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Abstract—To solve bi-objective assembly line design problem 
(ALDP) considering station paralleling and equipment 
selection, a Pareto-dominance-based method is presented. The 
two objectives are minimization of investment cost and 
maximization of availability of the assembly line. A multi-
objective particle swarm optimization (MoPSO) is proposed to 
obtain a set of Pareto solutions through combining the 
techniques of crowded distance and external Pareto solution 
archive. The developed solution representation and relating 
updating mechanism of MoPSO ensures each particle to be a 
feasible solution. The performance of MoPSO was compared 
with that of NSGA-II against two cases. The comparison 
results show the effectiveness of the MoPSO. The computation 
results also indicate that the MoPSO is superior to the NSGA-
II for the ALDP with respect to solution quality and 
computational efficiency. 

Keywords- assembly line design; multi-objective optimization; 

partticle swarm optimization; station parallel;Pareto solutions 

I.  INTRODUCTION 
Assembly lines are production systems composed of a 

succession of stations, connected by a conveyor, performing 
a set of tasks on the product passing through them. Each 
product unit remains at each station for a fixed time called 
the cycle time, C. When alternative automated equipments 
are used for assembly tasks, the assembly line design 
problem (ALDP) becomes very important. The design in this 
context consists of selecting the type and amount of 
paralleling equipment for the stations and assigning tasks to 
stations. 

Bukchin [1] and Nicosiaa [2] have shown that the ALDP 
is more difficult than the assembly line balancing problem 
(ALBP) which is known to be a NP-hard combinatorial 
optimization problem. Due to the NP-hard essence of ALDP, 
traditional exact methods such as branch and bound [1] [3-4], 
and dynamic programming [2] are computational intractable 
for large scale problems. Recent years, some population 
based meta-heuristics such as genetic algorithms (GAs) [5-7], 
particle swarm optimization (PSO) [8-9] are utilized to solve 
ALDPs. However, the aforementioned works only consider 
cost related single objective. In practice, multiple objectives 

such as equipment cost, workload smoothness, and 
availability are needed to conceive for assembly line design. 
As for multiple-objective optimization for ALDP, the 
optimization methods can be categorized into two classes 
[10]: aggregative methods and Pareto-dominance-based 
methods. The aggregative method for ALDP [11-12] is to 
convert multiple objectives into single objective based on the 
assumption that the preferences of the decision-maker can be 
known a priori. On the contrary, the Pareto dominance-based 
method is to provide a list of interesting trade-offs between 
the objectives rather than a lone solution supposing that the 
preferences of the decision-maker are unknown. The Pareto 
dominance-based methods for ALDP with station paralleling 
and equipment selection are seldom. Rekiek [13] developed 
a grouping GA for ALDP considering equipment selection. 
Goyal [7] utilized the NSGA-II for ALDP with station 
paralleling and equipment selection. Saif [14] developed a 
Pareto based artificial bee colony algorithm for multi-
objective assembly line balancing with uncertain task times. 
However, we are aware of no Pareto based multi-objective 
PSO (MoPSO) for ALDP. Nearchou [15] proposed a 
dynamic weighted PSO for multi-objective assembly line 
balancing problem. Chutima [16] presented a MoPSO for 
two-sided mixed-model assembly line balancing. To authors’ 
best knowledge, the MoPSO for ALDP considering station 
paralleling and equipment selection is absent. 

In this paper, we extend our previous work [9] to solve 
multi-objective ALDP and developed an efficient MoPSO 
for ALDP with station paralleling and equipment selection. 
The effectiveness of the proposed MoPSO is illustrated by 
the performance comparison between MoPSO and NSGA-II 
against two cases.   

II. PROBLEM STATEMENT  
In a make-to-order environment, the most important 

objective for assembly line design is to minimize the cost 
(e.g., fixed cost) given the capacity derived from the 
custom’s order. Minimizing the fixed cost (investment cost) 
is as the first objective of the concerned ALDP.  Another 
important objective is to meet the custom’s demand reliably.  
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The ability of a production system to satisfy production 
demands depends on its availability [17]. Thus, maximizing 
availability of the assembly line is as the second objective for 
the addressed ALDP.  

As aforementioned, we deal with the ALDP considering 
station paralleling (equipment paralleling) and equipment 
selection. Under such conditions, the ALDP is to determine 
the number of stations, select the number of paralleling 
equipments and equipment type to be placed to each station 
as well as assign assembly tasks to each station, satisfying 
capacity constraints (cycle time limitation) and observing 
precedence constraints among tasks. In practice, the space 
limitation should also be satisfied [6].  

In our previous work, a 0-1 integer programming model 
for the single objective ALDP was presented [9]. The model 
of the multi-objective ALDP is identical to the model in [9] 
except for adding the below objective: 
 Min  1.2-fa(AL) (1) 
where AL represents the designed assembly line, fa(•) is the 
function for computing the availability. The UGF method 
[17] is adopted to calculate the availability of AL. Eq.(1) is 
to maximize the availability of assembly line. 

Since the ALDP belongs to NP-hard problems, a Pareto 
based multi-objective meta-heuristics named MoPSO is 
developed for solving the addressed problem. 

III. MULTI-OBJECTIVE PSO FOR ALDP  

A. Introdution to PSO 
Particle swarm optimization (PSO) developed by 

Kennedy and Eberhart [18] is inspired by the social 
behavior of a flock of migrating birds trying to reach an un-
known destination. In PSO, each solution is a ‘bird’ in the 
flock and is referred to as a ‘particle’. A particle in the 
population evolves their social behavior and accordingly 
their movement towards a destination.  

The evolution process of PSO is initialized with a group 
of random particles (solutions). The ith particle is 
represented by its position as a point in a N-dimensional 
space, where N is the number of variables. Throughout the 
process, each particle i monitors three values: its current 
position (Xi(t)); the best position it reached in previous 
cycles (Pi); its flying velocity (Vi(t)). In each time interval 
(generation), the position (Pg) of the best particle g is 
calculated as the best fitness of all particles. Accordingly, 
each particle updates its velocity Vi(t+1) and position Xi(t+1) 
to catch up with the best particle g, as follows: 
 1 1 2 2

max max

( 1) ( ) ( ( )) ( ( )) ( )

( 1) ( ) ( 1), ( 1) ( )
i i i i g i

i i i i

V t V t C r P X t C r P X t a

X t X t V t V V t V b

     


       

 (2) 

where C1 and C2 are two positive constant, namely, learning 
factors, r1 and r2 are two random real number in the range [0, 
1]. Usually C1 and C2 are set to be 2.0. Vmax is an upper limit 
on the maximum change of particle velocity, and ω is an 
inertia weight. To apply PSO to ALDP, suitable solution 
representation and particle’s updating method need to be 
developed. 

B. Solution Representation 
The representation of assembly line by a particle is 

composed of two components as shown in Fig .1. One 
component represents the feasible operation assignment 
(FOA), another represents the machine type and number of 
stations (machines). In Fig.1(a), the FOA records the 
assignment of tasks along the assembly line. The FOA is 
determined by the assignment of each task (operation) of 
feasible operation sequence (FOS). An operation sequence 
satisfying the precedence relations is named feasible 
operation sequence (FOS). It is clear that a feasible 
assignment of tasks along an assembly line must be a FOS. 
In Fig .1, the indirect encoding of FOS [6] is adopted. The 
basic idea is to represent a FOS by recording the selection 
priority of each operation. Then, a zero-indegree topological 
sort [6] is used to de-code the permutation of priority 
number, i.e, 5-7-1-3-2-6-4 in Fig .1, to a FOS, i.e., OP1-
OP2-OP7-OP4-OP5-OP6-OP3.  After the FOS is decided, 
the assigned station of each operation of FOS is recorded by 
an element of a particle in Fig .1(a). In Fig .1(a), OP2 is 
assigned to station 1 and OP5 is assigned to station 2. 

 
Figure 1. Solution representation of particle for an assembly line 

To fully represent an assembly line, we have to record 
the machine type and machine amount via a particle. As 
shown in Fig .1(b), for each station, the information of 
machine type and machine amount are recorded directly by 
the corresponding elements of a particle. To avoid the 
unfeasibility of this direct encoding, this part is constructed 
in light of the FOA in Fig .1 (a) using the below procedure.  

Step 1. Let the index of station j:=1; 
Step 2. For station j, 
            Using the FOA information, get the assigned task 

set AJp={1,…,pj}; 
             Identify the eligible machine type set 

AMj={1,…,mj} for task set AJp ; 
            Find the minimum cost machine type m from 

AMj and calculate the minimum number of 
corresponding machine type mj; 
Let the machine type be m and the number of 
parallel machine be a random integer in the range 
[mj, M].  

Step 3. Let j:=j+1; 
Step 4. If j=J, end; otherwise go to Step 2. 

where the maximum parallel number of station is M, the 
maximum length of assembly line is J . For a product with 
N tasks and J stations, the maximum dimension of the 
particle is 2(N+J). According to above description, the 
developed solution representation ensures that each particle 
corresponds to a feasible solution. 
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C. Particle Updating 
The updating of a particle is realized by changing the 

velocity and position of a particle through learning from the 
Pg and Pi.  The updating mechanism of original PSO [18] is 
for real-encoding.  Nevertheless, the integer encoding is used 
in the developed PSO.  Thus, new updating mechanism is 
needed.  

For the permutation encoding of FOS, the updating 
method for permutation encoding in our previous work [19] 
is adopted. For non-decreasing integer encoding for 
assignment of FOS (right part of Fig .1(a)), the mutation 
operator [20] is used to update this part. As aforementioned, 
the integer encoding of machine type and amount does not 
updating independently but updates in light of the relating 
FOA. 

D. Multi-Objective PSO 
As aforementioned, the Pareto based method is adopted 

in this paper. The proposed MoPSO utilizes the concepts of 
Pareto dominance and Pareto solutions (See [21] for details). 
For multi-objective optimization, the comparison of two 
solutions is not easy. Therefore, the selection of Pi and Pg is 
far more difficult than single objective optimization. Based 
on the concept of crowded distance [22] and external Pareto 
solution archive [21], the procedure of MoPSO is shown in 
Fig .2.  The main procedure of MoPSO is the same as the 
basic PSO. However, the difference lies in the selection of 
Pi and Pg as well as the computation of particle’s fitness. 

 
Figure 2. Procedure of the MoPSO 

To select the personal best Pi, if current personal best 
( 1)iP t  dominates its previous one ( )iP t  (denoted 

by ( 1) ( ) pi iP t P t ), let Pi equal ( 1)iP t . If ( ) ( 1)i iP t P t p , 
let Pi equal ( )iP t . If ( 1)iP t is incomparable with ( )iP t , 
select ( 1)iP t  or ( )iP t  randomly with identical chance as Pi. 
To identify the Pg, we use the roulette wheel method to 
choose one from external Pareto solution archive NDa. It is 
clear that the individual within NDa with big fitness will be 
chosen. The procedure of obtaining and updating NDa is 
expounded below. 

The construction and maintenance of external Pareto 
solution archive are crucial to MoPSO. The purpose of 
constructing external Pareto solution archive is to store the 
non-dominated solutions found so far and is as candidate of 
global best ones. In addition, the final output of the MoPSO 
is just the archive solutions. Theoretically speaking, the more 
the size of archive is, the better the performance of MoPSO 
is. Considering the computation burden of maintaining big 
size archive, let the archive size NA be the same with the 

swarm size NP. Let the maximum iterative number of  
MoPSO be NM. The procedure of updating NDa is as follow. 

Step1. For the first iterative t:=1, find the non-dominated 

solutions NDc and let the NDa=Ф; 
Step2.  For i NDc ,  

         If ,aj ND i j  p , then i substitutes j and enters NDa； 
         Otherwise, if ,aj ND j i   p , then ienters NDa and 

|NDa|:=|NDa|+1; 
Step3. If |NDa|>NA,  

           Compute the crowded distance and fitness of each 
individual within NDa; 

        Sort the individuals in NDa as descending order in light 
of their fitness; 

        Reserve the fear NA individuals as NDa. 
Step4. Update the crowded distance and fitness of each 
individual within NDa; 
Step5. If t=NM, end; otherwise t:=t+1, and go to Step2.  

From above equation, it is clear that the individual with 
big value of crowded distance will enter the NDa with high 
probability. The use of Eq.(3) is to maximize the spread of 
solutions found, so that we can have a distribution of vectors 
as smooth and uniform as possible. The computation of 
crowded distance is the same with the method in [22].  

According to above description of MoPSO, the 
parameters of MoPSO is as follows: the swarm size NP, the 
maximum iterative number NM, the archive size NA, leaning 
factors C1 and C2, inertia weight ω. 

IV. CASE STUDY 
Two cases derived from literature [6] are used to 

illustrate effectiveness of our approach. Two parts ANC-90 
(Part A) and ANC-101 (Part B) will be produced. The 
demand rates of parts A and B are 120 and 180 parts/hour, 
respectively. The precedence graphs of two parts are shown 
in Fig .3. The machines and their capacity are provided in 
Table 1. The objective is to find the solutions with tradeoff 
between fixed cost and availability. 

To verify the effectiveness of the MoPSO, the MoPSO 
and NSGA-II [22] are employed to solve two cases. The 
code of NSGA-II was downloaded from 
http://www.egr.msu.edu/~kdeb/codes/nsga2/nsga2code.ta.Fo
r the ALDP, corresponding functions for computing cost and 
availability were programmed with C++. Both the MoPSO 
and NSGA-II were implemented by Visual C++ 6.0 on a PIV 
3.2GHz PC with 2GB memory.  The configuration of 
MoPSO is as follows: NM=1000, C1=C2=2.0, ω＝ 0.9, 
NA=NP. The parameters of genetic operators for NSGA-II 
are set as the values recommended by [22]. The population 
sizes of MoPSO and NSGA-II are the same, NP=20 for part 
A and NP=30 for part B. The maximum iterative number of 
NSGA-II is also 1000. For each case, five replicates (runs) 
were implemented. 
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Figure 3. Precedence graphs for parts A and B 

Three metrics are used to measure the performance of 
MoPSO and NSGA-II. The first metric is the error rate (ER) 
[21], which indicates the percentage of solutions (the non-
dominated vectors found so far) that are not members of the true 

Pareto optimal set. It is clear that ER=0 indicates an ideal 
behavior. The second is the spacing (SP). A value of zero of SP 
indicates all members of the Pareto front currently available are 
equidistantly spaced [21]. The third metric is the computational 
time (CT) required by the replicate, which is used to measure 
the computational efficiency. The computational results of two 
algorithms against two cases are listed in Table 2~3. A solution 
for case 1 is shown on the right in Fig .1. 
 

TABLE I MACHINES AND THEIR CAPICITY (PARTS/HOUR) 
Type MC1 MC2 MC3 MC4 MC5 MC6 MC7 MC8 MC9 

cost/KUSD 860 1140 1420 1700 1010 385 555 725 895 

Availability 0.92 0.90 0.88 0.86 0.90 0.94 0.92 0.90 0.88 

OP1 120 240 360 480 120 - - - - 

OP2 180 360 540 720 180 - - - - 

OP3 120 240 360 480 120 120 240 360 480 

OP4 180 360 540 720 180 - - - - 

OP5 - - - - 60 - - - - 

OP6 40 80 120 160 40 40 80 120 160 

OP6’ 30 60 90 120 30 30 60 90 120 

OP7 200 400 600 800 200 - - - - 

OP8 - - - - 180 - - - - 

OP9 - - - - 90 - - - - 

OP10 - - - - 200 - - - - 

OP11 150 300 450 600 150 - - - - 
 

From the ER metric listed in Table 2~3, it can be seen that 
MoPSO is superior to the NSGA-II for two cases. This means 
that MoPSO outperforms the NSGA-II with respect to the 
solution quality. According to the SP metric shown in Table 2~3, 
it is clear that MoPSO is better than NSGA-II for two cases. 
This result indicates that the solutions obtained by MoPSO 
distribute more uniformly than those found by NSGA-II. As for 
the CT metric, it is clear that the MoPSO is dramatically 
superior to NSGA-II. The reason may be that the mechanism of 
MoPSO is simpler than that of the NSGA-II. In a whole, the 
MoPSO outperforms NSGA-II for solving the addressed ALDP. 

 
TABLE II COMPARISON OF COMPUTATIONAL RESULTS FOR CASE 1(PART A) 

Metrics Algorithm Run1  Run2  Run3  Run4  Run5  Mean 

ER MoPSO 1/9 4/9 3/8 0/8 1/8 21.1% 
NSGA-II 3/4 4/5 4/5 3/4 4/5 78.0% 

CT 
/sec. 

MoPSO 0.125 0.125 0.125 0.11 0.125 0.122 
NSGA-II 1.281 1.297 1.275 1.297 1.266 1.283 

SP MoPSO 0.302 0.286 0.302 0.306 0.308 0.301 
NSGA-II 0.389 0.423 0.437 0.439 0.399 0.418 

 
TABLE III COMPARISON OF COMPUTATIONAL RESULTS FOR CASE 2(PART B) 

Metrics Algorithm Run1  Run2  Run3  Run4  Run5  Mean 

ER MoPSO 10/14 10/16 9/12 13/17 8/12 70.4% 
NSGA-II 3/4 4/5 3/4 4/5 3/4 77% 

CT 
/sec. 

MoPSO 0.359 0.422 0.437 0.485 0.484 0.437 
NSGA-II 2.235 2.437 2.422 2.253 2.125 2.294 

SP MoPSO 0.213 0.203 0.223 0.199 0.228 0.213 
NSGA-II 0.486 0.390 0.426 0.394 0.463 0.432 

V. CONCLUSION 
A multi-objective PSO is presented for the ALDP with 

station paralleling and equipment selection in this paper. The 
considered objectives are to minimize investment cost of 

machines and maximize the availability of the assembly line. 
The MoPSO is based on the concepts of crowded distance 
and external Pareto solution archive. The developed solution 
representation of MoPSO ensures each particle to be a 
feasible solution. The effectiveness of the MoPSO is verified 
by case study. The computational results of comparison 
between MoPSO and NSGA-II against two cases show that 
the MoPSO is better than the NSGA-II with regards to 
solution quality and computational efficiency for the 
addressed ALDP. 

Although the MoPSO is effective for ALDP, the MoPSO 
with advanced operator such as dynamic leaning factors and 
inertia weight is needed to be further investigated. In 
addition, the MoPSO should be compared with other multi-
objective meta-heuristics against more cases in the future. 
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