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Abstract—In order to solve the problem of parameter 
identification of ship's Maneuvering Motion, a fast 
convergent iterative least squares algorithm is presented 
considering nonlinear and non-stationary characteristics of 
ship motion in time domain. The speed and precision of 
parameter identification have been improved using this 
algorithm. Firstly, the models of ship's first-order and second-
order nonlinear response motion were established and made 
discrete. Then, parameters identification were made using 
new least squares algorithm which was improved by using 
iterative learning and introducing p-type learning rate. And 
the convergence of the algorithm was also analyzed. A Z-Type 
simulation experiment of first and second order non-linear 
model of a certain type of ship was conducted using the 
numerical methods above. At last, the results were compared 
with the experimental data from the free running model test 
carried out in Hamburg, Germany pool (HSVA). The 
experimental results demonstrate that the algorithm is 
feasible and effective. 

Keywords- least square method; parameter identification; 

interactive learning; ship maneuvering; response model 

I. INTRODUCTION  
Ship maneuverability is one of the focus in the study of 

ship hydrodynamic performance, and it is related to the ship 
navigation safety. After nearly 30 years’ development, the 
study on ship maneuverability has received more and more 
attention and obtained major achievements represented by 
the "provisional standards of ship maneuvering" and the 
"official standards". These standards are promulgated 
successively in 1993 and 2002 by the International 

Maritime Organization (IMO) after consulting the advice of 
each member states [1]. Putting forward clear quantitative 
requirements for ship maneuverability forecast in the design 
phase and maneuverability index, these standards have 
greatly promote the study of ship maneuverability forecast. 
The method of ship maneuverability forecast by 
establishing the maneuvering motion simulation system in 
the design phase is the most practical and effective one [2]. 
This method asks for a mathematical modeling of ship 
motion model, while to determine the hydrodynamic 
derivatives of the mathematical model is the key to 
modeling. 

At present, using the method of system identification to 
determine the hydrodynamic derivatives is one of the most 
simple and effective method. The least square method is the 
most basic one in system identification [3]. It has the 
advantages of low system prior statistical knowledge, 
simple algorithm, less amount of calculation and good 
convergence, especially the recursive least squares method 
which can avoid matrix inversion calculation and realize 
parameter online identification. But the recursive least 
squares method needs further improved on the identification 
precision and speed. By adopting the tactics of "learning in 
duplicate", the iterative learning method has the memory 
system and empirical correction mechanism [4]. And when 
applied in the recursive least squares algorithm, it can make 
the latter have some kind of intelligence [5]. The iterative 
learning method can obtain additional information from the 
system input and output as well as parameter estimation of 
the past. Through constant training of identification, it 
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provides a possibility to improve the parameter estimation 
and makes the identification effect better. 

In this paper, the idea of iterative learning was adopted 
on the base of the least square method, and at the same time 
the vector P type was added in the process of iterative 
learning to improve the convergence speed and precision of 
the algorithm. The online identification of nonlinear ship 
maneuvering parameters based on the fast convergent 
iterative learning least squares algorithm was completed, 
and the effectiveness of the proposed method was verified. 

II. THE ESTABLISHMENT OF SHIP MANEUVERING 
MOTION MODEL 

At present, there are mainly two kinds of ship 
maneuvering motion models that has gone through 
theoretical analysis and practical test: one is the 
hydrodynamic model and another kind is the response 
model [6-8]. In this paper, the classic KT equation was 
adopted considering its fewer ship maneuvering parameters 
and good observability. This model 
contains maneuverability indices such as K , T , and these 
indices can be obtained by some linear hydrodynamic 
derivatives. 

The first order nonlinear response model is described in 
equation (1):  

 3Tr r r K      (1) 
Where r  is the turn bow angular velocity,  is the 

rudder Angle, K and T  are the maneuverability indices, 
 is the nonlinear coefficient. 

The second order nonlinear response model is described 
in equation (2): 

 3
1 2 1 2 3( )TT r T T r r r K KT          (2)  

Where K , 1T , 2T  and 3T are the maneuverability indices,
 is the nonlinear coefficient. 

By conducting forward difference discretization on 
equation (1), we get equation (3): 

 3
1 2 1( 1) ( ) ( ) ( ) ( )r t a r t a r t b t t        (3) 

Where t is the time stamp, ( )t is 
the Gaussian white noise, 1a , 2a and 1b are coefficients to 
be identified, their relationship with the first order nonlinear 
ship maneuverability indices is as follows: 
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Where t  is the Sampling interval. 
We make 1 2TT h , 1 2T T g  , and conduct forward 

difference discretization on equation (2), thus we get the 
following equation: 
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Where 1a , 2a , 3a , 1b  and 2b are coefficients to be 
identified, their relationship with the second order nonlinear 
ship maneuverability indices is as follows:  
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  (6) 

The problem of ship maneuverability parameter 
identification can be summed up as follows: the ship motion 
sequences ( )r t and ( )t are known, we need to solve 1a , 2a  ,

3a , 1b  and 2b and then calculate the nonlinear ship 
maneuverability indices like K ,T , 1T , 2T , 3T and  . 

We Make 3( ) [ ( ), ( ), ( )]Tt r t r t t    , 1 2 1[ , , ]Ta a b     
So that equation (3) becomes as following: 
 ( ) ( ) ( )Ty t t t        (7) 
Then we make ( ) ( 1)y t r t   , 
 3( ) [ ( ), ( 1), ( 1), ( ), ( 1)]Tt r t r t r t t t        , 
And equation (5) is converted into the following form: 
 ( ) ( ) ( )Ty t t t        (8) 

III. A FAST CONVERGENT ITERATIVE LEARNING LEAST 
SQUARES ALGORITHM 

A. Standard recursive least squares method  

We use the following model to express the two systems 
in equation (7) and equation (8): 

 ( ) ( ) ( )Ty t t t      (9) 
The principle of the least square method is seeking the 

estimate ( )t for the unknown vector   to make the 
residual sum of square to the minimum. Equation (10) is the 
expression for the residual sum of square: 

 2

1
( )

N

t

J e t


   (10) 

Where ( ) ( ) ( ) ( )Te t y t t t     . 
We make ( ) [ (1), (2), , ( )]TY t y y y t  , 

( ) [ (1), (2), , ( )]Tt t     , 
So that the performance indicator J  can be written as 

the following form: 
 [ ( ) ( ) ( )] [ ( ) ( ) ( )]T T TJ Y t t t Y t t t      (11) 
The non-recursive least squares estimate of the 

observation base on time t can be obtained as following: 
 1( ) [ ( ) ( )] ( ) ( )T Tt t t t Y t       (12) 
In order to eliminate the situation of zero denominator 

and avoid matrix inversion, the recursive gain least squares 
estimate is written as the following form: 
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In the above equations, the initial values (0) 0  ,
(0)P I ,  is a very large positive number, and we define
( ) 0, ( ) 0, 0r t t t   . 
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B. Fast convergent iterative learning least squares 

algorithm 

From equation (9) we get the form at time t: 
 ( ) ( ) ( ) ( )Ty t t t e t     (15) 
After k times iterations, the above formula evolves into 

the following form: 
 ( ) ( ) ( ) ( )T

k k k ky t t t e t     (16) 
We make ( ) ( ) ( ) ( )T

k k k ke t y t t t   , 
1 2( ) [ ( ), ( ), , ( )]T

k kY t y t y t y t , 
1 2( ) [ ( ), ( ), , ( )]T

k kt t t t     ， 
 then we get the form: 
 ( ) ( ) ( ) ( )T

k k k kY t t t t     (17) 
Considering the following index function: 
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Similarly, the least squares algorithm is derived as: 
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Where  
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The initial values are given in equation (21): 
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After N times iterations when the iterative termination 
condition is satisfied, we can get the form: 
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( ) ( )

N
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The iterative termination conditions are generally as 
follows: 

 
1|| ( )- ( )||<
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k kt t

else

k N
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  (23) 

Where   is a small positive number, maxN is the pre-
set largest number of iterations. 

In order to accelerate the convergence speed, the P-type 
iterative item is added as follows: 

 ( ) ( ) ( ) ( )LS
k k kkt t t e t      (24) 

Where  is the p-type iterative coefficient, 
( ) ( ) ( ) ( )LST

k k k ke t y t t t   . 
 From the foregoing, the basic steps of fast convergent 

iterative learning least squares algorithm can be 
summarized as follows: 

 Determine initial values 0 ( )P t and 0 ( )t  for time t 
according to formula (21), and make 0k  . 

 Update ( )kP t  and ( )k t  according to formula (20) 
and (24) when the kth rerun. 

 Check the termination conditions of iterative 
learning according to formula (23).If the condition 
is met, go to step 4, if not, make 1k k   and go to 
step 2. 

 Update ( )t  and ( )P t  according to formula (22), 
then make 1t t   and go to step 1. 

C. Convergence analysisw 

Making ( ) ( )-k kt t   , we can get the follow form: 
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We define
1

1( )
1 ( ) ( ) ( )T

k k k

t
t P t t


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


, the following 

formula is obtained from equation (19): 
 1( ) ( ) ( ) ( ) ( )k k k k kP t t t P t t     (26) 

While A and B take the following expression forms: 
 1 1( ) ( ) ( ) ( ) ( ) ( )T T

k k k k k ke t y t t t t t          (27) 
 1( ) ( ) ( ) ( )T

k k kke t t t t       (28) 
After substituting equation (27) and equation (28) into 
equation (25), we can get： 
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The Lyapunov function is defined as following: 
 1( ) ( ) ( ) ( )k

T
k kkV t t P t t    (30) 

Then we can get  
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Where 
 1 1( ) ( ) ( ) ( ) ( )k

T T
k k k kA t t t t t         (32) 
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We can know 0A  by formula (32), and as long as 0B  , 
the convergence of the algorithm can be proved according 
to Lyapunov's law. From formula (20) we know that: 

 1 0( ( )) ( ( )) ( ( )) ( (0))0 k kP t P t P t P   


    
   (34) 

Where   is the largest eigenvalue of ( )kP t , then we get: 

 1 1
2 1

1 1
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If 2  , then 0B  , that is: 
 1( ) ( ) 0k kV t V t A B      (36) 
For  is a very large positive number, the condition of 

0 2   is easy to be satisfied, so the inequality (36) is 
true, and the convergence of iterative learning least squares 
is proved.  

IV. SIMULATION EXPERIMENT 
This simulation experiment described in this paper is 

mainly about the numerical simulation of a certain type of 
ship according to reference [10]. The Z-type simulation 
experiments of 5 /10  was carried out respectively for the 
first and the second order nonlinear model. In the simulation 
experiments, the four order runge kutta method was used in 
integral for the response model and the sampling interval 
was 0.1 s. In order to simulate the real situation, the 
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Gaussian white noise was added into the model, its mean 
value is 0 and the variance is 0.05. The initial values for the 
first order nonlinear response model are 0K   , 0T  and 

0   , while the initial values for the second order nonlinear 
model are 1K   , 0.2g   , 0.01h   , 

3 0T   and 0  .The 
recursive least squares method and the fast convergent 
iterative least squares algorithm were respectively adopted 
for identification of unknown parameters. In the fast 
convergent iterative least squares algorithm, the biggest 
iteration step. max 200N   , 0.005  , the minimum is 

0.001   , 610   . 
The simulation experimental results are shown in table 

1 and table 2, the course curves of each identification 
parameters are given in Fig. 1 and table1. 

Table I  data of the first order nonlinear simulation 
experiment 

 
Figure 1 error curves for the first order nonlinear model parameters 

Table 1 shows that the basic least square method and the 
fast convergent iterative least square method can both 
identify the first order nonlinear motion parameters. 
The identification errors for K  are 0.002 and 0.0015, 
almost the same. But there is a big difference between the 
identification errors for T and  gained by the two methods, 
and the fast convergent iterative least square method is 
slightly better than the basic least square method. From 
Fig.1 1 we can see that it takes 60s to converge to the real 
value when using the basic least square method, while less 
than 20s is taken when using the fast convergent iterative 
least square method, thus the rapidity of convergence of the 
latter is prove. 

Table II  data of the second order nonlinear simulation 
experiment 

 
Set 
value 

The basic least square 
method 

The fast convergent 
iterative least squares 
algorithm 

Identification 
value 

error 
Identification 
value 

error 

h 8.045 8.483 -0.438 8.065 -0.02 
g 16.136 16.527 -0.391 15.838 0.298 
α 98.14 98.65 -0.51 98.12 0.02 
T3 0.312 0.323 -0.011 0.304 0.008 
K 0.201 0.216 -0.014 0.213 -0.012 

 
 

 
Set 
value 

The basic least square 
method 

The fast convergent 
iterative least squares 
algorithm 

Identification 
value 

error 
Identification 
value 

error 

K 0.216 0.2182 0.0022 0.2175 0.0015 
T 13.514 13.647 0.133 13.598 0.084 
α 258.405 260.394 1.989 256.738 -1.667 

Figure 2a error curve for h

 
Figure 2b error curve for g

 
Figure 2c error curve for   

  

Figure 1a error curve for K

 
Figure 1b error curve for T

 
Figure 1c error curve for 
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Figure 2 error curves for the first order nonlinear model parameters 
For identification of the second order nonlinear 

maneuvering motion parameters, these two methods both 
work. Table 2 shows that the identification errors for K and

3T are almost the same, differences exist in identification 
errors for g  , h  and   , and the fast convergent iterative 
least square method is proved much better than the basic 
least square method. We can learn from Fig. 2 that, it takes 
more than 60s for the identification values of the second 
order nonlinear parameters to convergence to their 
corresponding real values by using the basic least square 
method, while about 20s is used when taking the fast 
convergent iterative least square method, thus the rapidity 
of convergence of the latter is proved.  

V. Water-tank experiment 
KVLCC1 has been adopted as the benchmark ship form 

for inspection of ship maneuverability forecast method. In 
this paper, the experimental data are from the free running 
model test carried out in Hamburg, Germany pool (HSVA). 
In the experiment the ship model was dragged in static and 
deep water. Reference [11] has introduced the basic 
parameters of the model. The direct test speed

0 1.179 /U m s , the propeller speed  10.23 1/n s , the 

steering rate 15.8 /R s   and there is no trim between 
stem and stern. 

Z-type test of 15°/5°was carried out and the fast 
convergent iterative least square method was used in 
identification for the first order nonlinear response model. 
The initial values 0K   , 0T  and 0  , the biggest 
iteration step max 200N   , 0.005  , the minimum 

0.001   , 310   
Course curves of corresponding parameters are shown 

in the figures below: 
 

   
 
 

Figure 3 Course curves of parameter identification 
After finishing the parameter identification, Z-type test of 
25°/5°was carried out and the results are shown in Fig. 4: 

 
Figure 4 forecast of the heading angular velocity 

From the above figures we know that the identification of 
related maneuvering parameters via this algorithm can be a 
good prediction of the ship maneuvering performance. 
To sum up, the fast convergent iterative least square 
method has been improved in terms of convergence speed 
and identification precision relative to the basic least square 
method, and the former works better than the later in 
identification of nonlinear control motion parameters. Due 
to the introduction of the idea of the iterative learning, the 
amount of calculation increases. When the biggest iteration 

 
Figure 2d error curve for 

3T  

 
Figure 2e error curve for K  

 

Figure 3b change curve of 

 
Figure 3c change curve of K

  

Figure 3a change curve of T  
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steps is set to 200, the existing computer is be able to 
complete the calculation in a limited time. At the same time, 
the effectiveness of the algorithm has been proved through 
contrast between the forecast value and the actual 
experimental value. 

CONCLUSION 
In this paper, a fast convergent iterative least square 

algorithm is proposed and used to solve the problem of 
parameter identification of ship maneuverability. 
Introduction of the iterative learning method has ensured the 
algorithm's efficiency and make the basic least square 
method have some kind of intelligence. Simulation and 
practical experiments show that fast convergent iterative 
least square algorithm's convergence speed and precision 
are improved, the algorithm is feasible and effective and it 
is of great significance on the ship parameter online 
identification.  
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