A Stable H filmetallic Ferromagnetic Material SrNiO₃: a P redition from first P riciples

Gao-Yuan Chen, Cheng-Min Dai School of Mathematics and Physics Suzhou University of Science and Technology Suzhou 215009, China

Abstract—Generalized gradient approximation (GGA) plus on-site Coulomb interaction corrections (GGA+U) method within the framework of density functional theory (DFT) is used to investigate the electronic structure of SrNiO₃. A series of on-site interaction U (J = 0.3 eV) values are employed in the calculations to investigate density of states (DOS) and local magnetic of Ni. We find that the ground state of SrNiO₃ always keeps a stable ferromagnetic state (FM), and presents half-metallic property when U is larger than 3.0eV. The majority spin band cross the Fermi level, showing a metallic property, while a robust band gap appears around the Fermi level in the minority spin band, showing a insulating behavior. The different behaviors of majority spin and minority spin show that the material is suitable for spin filtering. Our work provides important guidance for fabricating cubic SrNiO₃ and nickel-doped cubic oxides, experimentally.

Keywords-SrNiO₃; First principles; Ferromagnetic; Halfmetalic; Density of states

I. INTRODUCTION

The ABO₃-type perovskite oxides have attracted tremendous amounts of attention because of their potential applications in future micro-electronic devices [1-3]. There have been limited studies on nickel oxide SrNiO₃ so far. Recently SrNiO₃ compounds with hexagonal space groups P63/mmc [4], and trigonal space group P321 [5] are reported. The simple cubic SrNiO₃ structure has not been fabricated so far. Considering some cubic transitionmetal oxides (TMOs) such as SrMnO₃ [6], with a high symmetry, have rich magnetic property and potential applications, we wonder whether cubic SrNiO₃ have some useful properties. In cubic SrNiO₃, Ni is in Ni⁴⁺ state $(3d^{6})$, close to half-filled state, which might bring about active performance on magnetism. Therefore we predict the properties of cubic SrNiO₃ using first-principles method. We mainly focus on four kinds of magnetic order, including FM, G-type antiferromagnetic (G-AFM), A-type antiferromagnetic (A-AFM) and C type antiferromagnetic (C-AFM). In G-AFM both the intra-plane and inter-plane (ab-plane) Ni coupling are antiferromagnetic. While in A-AFM, the intra-plane coupling is ferromagnetic and interplain coupling is antiferromagnetic. C-AFM means that the intra-plane coupling is antiferromagnetic while interplane coupling is ferromagnetic.

Chun-Lan Ma * School of Mathematics and Physics Suzhou University of Science and Technology Suzhou 215009, China *Corresponding author: machunlan@126.com

II. DETAILS OF CRYSTAL, MAGNETIC AND COMPUTATION

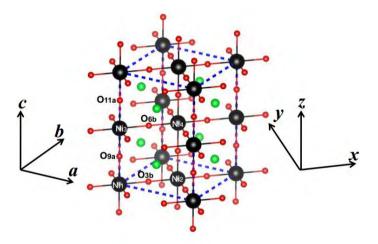


Figure 1. (Black solid line) Magnetic cell of SrNiO3 with four formula units (f. u.). The space group is *Pm-3m*. The *abc* coordinate denotes the conventional coordinate system, based on which *xyz* coordinate is obtained by rotating 45 degree. The *x/y* direction is along Ni-O-Ni direction. O_{3b} and O_{6b} denote the *ab*-planes oxygen and O_{9a} and O_{11a} denote the apical oxygen along *z*-axis.

The initial lattice constants a=b=c=3.85 Å are taken for cubic SrNiO₃ with a space group of *Pm-3m*. Fig. 1 shows the crystal structure within the $\sqrt{2} \times \sqrt{2} \times 2$ cell containing 20 atoms (named as Sr₁, Sr₂, Sr₃, Sr₄, Ni₁, Ni₂, Ni₃, Ni₄, O₁, O₂, O₃, O₄, O₅, O₆, O₇, O₈, O₉, O₁₀, O₁₁ and O₁₂). Based on non-spin-polarized calculations, four kinds of magnetic configurations are considered for the spinpolarized calculations. The spin combination of the Ni1, Ni2, Ni3 and Ni4 are + + + + - - + + +- - and + - + - for FM, G-AFM, A-AFM and C-AFM configurations, respectively.

The computations are carried out by plane-wave pseudopotential method within density functional theory framework. The projector augmented wave (PAW) [7, 8] method, implemented in the Vienna *ab initio* simulation package (VASP) [9] is employed. For the exchange correlation potential we adopt generalized gradient approximation (GGA) with Perdew-Burke-Ernzerhof form [10]. The on-site Coulomb correlation corrections

approaches of rotationally invariant LSDA+U method according to Liechtenstein [11] is employed. GGA +U

method is used to deal with the Ni 3d electrons for a better

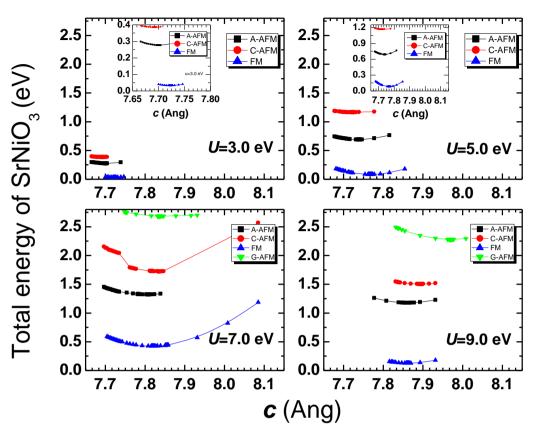


Figure 2. Total energy of four kinds of magnetic phase for U at 3.0 eV, 5.0 eV, 7.0eV and 9.0 eV, respectively.

description of the electronic structure of SrNiO₃. A k mesh of $8 \times 8 \times 6$ is used with a plane-wave cutoff energy of 500 eV. In the present paper, we fix J=0.3 eV and set U as 3.0 eV, 4.0 eV, 5.0 eV, 7.0 eV, 9.0 eV, 11.0 eV, respectively.

III. RESULTS AND DISCUSSIONS

A. The total energies of $SrNiO_3$ for different magnetic configurations from GGA+U calculations

The total energy calculations for different magnetic configurations (i.e. FM, G-AFM, A-AFM and C-AFM) from GGA+U method are performed. The total energies for different magnetic configurations at U=3.0 eV, 5.0 eV, 7.0 eVand 9.0 eV are shown in *Fig. 2*, representatively.

From *Fig.* 2, one can see that among the four magnetic configurations, FM state gives the lowest total energy, no matter what kind of U value is taken. In the case of U=3.0 eV and U=5.0 eV, G-AFM solution cannot be obtained and they are absent in *Fig.* 2. To clearly show the trend of total energy with the lattice constant c, we add two insets (with a smaller energy scale) into the upper figures. When U is larger than 5 eV, the energy difference between FM and AFM becomes larger. Therefore, the FM ground state of SrNiO₃ is quite robust upon all of the U values employed in our calculations. Our results suggest that FM configuration has more chances to form, if one fabricates cubic SrNiO₃ experimentally.

B. Electronic and magnetic structure from GGA+U calculations for FM.

From A., we've learned FM is the ground state. Therefore, we will carry on detailed analysis on FM SrNiO₃. TABLE I. presents the magnetic moment of Ni₁ at FM state. The Ni₂, Ni₃ and Ni₄ have the same magnetic moments and therefore they are not shown. The evolution of the magnetic moments with increasing U is also shown in *Fig. 3*. One can see that the magnetic moment increases with U, which portends spin polarization of Ni becomes stronger and stronger. The $3d^6$ electrons in Ni⁴⁺ valence state can split into e_g (twofold degenerate) and t_{2g} (three-fold degeneracy) in cubic symmetry. At high spin state,

TABLE I. The magnetic moment ($\mu{\rm B}$) of Ni in FM SrNiO3 with U from 1.0 (eV) to 11.0 (eV).

	Magnetic moment(µB)					
U (eV)	3.0	4.0	5.0	7.0	9.0	11.0
Ni	0.855	1.029	1.170	1.407	1.569	1.689

electron configuration consist of five spin-up electrons and one spin-down electron. As a consequence, the magnetic moment is $4\mu_{\rm B}$. However, the maximum magnetic moment from TABLE I. is 1.689 $\mu_{\rm B}$ (<4 $\mu_{\rm B}$), which means Ni⁴⁺ 3d⁶ is not likely to be at high-spin state.

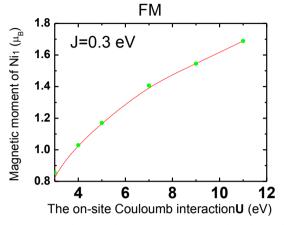


Figure 3. The magnetic moment as a function of on-site Coulomb interaction U (for J being fixed at 0.3 eV).

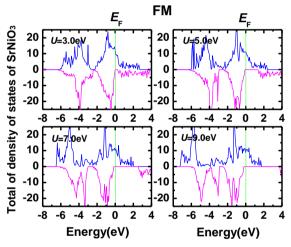
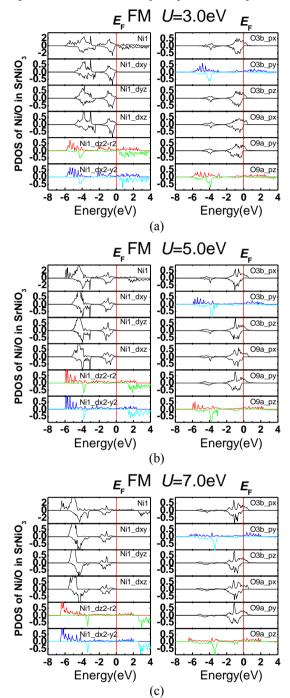



Figure 4. Total density of states (TDOS) of FM SrNiO₃ for U at 3.0 eV, 5.0 eV, 7.0 and 9.0eV.

Fig. 4 shows the total density of states (TDOS) of FM SrNiO₃ from GGA+U (U=3.0 eV, 5.0 eV, 7.0 eV and 9.0 eV). The main features of the TDOS is that the majority spin (i.e. spin-up) cross the fermi level, while a big band gap appear around $E_{\rm F}$ in the minority spin (i.e. spin-down) band. This is the characteristic of half-metallic property. We will explore the origin of the half-metallicity in the following.

Fig. 5 shows partial density of states (PDOS) of Ni 3*d* and O 2*p* from GGA+*U* (*U*=3.0 eV, 5.0 eV, 7.0 eV and 9.0 eV). Twofold degenerate e_g levels include dz^2-r^2 and dx^2-y^2 and Three-fold degenerate t_{2g} levels include dxy, dyz and dxz. Spin polarization is negligible in t_{2g} orbitals, which is in agreement with the non-high-spin state of Ni⁴⁺. On the contrary, the spin polarization of e_g orbits is very robust over the whole range of *U* employed in this article. The hybridization between Ni $3d_3z^2-r^2$ orbital and O $2p_z$ are so strong that noticeable magnetic behavior can be observed in O atom. The hybridization between Ni $3d_x^2$ -

 y^2 orbital and O $2p_y$ also contribute a lot to the formation of magnetism of O atom. It is amazing that half-metallic property is mainly from O 2p, not Ni 3*d*. This can be understood according to a mechanism similar to the double exchange mechanism. The Ni⁴⁺ has a positive magnetic moment and one spin-up electron hop from the

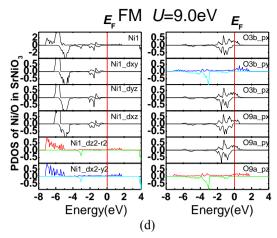


Figure 5. (a), (b), (c) and (d) show the PDOS of Ni₁ 3*d* and 2*p* of O_{3b} and O_{9a} for *U* at 3.0 eV, 5.0 eV, 7.0 eV and 9.0 eV (O_{3b} denotes the *ab*-plane O and O_{9a} denots out-of-plane O). The majority is shown as positive and the minority spin as negative.

Ni⁴⁺ to the neighboring O. This demands the O has a negative spin so that they obey the pauli exclusion principle. The second step is the spin-up electron continue to hop to another Ni and thus the hopping between neighboring Ni atoms is realized through the medium O atom. This is in agreement with the negative magnetic moments of O atoms.

Half-metallic (HM) materials has promising applications in electronics. They can be used as spininjector materials [12] in spintronic devices [13]. Our work suggest a new method to prepare a robust halfmetallic material, which can be obtained by using a cubic substrate (like the cubic $SrTiO_3$ and $SrMnO_3$ etc) or in a cubic circumstances of perovskite.

IV. CONCLUSIONS

A series of on-site Coulomb interaction U(J) is fixed at 0.3 eV) are employed in GGA+U calculations to explore the properties of cubic SrNiO₃. FM is found to be the ground state over a large range of U employed. A robust half-metallic property is obtained from all of the GGA+U calculations with a series of U values. The promising half-metallic SrNiO₃ to be verified by experimental work.

ACKNOWLEDGMENT

We gratefully acknowledge Shanghai Supercomputer Center for their computing platform. This work is supported by the Natural Science Foundation of Chain with Grant No.11247023/11304218.

REFERENCES

- Ma C L, Yang Z Q and Picozzi S. "Ab initio electronic and magnetic structure in La_{0.66}Sr_{0.33}MnO₃: Strain and correlation effects". Journal of physics: Condensed, 2006, 18(32): 7717–7728.
- [2] Chen J M, Lee J M and Huang S W, et al. "Intra- and intersite electronic excitations in multiferroic TbMnO₃ probed by resonant inelastic X-ray scattering". PHYSICAL REVIEW B, 2010, 82(9): 094442.
- [3] Miura K, Azuma M, Funakubo H. "Electronic and structural properties of ABO₃: Role of the B-O coulomb repulsions for ferroelectricity". Materials, 2011, 4(1): 1–338.
- [4] M. Zinkevich. "Constitution of the Sr-Ni–O system". Journal of Solid State Chemistry, 178 2005, 178: 2818–2824.
- [5] Ewelina Ksepko. "Perovskite-type Sr(Mn_{1-x}Ni_x)O₃ materials and their chemical-looping oxygen transfer properties". International Journal of Hydrogen Energy, 2014, 39: 812–8137.
- [6] Xing-Yuan Chen, Wei-ling Zhu and Shi-Yuan Lin, et al. "Theoretical study of magnetic phase transitions of cubic SrMnO₃ under physical and chemical pressures". Computational Materials Science, 2014, 83: 394–397.
- [7] P. E. Blöchl. "Projector augmented-wave method". PHYSICAL REVIEW B, 1994, 50: 17953–17979.
- [8] G. Kresse and D. Joubert. "From ultrasoft pseudopotentials to the projector augmented-wave method". PHYSICAL REVIEW B, 1999, 59: 1758–1775.
- [9] G. Kresse and J. "Furthmüller. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set". PHYSICAL REVIEW B, 1996, 54: 11169–11186.
- [10] J. P. Perdew, K. Burke and M. Ernzerhof. "Generalized Gradient Approximation Made Simple". Physical Review Letters, 1996, 77: 3865-3868.
- [11] A. I. Liechtenstein, V. I. Anisimov and J. Zaanen. "Densityfunctional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators". PHYSICAL REVIEW B, 1995, 52 : R5467-R5470.
- [12] Zhi-Yuan Chen, in Xu and G.Y. Gao. "Half-metallic ferromagnetism with low magnetic moment in zinc-blende TiBi from first-principles calculations". Journal of Magnetism and Magnetic Materials, 2013,347: 14–17.
- [13] M. Yogeswari and G. Kalpana. "Electronic structure and halfmetallic ferromagnetism in (C, Si, Ge and Sn) doped alkaline-earth sulfides: A first principles approach". Journal of Alloys and Compounds, 2013, 573: 83–89.