; station parallel;Pareto solutions

I. INTRODUCTION
Assembly lines are production systems composed of a

succession of stations, connected by a conveyor, performing
a set of tasks on the product passing through them. Each
product unit remains at each station for a fixed time called
the cycle time, C. When alternative automated equipments
are used for assembly tasks, the assembly line design
problem (ALDP) becomes very important. The design in this
context consists of selecting the type and amount of
paralleling equipment for the stations and assigning tasks to
stations.

Bukchin [1] and Nicosiaa [2] have shown that the ALDP
is more difficult than the assembly line balancing problem
(ALBP) which is known to be a NP-hard combinatorial
optimization problem. Due to the NP-hard essence of ALDP,
traditional exact methods such as branch and bound [1] [3-4],
and dynamic programming [2] are computational intractable
for large scale problems. Recent years, some population
based meta-heuristics such as genetic algorithms (GAs) [5-7],
particle swarm optimization (PSO) [8-9] are utilized to solve
ALDPs. However, the aforementioned works only consider
cost related single objective. In practice, multiple objectives

such as equipment cost, workload smoothness, and
availability are needed to conceive for assembly line design.
As for multiple-objective optimization for ALDP, the
optimization methods can be categorized into two classes
[10]: aggregative methods and Pareto-dominance-based
methods. The aggregative method for ALDP [11-12] is to
convert multiple objectives into single objective based on the
assumption that the preferences of the decision-maker can be
known a priori. On the contrary, the Pareto dominance-based
method is to provide a list of interesting trade-offs between
the objectives rather than a lone solution supposing that the
preferences of the decision-maker are unknown. The Pareto
dominance-based methods for ALDP with station paralleling
and equipment selection are seldom. Rekiek [13] developed
a grouping GA for ALDP considering equipment selection.
Goyal [7] utilized the NSGA-II for ALDP with station
paralleling and equipment selection. Saif [14] developed a
Pareto based artificial bee colony algorithm for multi-
objective assembly line balancing with uncertain task times.
However, we are aware of no Pareto based multi-objective
PSO (MoPSO) for ALDP. Nearchou [15] proposed a
dynamic weighted PSO for multi-objective assembly line
balancing problem. Chutima [16] presented a MoPSO for
two-sided mixed-model assembly line balancing. To authors’
best knowledge, the MoPSO for ALDP considering station
paralleling and equipment selection is absent.

In this paper, we extend our previous work [9] to solve
multi-objective ALDP and developed an efficient MoPSO
for ALDP with station paralleling and equipment selection.
The effectiveness of the proposed MoPSO is illustrated by
the performance comparison between MoPSO and NSGA-II
against two cases.

II. PROBLEM STATEMENT
In a make-to-order environment, the most important

objective for assembly line design is to minimize the cost
(e.g., fixed cost) given the capacity derived from the
custom’s order. Minimizing the fixed cost (investment cost)
is as the first objective of the concerned ALDP. Another
important objective is to meet the custom’s demand reliably.

International Conference on Mechatronics, Electronic, Industrial and Control Engineering (MEIC 2014)

© 2014. The authors - Published by Atlantis Press

International Conference on Mechatronics, Electronic, Industrial and Control Engineering (MEIC 2014)International Conference on Mechatronics, Electronic, Industrial and Control Engineering (MEIC 2014)

International Conference on Mechatronics, Electronic, Industrial and Control Engineering (MEIC 2014)

728

The ability of a production system to satisfy production
demands depends on its availability [17]. Thus, maximizing
availability of the assembly line is as the second objective for
the addressed ALDP.

As aforementioned, we deal with the ALDP considering
station paralleling (equipment paralleling) and equipment
selection. Under such conditions, the ALDP is to determine
the number of stations, select the number of paralleling
equipments and equipment type to be placed to each station
as well as assign assembly tasks to each station, satisfying
capacity constraints (cycle time limitation) and observing
precedence constraints among tasks. In practice, the space
limitation should also be satisfied [6].

In our previous work, a 0-1 integer programming model
for the single objective ALDP was presented [9]. The model
of the multi-objective ALDP is identical to the model in [9]
except for adding the below objective:
 Min 1.2-fa(AL) (1)
where AL represents the designed assembly line, fa(•) is the
function for computing the availability. The UGF method
[17] is adopted to calculate the availability of AL. Eq.(1) is
to maximize the availability of assembly line.

Since the ALDP belongs to NP-hard problems, a Pareto
based multi-objective meta-heuristics named MoPSO is
developed for solving the addressed problem.

III. MULTI-OBJECTIVE PSO FOR ALDP

A. Introdution to PSO
Particle swarm optimization (PSO) developed by

Kennedy and Eberhart [18] is inspired by the social
behavior of a flock of migrating birds trying to reach an un-
known destination. In PSO, each solution is a ‘bird’ in the
flock and is referred to as a ‘particle’. A particle in the
population evolves their social behavior and accordingly
their movement towards a destination.

The evolution process of PSO is initialized with a group
of random particles (solutions). The ith particle is
represented by its position as a point in a N-dimensional
space, where N is the number of variables. Throughout the
process, each particle i monitors three values: its current
position (Xi(t)); the best position it reached in previous
cycles (Pi); its flying velocity (Vi(t)). In each time interval
(generation), the position (Pg) of the best particle g is
calculated as the best fitness of all particles. Accordingly,
each particle updates its velocity Vi(t+1) and position Xi(t+1)
to catch up with the best particle g, as follows:
 1 1 2 2

max max

(1) () (()) (()) ()

(1) () (1), (1) ()
i i i i g i

i i i i

V t V t C r P X t C r P X t a

X t X t V t V V t V b

     


       

 (2)

where C1 and C2 are two positive constant, namely, learning
factors, r1 and r2 are two random real number in the range [0,
1]. Usually C1 and C2 are set to be 2.0. Vmax is an upper limit
on the maximum change of particle velocity, and ω is an
inertia weight. To apply PSO to ALDP, suitable solution
representation and particle’s updating method need to be
developed.

B. Solution Representation
The representation of assembly line by a particle is

composed of two components as shown in Fig .1. One
component represents the feasible operation assignment
(FOA), another represents the machine type and number of
stations (machines). In Fig.1(a), the FOA records the
assignment of tasks along the assembly line. The FOA is
determined by the assignment of each task (operation) of
feasible operation sequence (FOS). An operation sequence
satisfying the precedence relations is named feasible
operation sequence (FOS). It is clear that a feasible
assignment of tasks along an assembly line must be a FOS.
In Fig .1, the indirect encoding of FOS [6] is adopted. The
basic idea is to represent a FOS by recording the selection
priority of each operation. Then, a zero-indegree topological
sort [6] is used to de-code the permutation of priority
number, i.e, 5-7-1-3-2-6-4 in Fig .1, to a FOS, i.e., OP1-
OP2-OP7-OP4-OP5-OP6-OP3. After the FOS is decided,
the assigned station of each operation of FOS is recorded by
an element of a particle in Fig .1(a). In Fig .1(a), OP2 is
assigned to station 1 and OP5 is assigned to station 2.

Figure 1. Solution representation of particle for an assembly line

To fully represent an assembly line, we have to record
the machine type and machine amount via a particle. As
shown in Fig .1(b), for each station, the information of
machine type and machine amount are recorded directly by
the corresponding elements of a particle. To avoid the
unfeasibility of this direct encoding, this part is constructed
in light of the FOA in Fig .1 (a) using the below procedure.

Step 1. Let the index of station j:=1;
Step 2. For station j,
 Using the FOA information, get the assigned task

set AJp={1,…,pj};
 Identify the eligible machine type set

AMj={1,…,mj} for task set AJp ;
 Find the minimum cost machine type m from

AMj and calculate the minimum number of
corresponding machine type mj;
Let the machine type be m and the number of
parallel machine be a random integer in the range
[mj, M].

Step 3. Let j:=j+1;
Step 4. If j=J, end; otherwise go to Step 2.

where the maximum parallel number of station is M, the
maximum length of assembly line is J . For a product with
N tasks and J stations, the maximum dimension of the
particle is 2(N+J). According to above description, the
developed solution representation ensures that each particle
corresponds to a feasible solution.

729

C. Particle Updating
The updating of a particle is realized by changing the

velocity and position of a particle through learning from the
Pg and Pi. The updating mechanism of original PSO [18] is
for real-encoding. Nevertheless, the integer encoding is used
in the developed PSO. Thus, new updating mechanism is
needed.

For the permutation encoding of FOS, the updating
method for permutation encoding in our previous work [19]
is adopted. For non-decreasing integer encoding for
assignment of FOS (right part of Fig .1(a)), the mutation
operator [20] is used to update this part. As aforementioned,
the integer encoding of machine type and amount does not
updating independently but updates in light of the relating
FOA.

D. Multi-Objective PSO
As aforementioned, the Pareto based method is adopted

in this paper. The proposed MoPSO utilizes the concepts of
Pareto dominance and Pareto solutions (See [21] for details).
For multi-objective optimization, the comparison of two
solutions is not easy. Therefore, the selection of Pi and Pg is
far more difficult than single objective optimization. Based
on the concept of crowded distance [22] and external Pareto
solution archive [21], the procedure of MoPSO is shown in
Fig .2. The main procedure of MoPSO is the same as the
basic PSO. However, the difference lies in the selection of
Pi and Pg as well as the computation of particle’s fitness.

Figure 2. Procedure of the MoPSO

To select the personal best Pi, if current personal best
(1)iP t dominates its previous one ()iP t (denoted

by (1) () pi iP t P t), let Pi equal (1)iP t . If () (1)i iP t P t p ,
let Pi equal ()iP t . If (1)iP t is incomparable with ()iP t ,
select (1)iP t or ()iP t randomly with identical chance as Pi.
To identify the Pg, we use the roulette wheel method to
choose one from external Pareto solution archive NDa. It is
clear that the individual within NDa with big fitness will be
chosen. The procedure of obtaining and updating NDa is
expounded below.

The construction and maintenance of external Pareto
solution archive are crucial to MoPSO. The purpose of
constructing external Pareto solution archive is to store the
non-dominated solutions found so far and is as candidate of
global best ones. In addition, the final output of the MoPSO
is just the archive solutions. Theoretically speaking, the more
the size of archive is, the better the performance of MoPSO
is. Considering the computation burden of maintaining big
size archive, let the archive size NA be the same with the

swarm size NP. Let the maximum iterative number of
MoPSO be NM. The procedure of updating NDa is as follow.

Step1. For the first iterative t:=1, find the non-dominated

solutions NDc and let the NDa=Ф;
Step2. For i NDc ,

 If ,aj ND i j  p , then i substitutes j and enters NDa；
 Otherwise, if ,aj ND j i   p , then ienters NDa and

|NDa|:=|NDa|+1;
Step3. If |NDa|>NA,

 Compute the crowded distance and fitness of each
individual within NDa;

 Sort the individuals in NDa as descending order in light
of their fitness;

 Reserve the fear NA individuals as NDa.
Step4. Update the crowded distance and fitness of each
individual within NDa;
Step5. If t=NM, end; otherwise t:=t+1, and go to Step2.

From above equation, it is clear that the individual with
big value of crowded distance will enter the NDa with high
probability. The use of Eq.(3) is to maximize the spread of
solutions found, so that we can have a distribution of vectors
as smooth and uniform as possible. The computation of
crowded distance is the same with the method in [22].

According to above description of MoPSO, the
parameters of MoPSO is as follows: the swarm size NP, the
maximum iterative number NM, the archive size NA, leaning
factors C1 and C2, inertia weight ω.

IV. CASE STUDY
Two cases derived from literature [6] are used to

illustrate effectiveness of our approach. Two parts ANC-90
(Part A) and ANC-101 (Part B) will be produced. The
demand rates of parts A and B are 120 and 180 parts/hour,
respectively. The precedence graphs of two parts are shown
in Fig .3. The machines and their capacity are provided in
Table 1. The objective is to find the solutions with tradeoff
between fixed cost and availability.

To verify the effectiveness of the MoPSO, the MoPSO
and NSGA-II [22] are employed to solve two cases. The
code of NSGA-II was downloaded from
http://www.egr.msu.edu/~kdeb/codes/nsga2/nsga2code.ta.Fo
r the ALDP, corresponding functions for computing cost and
availability were programmed with C++. Both the MoPSO
and NSGA-II were implemented by Visual C++ 6.0 on a PIV
3.2GHz PC with 2GB memory. The configuration of
MoPSO is as follows: NM=1000, C1=C2=2.0, ω＝ 0.9,
NA=NP. The parameters of genetic operators for NSGA-II
are set as the values recommended by [22]. The population
sizes of MoPSO and NSGA-II are the same, NP=20 for part
A and NP=30 for part B. The maximum iterative number of
NSGA-II is also 1000. For each case, five replicates (runs)
were implemented.

730

Figure 3. Precedence graphs for parts A and B

Three metrics are used to measure the performance of
MoPSO and NSGA-II. The first metric is the error rate (ER)
[21], which indicates the percentage of solutions (the non-
dominated vectors found so far) that are not members of the true

Pareto optimal set. It is clear that ER=0 indicates an ideal
behavior. The second is the spacing (SP). A value of zero of SP
indicates all members of the Pareto front currently available are
equidistantly spaced [21]. The third metric is the computational
time (CT) required by the replicate, which is used to measure
the computational efficiency. The computational results of two
algorithms against two cases are listed in Table 2~3. A solution
for case 1 is shown on the right in Fig .1.

TABLE I MACHINES AND THEIR CAPICITY (PARTS/HOUR)
Type MC1 MC2 MC3 MC4 MC5 MC6 MC7 MC8 MC9

cost/KUSD 860 1140 1420 1700 1010 385 555 725 895

Availability 0.92 0.90 0.88 0.86 0.90 0.94 0.92 0.90 0.88

OP1 120 240 360 480 120 - - - -

OP2 180 360 540 720 180 - - - -

OP3 120 240 360 480 120 120 240 360 480

OP4 180 360 540 720 180 - - - -

OP5 - - - - 60 - - - -

OP6 40 80 120 160 40 40 80 120 160

OP6’ 30 60 90 120 30 30 60 90 120

OP7 200 400 600 800 200 - - - -

OP8 - - - - 180 - - - -

OP9 - - - - 90 - - - -

OP10 - - - - 200 - - - -

OP11 150 300 450 600 150 - - - -

From the ER metric listed in Table 2~3, it can be seen that
MoPSO is superior to the NSGA-II for two cases. This means
that MoPSO outperforms the NSGA-II with respect to the
solution quality. According to the SP metric shown in Table 2~3,
it is clear that MoPSO is better than NSGA-II for two cases.
This result indicates that the solutions obtained by MoPSO
distribute more uniformly than those found by NSGA-II. As for
the CT metric, it is clear that the MoPSO is dramatically
superior to NSGA-II. The reason may be that the mechanism of
MoPSO is simpler than that of the NSGA-II. In a whole, the
MoPSO outperforms NSGA-II for solving the addressed ALDP.

TABLE II COMPARISON OF COMPUTATIONAL RESULTS FOR CASE 1(PART A)

Metrics Algorithm Run1 Run2 Run3 Run4 Run5 Mean

ER MoPSO 1/9 4/9 3/8 0/8 1/8 21.1%
NSGA-II 3/4 4/5 4/5 3/4 4/5 78.0%

CT
/sec.

MoPSO 0.125 0.125 0.125 0.11 0.125 0.122
NSGA-II 1.281 1.297 1.275 1.297 1.266 1.283

SP MoPSO 0.302 0.286 0.302 0.306 0.308 0.301
NSGA-II 0.389 0.423 0.437 0.439 0.399 0.418

TABLE III COMPARISON OF COMPUTATIONAL RESULTS FOR CASE 2(PART B)

Metrics Algorithm Run1 Run2 Run3 Run4 Run5 Mean

ER MoPSO 10/14 10/16 9/12 13/17 8/12 70.4%
NSGA-II 3/4 4/5 3/4 4/5 3/4 77%

CT
/sec.

MoPSO 0.359 0.422 0.437 0.485 0.484 0.437
NSGA-II 2.235 2.437 2.422 2.253 2.125 2.294

SP MoPSO 0.213 0.203 0.223 0.199 0.228 0.213
NSGA-II 0.486 0.390 0.426 0.394 0.463 0.432

V. CONCLUSION
A multi-objective PSO is presented for the ALDP with

station paralleling and equipment selection in this paper. The
considered objectives are to minimize investment cost of

machines and maximize the availability of the assembly line.
The MoPSO is based on the concepts of crowded distance
and external Pareto solution archive. The developed solution
representation of MoPSO ensures each particle to be a
feasible solution. The effectiveness of the MoPSO is verified
by case study. The computational results of comparison
between MoPSO and NSGA-II against two cases show that
the MoPSO is better than the NSGA-II with regards to
solution quality and computational efficiency for the
addressed ALDP.

Although the MoPSO is effective for ALDP, the MoPSO
with advanced operator such as dynamic leaning factors and
inertia weight is needed to be further investigated. In
addition, the MoPSO should be compared with other multi-
objective meta-heuristics against more cases in the future.

ACKNOWLEDGMENT
This work is supported by the National Natural Science

Foundation of China (No. 51105076 and 61374069).

REFERENCES
[1]J. Bukchin and A. Rubinovitz, "A weighted approach for assembly line

design with station paralleling and equipment selection," IIE
Transaction, pp. 73-85, 2003.

[2]G. Nicosiaa, DarioPacciarelli, and A. Pacifib, "Optimally balancing
assembly lines with different workstations," Discrete Applied
Mathematics, vol. 118, pp. 99-113, 2002.

[3]A. Dolgui and I. Ihnatsenka, "Branch and bound algorithm for a transfer
line design problem: Stations with sequentially activated multi-
spindle heads," European Journal of Operational Research, vol. 197,
pp. 1119-1132, 2009.

731

[4]S. Barutcuoğlu and M. Azizoğlu, "Flexible assembly line design
problem with fixed number of workstations," International Journal of
Production Research, vol. 49, pp. 3691-3714, 2011.

[5]O. Guschinskaya, E. Gurevsky, A. Dolgui, and A. Eremeev,
"Metaheuristic approaches for the design of machining lines," The
International Journal of Advanced Manufacturing Technology, vol.
55, pp. 11-22, 2011.

[6]J. Dou, X. Dai, and Z. Meng, "A GA-based approach for optimizing
single-part flow-line configurations of RMS," Journal of Intelligent
Manufacturing, vol. 22, pp. 301–317, 2011.

[7]K. K. Goyal, P. Jain, and M. Jain, "Optimal configuration selection for
reconfigurable manufacturing system using NSGA II and TOPSIS,"
International Journal of Production Research, vol. 50, pp. 4175-4191,
2012.

[8]R. J. Kuo and C. Y. Yang, "Simulation optimization using particle
swarm optimization algorithm with application to assembly line
design," Applied Soft Computing, vol. 11, pp. 605-613, 2011.

[9]J. Dou and X. Zhao., "A Particle Swarm Optimization for Assembly
Line Design with Station Paralleling and Equipment Selection," Proc.
2012 IEEE International Conference on Computer Science and
Automation Engineering (CSAE 2012), Zhangjiajie,China, 2012, pp.
468-472.

[10]X. Delorme, O. Batta a, and A. Dolgui, "Multi-objective Approaches
for Design of Assembly Lines," in Applications of Multi-Criteria and
Game Theory Approaches, ed: Springer, 2014, pp. 31-56.

[11]N. Pekin and M. Azizoglu, "Bi criteria flexible assembly line design
problem with equipment decisions," International Journal of
Production Research, vol. 46, pp. 6323-6343, 2008/11/15 2008.

[12]G. Michalos, S. Makris, and D. Mourtzis, "An intelligent search
algorithm-based method to derive assembly line design alternatives,"
International Journal of Computer Integrated Manufacturing, vol. 25,
pp. 211-229, 2012.

[13]B. Rekiek, P. De Lit, F. Pellichero, T. L’Eglise, P. Fouda, E.
Falkenauer, and A. Delchambre, "A multiple objective grouping

genetic algorithm for assembly line design," Journal of Intelligent
Manufacturing, vol. 12, pp. 467-485, 2001.

[14]U. Saif, Z. Guan, W. Liu, C. Zhang, and B. Wang, "Pareto based
artificial bee colony algorithm for multi objective single model
assembly line balancing with uncertain task times," Computers &
Industrial Engineering, vol. 76, pp. 1-15, 2014.

[15]A. C. Nearchou, "Maximizing production rate and workload smoothing
in assembly lines using particle swarm optimization," International
Journal of Production Economics, vol. 129, pp. 242-250, 2011.

[16]P. Chutima and P. Chimklai, "Multi-Objective Two-Sided Mixed-
Model Assembly Line Balancing using Particle Swam Optimisation
with Negative Knowledge," Computers & Industrial Engineering, vol.
62, pp. 39-55, 2012.

[17]A. M. A. Youssef, A. Mohib, and H. A. ElMaraghy, "Availability
Assessment of Multi-State Manufacturing Systems Using Universal
Generating Function," CIRP Annals - Manufacturing Technology, vol.
55, pp. 445-448, 2006.

[18]J. Kennedy and R. Eberhart, "Particle swarm optimization," Proc. IEEE
international conference on neural networks, Perth,Australia, 1995,
pp. 1942-1948.

[19]J. Dou, C. Su, and J. Li, "A discrete particle swarm optimization
algorithm for assembly line balancing problem of type 1," Proc. Third
International Conference on Measuring Technology and
Mechatronics Automation (ICMTMA 2011), Shanghai, 2011, pp. 44-
47.

[20]J. Dou, X. Dai, and Z. Meng, "Optimization for multi-part flow-line
configuration of reconfigurable manufacturing system using GA,"
International Journal of Production Research, vol. 48, pp. 4071-4100,
2010.

[21]C. A. C. Coello, G. T. Pulido, and M. S. Lechuga, "Handling multiple
objectives with particle swarm optimization," IEEE Transactions on
Evolutionary Computation, vol. 8, pp. 256-279, 2004.

[22]K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, "A fast and elitist
multiobjective genetic algorithm: NSGA-II," IEEE Transactions on
Evolutionary Computation, vol. 6, pp. 182-197, 2002.

732

