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Abstract—A compressive sensing based method is proposed 
for reconstruction of radar image of 3-D geometry in this 
paper. Using the sparse property of the geometry, 
compressed sensing performs a low-dimensional, non-
adaptive and linear projection to acquire an efficient 
representation of a compressible signal directly using just a 
few measurements. In order to characterize the problem 
sparsely, the delta function is used as the sparse basis 
function. When testing by the incident plane wave at several 
different frequency points over wide band, linear equations 
are constructed following the theory of compressed sensing 
to recover the range profile of radar image. Subspace 
pursuit (SP) method is applied to solve the linear equations 
and the results are used for traditional Back-Projection (BP) 
imaging method. The physical optics is used to compute the 
scattering which is considered as the input data for 
compressed sensing based construction. Numerical results of 
several geometries show our method is robust and accuracy 
for radar imaging with sub-sampled data.  
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I. INTRODUCTION 
Radar imaging is a kind of inverse scattering problems 

where by a spatial map of reflectivity is reconstructed from 
measurements of scattered electric fields. As an active and 
coherent microwave imaging system with high resolution, 
radar has the capability to image all weather and day-night 
conditions. It transmits wide-band signals and receives 
echoes which are sampled into digital data. The A/D 
converter could be complicated and expensive since its 
very high sampling rate. Furthermore, it is challenged for 
A/D in imaging radar to achieve the requirement of 
sampling wide-band signals [1, 2]. 

In compressive sensing applications, linear program 
techniques play an important role in designing 
computationally tractable compressive sensing decoders. 
However, the complexity of the linear program is still high 
for many applications. Several classes of low-complexity 
reconstruction techniques were recently proposed to take 
the place of linear programming based algorithm, such as 
group testing methods, and algorithms based on belief 
propagation. Three typical algorithms based on greedy 
pursuit are the Orthogonal Matching Pursuit (OMP), the 
Regularized OMP (ROMP) and the Stagewise OMP 
(StOMP) [1, 3~7]. The computational complexity of OMP 
strategies depends on the number of iterations needed for 
exact reconstruction, which is significantly smaller than 

that of linear program based methods. However, the 
stability of the pursuit algorithms is poor. As a possible 
remedy, the subspace pursuit algorithm is introduced for 
reconstruction of radar image in this paper. This method 
exhibits low reconstruction complexity, but has good 
reconstruction capability compared to that of linear 
programming method. 

The input data for compressed sensing based 
reconstruction of radar image is the scattering field of the 
geometries, which could be computed by many numerical 
algorithms in computational electromagnetics [8]. In order 
to efficient compute the far field scattering over broad 
frequency- and angular- band, the physical optics (PO) [9] 
method is applied in this paper. 

The remainder of this paper is organized as follows. 
Section II demonstrates the basic theory of compressive 
sensing technique applied in radar imaging. The theory of 
subspace pursuit method is discussed in section III. 
Numerical results of two geometries are presented to 
demonstrate the efficiency of this proposed method in 
Section IV. Conclusion is provided in Section V. 

II. BASIC THEORY OF COMPRESSIVE RADAR IMAGING 
The geometry of the radar imaging of a target is shown 

in Fig .1. The target is described in Cartesian coordinates, 
with its origin located at geometric center. The rotation 
rate of the target with respect to the radar is ω. The range 
between the radar and the target center is r0. Assume the 
range between the point P(x, y) and the center is r, at an 
arbitrary time instant t, the range between one point P(x, y) 
of the target and the radar is 
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Then we model the signal received by radar receiver 
through the range R, which is given as 
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where λi is defined as the wave number of incident wave. 
Obviously, this is the formulation in frequency domain. If 
radar transmit the LFM signal, the LFM echo can also be 
modeled as formulate (2) by Fourier transform. In this 
paper, the back-projection method is applied to obtain the 
high resolution image of geometries and physical optics 
method is used to efficiently compute the echo in 
frequency domain. 
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Figure 1. Radar imaging for rotation model 

 
The sampling rate of a signal could be lower than 

Nyquist rate when using the compressive sensing 
technique. The basic point of it is the signal can be 
sparsely represented [10, 11]. Accordingly, it is necessary 
to find firstly a suitable basis function to sparsely represent 
the signal. Take discrete-time signal x(n) with length of N 
for example, n = 1, 2, 3..., N.. Obviously, we can consider 
x as an N × 1 column vector. The signal vector x is 
sparsely representable if there exists a sparsity basis ΨT = 
{ψ1, ψ2, ..., ψi, ..., ψN} that provides a K-sparse 
representation of x, that is 

1

N

i i
i




 x ψ Ψθ                          (6) 

where x is a linear combination of k basis vectors with 
nonzero coefficient. All the basis vectors are chosen from 
ΨT which is an N × N matrix. θ is the weighting coefficient 
as an N × 1 column vector with k nonzero elements. 
Rational choice of this sparsity basis to make k as small as 
possible, it will not only help to improve the speed of 
signal receiver, but help to reduce the storage and 
transmission of signals in the system resource 

III. RECONSTRUCTION VIA SUBSPACE PURSUIT 
METHOD 

In our framework, the input data is the scattering field 
over a wide frequency- and angular-band which computed 
by physical optics. Obviously, the low-sampled input data 
corresponds to the observation vector in CS framework. 
The geometry is depicted as the combination of a number 
of spatial basis functions. The pulse function is used as the 
spatial basis functions. Since LFM signal is widely used 
for radar imaging, the testing function in this paper is not 
the Gaussian function but the LFM function with two 
important variables, the angle and the frequency, which 
means the radar transmits a wide band LFM signal to 
observe the geometry at each angle. In order to obtain the 
LFM echo, the Fourier transform is used to transfer 
scattering field from frequency domain to time domain. 
However, the sampling rate for both frequency- and 
angular- domain is much lower than Nyquist rate. 
Accordingly, a reconstruction algorithm based on CS is 
necessary to achieve this target.  

The OMP-type methods [3] are suitable to be applied 
to solve the reconstruction problem. In this paper, the 
subspace pursuit method [12] is chosen since its reliability 
and efficiency. The basic theory of the subspace pursuit 
method for reconstruction of radar image comes from 
coding theory. Different from traditional OMP method, 
one starts by selecting the set of k most reliable 
information symbols. In our problem, the first k basis 
functions are selected according to the information from 
the observation vector. Then, some of the low-reliability 
functions from the k basis functions are retired and some 
novel informative functions chosen from other basis 
functions are selected. The coefficients of these basis are 
computed by solving linear equations. After several 
iterations, the final results depict the image of the 
geometry. Following is the detailed algorithm of the SP 
method. 

Subspace pursuit algorithm 
Input: k, Φ, y 
Initialization: 
(1) T0 = {k indices corresponding to the largest 

magnitude entries in the vector Φ*y}. 
(2) yr

0 = residual(y, 0T
Φ ). 

Iteration: At the lth iteration, go through the following 
steps 

(1) Tl = Tl-1 ∪{k indices corresponding to the largest 
magnitude entries in the vector 1l

r
Φ y }. 

(2) Set lp T
x Φ y . 

(3) Tl = {K indices corresponding to the large elements 
of xp}. 

(4) yl
r = residual (y, lT

Φ ). 

(5) If 1

2 2

l l
r r

y y ,let Tl = Tl-1 and quit the 

iteration 
Output: 
(1) The estimated signal x, satisfying 

{1,..., }
0lN 


T

x and l l
T T

x Φ y . 

The range profile can be reconstructed by SP method. 
In [12], the reconstruction complexity of the SP algorithm 
is O(mNlogK). There is a slightly higher for the 
complexity of SP for LFM signals in our work. Then, the 
traditional back-projection (BP) method is used to recover 
the 2-D image. 

IV. NUMERICAL RESULTS  
In this section, a number of numerical results are 

presented to demonstrate the accuracy and efficiency of 
the proposed method for radar imaging of 3-D geometries. 
The subspace pursuit algorithm is applied to solve linear 
systems constructed by compressive sensing technique. All 
experiments are conducted on an Intel Core(TM) II Duo 
with 3.45 GB local memory and run at 2.40 GHz in single 
precision. The iteration process of the solver is terminated 
when the 2-norm residual error is reduced by 10-3. 

First of all, First of all, the radar images of two 
geometries, PEC Ogive and Double-Ogive [13], are 
analyzed in different frequency band. The detailed 
information about the structure of the two geometries can 
be referenced in [13]. The input data is the scattering of the 
geometries excited by plane wave. The scattering field is 
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computed by physical optics method since the incident 
frequency band is C-band and K-band. In this two 
frequency bands, the objects can be considered as 
electrically large object which the assumption of high 
frequency is available. Using the physical optics, the 
current on the PEC surface of the object is computed by 

ˆ2 i J n H          (8) 
According to high frequency assumptions, the currents on 
the surfaces which are not illuminated by incident wave 
are considered to be zero. In order to judge the illuminated 
regions when using the PO approach to analyze the 
scattering of complicated objects, a special process is 
required at the very beginning. 

From Fig .2-5, it is obvious that compressive sensing 
can lead to almost the same results as traditional BP 
method. In the C-band, the bandwidth is 4 GHz. According 
to Nyquist rate, the number of sampling points for 
traditional method is 41. Obviously, the object is sparse in 
the region and only 21 samples are needed for compressive 
sensing method. This sampling rate is much smaller than 
Nyquist rate. The same conclusions can be made in the K-
band. The bandwidth is 9 GHz and the number of samples 
is 91 under Nyquist rate. When compressive sensing 
method is used, only 31 samples is required and the 
subspace pursuit method is able to recover the geometries 
precisely. 

 
(a) 

 
(b) 

Figure 2. Radar image of Ogive with 4 GHz bandwidth at C-band：(a) 
traditional BP method；(b) compressive sensing via subspace pursuit 

 

 
(a) 

 
(b) 

Figure 3. Radar image of Double-Ogive with 4 GHz bandwidth at C-
band：(a) traditional BP method；(b) compressive sensing via subspace 

pursuit 

 
(a) 
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(b) 

Figure 4. Radar image of Ogive with 9 GHz bandwidth at K-band：(a) 
traditional BP method；(b) compressive sensing via subspace pursuit 

 
(a) 

 
(b) 

Figure 5. Radar image of Double-Ogive with 9 GHz bandwidth at K-
band：(a) traditional BP method；(b) compressive sensing via subspace 

pursuit 
 

V. CONCLUSIONS 
Compressed sensing is a new technique for signal 

processing. It can achieve high-resolution reconstruction 
with low Nyquist sampling rate and non-adaptive sampling 
for the signal. Compressed sensing technique could be 

used in radar systems, which can significantly reduce the 
power consumption of the transmitter and receiver, volume 
and weight, so as to achieve lower costs. This paper has 
focused on the applications of compressed sensing 
technique in radar systems, which emphasis on the 
compressed radar imaging algorithm for sparse scene. By 
using the subspace pursuit method, the radar image can be 
recovered efficient and robust. A large number of 
simulation examples, whose scattering field are computed 
by the physical optics, can validate the compressive radar 
imaging algorithm based on subspace pursuit method. 
Compared with the traditional imaging method, using 
compressed sensing technique can not only sample the 
SAR echo data below the Nyquist sampling rata, but also 
can effectively reduce the generation of sidelobe.  

ACKNOWLEDGMENT 
One of us thanks the support of National Natural 

Science Foundation of China (No: 61261005), Open 
Project of National Key Laboratory (No: K201326) 

REFERENCES 
[1] D. L. Donoho, “Compressed sensing,” IEEE Trans. Information 

Theory, vol.52, no.4, pp.1289~1306, April 2006 
[2] Emmanuel J. Candes, Justin Romberg, Terence Tao, “Robust 

uncertainty principles: Exact signal reconstruction from highly 
incomplete frequency information,” IEEE Trans. Information 
Theory, vol.52, no.2, pp.489~509, February 2006 

[3] Joel A. Tropp, Anna C. Gilert, “Signal recovery from random 
measurements via orghogonal matching pursuit,” IEEE Trans. 
Information Theory, vol.53, no.12, pp.4655~4666, December 2007 

[4] W. Dai and O. Milenkovic, “Subspace pursuit for compressive 
sensing: Closing the gap between performance and complexity,” 
submitted for publication, March 2008 

[5] M. Rudelson and R. Bershynin, “Sparse reconstruction by convex 
relaxation: Fourier and Gaussian measurements,” In Proc. 40th 
Annual Conference on Information Sciences and Systems, 
Princeton, March 2006 

[6] M. A. T Figueiredo, R. D. Nowak, S. J. Wright, “Gradient 
projection for sparse reconstruction: Application to compressed 
sensing and other inverse problems,” IEEE J. Selected Topics in 
Signal Processing: Special Issue on Convex Optimization Methods 
for Signal Processing, vol. 1, no. 4, pp. 586 ~ 598, 2007 

[7] A. Gilbert, M. Strauss, J. Tropp, R. Vershynin, “One skethc for all: 
Fast algorithm for compressed sensing,” In Proc. 39th ACM Symp. 
Theory of Computing, San Diego, June 2007 

[8] R. F. Harrington. Field computation by moment methods. Malabar, 
Fla.: R. E. Krieger, 1968 

[9] N. N. Youssef, “Radar cross section of complex targets,” Proc. 
IEEE, vol.77, no.5, pp.722~734, May 1989. 

[10] Richard G. Baraniuk, “Compressive sensing,” IEEE Signal 
Processing Magazine, pp.118~124, July 2007 

[11] Justin Romberg, “Imaging via compressive sampling – 
Introduction to compressive sampling and recovery via convex 
programming,” IEEE Signal Processing Magazine, pp.14~20, 
March 2008 

[12] Wei Dai, Olgica Milenkovic, “Subspace pursuit for compressive 
sensing signal reconstruction,” IEEE Trans. Information Theory, 
vol. 55, no. 5, pp. 2230 ~ 2249, May 2009. 

[13] Alex C. Woo, Helen T. G. Wang, Michael J. Schuh, Michael L. 
Sanders, “Benchmark radar targets for the validation of 
computational electromagnetics programs,” IEEE Antennas and 
Propagation Magazine, vol. 35, no. 1, pp. 84 ~ 89, February 1993. 

 

778




