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Abstract—Via modeling the reverberation noise by means of 
the symmetric α-stable( S ) distribution, and the second-
order and above order moments of S distribution are 
nonexistent, the fractional lower-order moment and zero-
order moment concepts are put forward and the beam 
forming algorithms on account of them are proposed to 
instead of the beam forming algorithms on account of 
second-order moments. Taken full advantage of the feature 
of no second-order or above order existing in the 
symmetrical α-stable( S S ) process, the reverberation noise 
which possesses pulse characteristic can be strongly 
inhibited by these two algorithms, resulting in overcoming 
the shortage that the traditional beam former on the basis of 
second-order statistical moment was not suitable for 
reverberation noise. Compared with the traditional ones, 
more efficient algorithm performance and better robustness 
are showed out by the experiments. And the experimental 
results which based on sea -test data also show that these two 
algorithms are very efficient. 

Keywords-Symmetric; α-Stable Dsitribution; Beam 
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I. INTRODUCTION 
Beam forming technology is one of the effective tools 

in modern array signal processing procedure. In essence, 
beamforming can be considered as a spatial filtering wave, 
which is used to weight the array receiving data based on 
some kind of criterion [1], to enhance the desired signal 
and suppress interference and noise and its performance is 
decided by the choice of the beamforming weight vector. 
Usually the noise and interference in the received array 
signal are assumed to conform with the Gauss distribution 
in traditional signal processing, and adopting the methods 
based on second-order statistics (variance, correlation, 
covariance) for further analysis and treatment is very 
effective in most cases. However, in some fields such as 
radar, communication and sonar and so on, many 

interference and noise do not obey the Gauss distribution. 
For instance, there are amplitude spikes existing in those 
signals including atmospheric lightning noise, underwater 
reverberation, instantaneous spike on the telephone lines 
and their probability densities have algebraic tails [2,3,13]. 
Studies have shown that the S S process is more suitable 
to describe the reverberation signal of underwater noise 
[4,14], so distribution is used to describe active sonar 
reverberation in this paper, with the statistical moments 
without beyond the scope of (0 2)   [2,3,15]. 
Traditional adaptive beamforming algorithm based on 
second-order can not acquire satisfactory results, and even 
leads to the performance degradation. Therefore, in 
reverberation interference environment, traditional 
methods must be improved through using fractional lower-
order statistical moments to replace second-order statistical 
moments. 

 -stable distribution has no unified and closed 
probability density function expression [2,3,16], but its 
characteristic function is existing. So we usually use the 
characteristic functions under the standard parameters 
system to describe it: 
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  is called characteristic exponent,   is deviation 

index,   is dispersion coefficient, and   is location 
parameter, characteristic exponent   is the most important 
parameter. And it is Gauss distribution when 2  . So we 
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consider that the Gauss distribution is a special case of 
stable distribution. Levy presented the  -stable 
distribution for the first time when he researched the 
generalized central limit theorem in 1925 [5,6] and pointed 
out that it was the only limiting distribution of the sum of 
the independent identically distributed random variables. 
Compared with the Gauss distribution, it has a wider range 
of applicability. 

II. BEAMFORMING 
Based on the array element geometry, sonar array can 

be divided into three categories: linear array, planar array 
and volumetric array. Linear array and planar array can be 
considered as special cases of volumetric array. Linear 
array is the most commonly used form of matrix array, and 
a kind of the easiest ways to be analyzed. Linear array is 
divided into non uniform linear array and uniform linear 
array dominanting the means of sonar signal receiving. 
Each desired signal of array element arriving at weight 
matrix corresponding to the delay sample transporting 
through different distances carried through reverse delay 
compensation sum to improve the output signal-to-noise 
ratio, which is called Conventional Beam Forming(CBF). 
In general, the underwater acoustic signal is satisfy the far 
field conditions, namely the active sonar echo signal or 
underwater target signal approximation is thought to 
parallel to the plane wave. Array model is shown in Fig .1. 

 
Figure 1.  Uniform linear array model 

Using array element 
1H  as the reference, the received 

array signal of the array element i can be approximated by: 

2 ( 1) cos

( ) ( ) ( )i

i d
j

j

i
s t s t e s t e

 

 





                        

(3) 
In the actual sonar array, a desired signal and 1K   

interference signals incident respectively from 
1 2
, , ,

K
     , 

and direction vectors of the K  sources are expressed as 
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approximated by 
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A      a a a  [7].The snapshot 
sampling value of the nth snapshot expressed by [8]： 
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(7) 
Self-adaptive beamforming is exactly to use snapshot 

data of each array element to derive the beamforming 
weight vector .The output signal of uniform linear array is 
expressed as: 

H( ) ( )y t t w x                                     
(8) 

Where,
1 2

[ , , , ]
M

w w ww L  is beamforming weight vector, 
and the beam response is formulated as follows: 

H

0
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III. FRMVDR BEAMFORMING ALGORITHM 
Reverberation noise signal obeys S S distribution [9], 

with an unbounded second-order moment leading to 
traditional beamforming algorithm inapplicable. So we use 
fractional lower-order moment instead of second-order 
moment. The conjugate p norm of x is defined as follows: 
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For the faculative of M-dimensional vector x, the 
conjugate p norm is as follows: 
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n

t  is defined: 
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Where,   means to obtain the complex conjugate, H  

means to obtain the conjugate transpose. The above 
formula called fractional lower order array response. The 
output power of fractional lower order array response is 
defined as: 
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When 1p  , so
H

{ ( ) ( )}E t tR x x is traditional covariance 
matrix, the algorithm degenerates into Minimum Variance 
Distortlessness Response(MVDR)[10]. Since S S  distribution does not possess finite second-order moments, 
so p R is bounded, if we take / 2p  [7,11]. MVDR 
algorithm with preprocessing of the conjugate p norm to 
random various x, is called Fractional Minimum Variance 
Distortlessness Response(FrMVDR). FrMVDR beamfo-
rmer is formulated as follows: 
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(15) 
The physical meaning contained above is: in the case 

of ensuring the desired signal without distortion, the output 
power of fractional lower order array beamformer 
minimum. The optimal weight vector solving methods of 
FrMVDR and MVDR are alike, for that both methods use 
the Lagrange vector factor as solving approach. The theory 
of optimal weight vector in the desired direction is: 
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In practical application, we use N sampling values in 

different time of the array to estimate matrix p R : 
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Where, the value of p must be pre-determined, so the 

priori knowledge of characteristic exponent   need to be 
aware [12], selecting a suitable parameter value for p from 
[0, / 2] . At this point the output power and optimal 
weight vector of receive array signal are as follows: 
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IV. ZMVDR BEAMFORMING ALGORITHM 
The application of FrMVDR beamforming algorithm is 

limited to the selection of value of parameter p, so we 
present a zero order array beam response algorithm, 
namely Zero Minimum Variance Distortlessness Response 
(ZMVDR), to overcome this drawback of FrMVDR 
algorithm. The complex random variable j

x re


  is 
represented by the polar coordinate form, so 
ln lnx r j  , and zero norm of x is defined as: 
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Zero norm of M dimensional vector is defined as follows: 
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Formula (19) shows that 0 x only changes the 
amplitude information of x , without changing its phase 
information. Array response of time 

nt is expressed as 
follows: 
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We call (22) Zero-order array response. The zero-order 
array output power is expressed as follows: 
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For the purposes of a finite number of sampling points, 
matrix 0 R is always bounded, so output power is present. 
ZMVDR algorithm can be expressed as： 
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(24) 
The physical meanings of ZMVDR and FrMVDR are 

similar. The optimal weight vector solving methods of 
ZMVDR and MVDR are alike, for that both methods use 
the Lagrange vector factor as solving approach. The theory 
of optimal weight vector in the desired direction is: 
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In practical application, we use N sampling values in 

different time of the array to estimate matrix 0 R  : 
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The output power and optimal weight vector of receive 

array signal are following: 
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V. EXPERIMENTAL RESULTS 
In order to verify the performance of the above 

beamforming algorithms and compare with traditional 
method, we processed the sea test data. The data came 
from [0601-715 sanya sea test]. Transmitting signal was 
Linear Frequency Modulaton(HMF) pulse with frequency 
ranging from 1.5kHz to 2.0kHz, 4 seconds pulse width, 
target azimuth 

0
116 

o . We used 96 uniform linear arrays 
with 0.45d  meter element spacing to receive signals, 
along with 6.0kHz sampling rate. Datas of the first 16 
array elements were collected to input into the beamformer, 
following with pretreatment via 600Hz intermediate 
frequency FIR bandpass filter of 512-order before 
beamforming. To make the calculation simple, here we 
only considered a subset of narrow-band emission signal 
center frequency: 1750Hzf  .The three beam graphes 
formed by beamformer are shown from Fig .2 to Fig .5. 
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Figure 2.  Beam graphes of MVDR and FrMVDR 

 

Figure 3.  Distortion beam graphes of  FrMVDR 

 

Figure 4.  Beam graphes of MVDR,FrMVDR and ZMVDR（p=0.6） 

 

Figure 5.  Beam graphes of MVDR,FrMVDR and ZMVDR（p=0.2） 

In the view of Fig 2 and Fig 4, MVDR, FrMVDR and 
ZMVDR beamforming algorithms can produce high gain 
in the direction of the desired signal. Compared with 
MVDR, FrMVDR and ZMVDR have better overall 
inhibitory effect on the sidelobe. Because parameter 
influenced the inhibitory effect of sidelobe in FrMVDR, 
there would appear distorted when 2p  , and 
FrMVDR algorithm became stronger on the whole 
sidelobe suppression while adopting a smaller p value 
when 2p  . Although some secondary sidelobe 
inhibition of ZMVDR faded next to FrMVDR, ZMVDR is 
obviously more effective on adjacent null. Meanwhile 
ZMVDR proved to have stronger robustness due to have 
no inpendencies on the priors of  . 

VI. CONCLUSION 
The concepts of fractional lower order statistics and the 

zero order statistical moments are presented in this paper, 
following with deriving the beam forming algorithms of 
fractional lower order moments and zero order moments 
based on S S distribution environment, and analysis the 
performance of beamformer. Because the active sonar 
reverberation noise signal obeys S S  distribution, and 
there is no p-order( p  ) moment existing, the traditional 
beamforming algorithm based on second-order will be not 
applicable, which is finally and successfully solved by, the 
two algorithms described in this article utilizing fractional 
lower order moment and zero-order moment to replace 
second moment. We improve the traditional MVDR 
beamforming algorithm into FrMVDR algorithm and 
ZMVDR algorithm by processing p norm and zero norm 
pretreatment of array received signal before sending into 
beamformer. Experimental results show that, Both of 
FrMVDR and ZMVDR can acquire a high gain in the 
desired signal direction, better and obvious overall 
sidelobe suppression effect than MVDR. Meanwhile, 
without recourse to the priori values of  , ZMVDR is 
proved to be a highly robust beamforming algorithm. 
These two algorithms are both suitable for processing 
reverberation signal which obey S S  distribution 
resulting in great significance for active sonar anti-
reverberation. 
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