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Abstract—By using sphere pair with unilateral constraint, 
the limbs of the proposed pre-stressed six-axis sensor must 
be under pressure in the measurement process, so prior to 
measurement, a certain preload must be applied to the 
sensor. The viable limbs’ number of the pre-stressed six-axis 
force senor is determined by using convex theorem. By 
solving the static equilibrium equation of sensor, the reacting 
forces on limbs are divided into two parts: the particular 
solution is generated by the external force, while the 
homogeneous solution is only concerned with the pre-
tightening force. The number of parameters to be 
determined in homogeneous solution is decreased by linear 
transform, and the method for determining the pre-
tightening force is derived to make all the limbs compressed 
when it is subjected to the expected range of external force. 
A numerical example to determine the pre-tightening force 
of the force sensor is performed. The numerical example 
results show that the force on limbs can always maintain 
positive value with the appropriate pre-tightening force, 
which proves the correctness of the theoretical analysis and 
the validity of the sensor structure. 

Keywords-component; Force sensor; Six-axis; Pre-stressed; 
Pre-tightening force; Reacting force 

I. INTRODUCTION 
With the ability of measuring three force components 

and three torque components applied to the end-effector, 
the six-axis force/torque sensor is one kind of the most 
important and challenging sensors, which is widely used in 
both industries and research as well, and real-time 
measurement of six-axis force/torque is a foundation to 
realize force compliance control and multi-degree-
freedom- coordinated control on industrial robots. The 
trend of industrial automation increasingly requires the use 
of robotic manipulators with force/torque sensor to serve 
works such as rehabilitation, welding, grinding, deburring, 
object gripping and moving, etc. 

Parallel mechanisms possess the distinguishing 
advantages of high rigidity, symmetry and stress 

decoupling that make them particularly suitable for certain 
applications in multi-axis force/torque sensors. A lot of 
literatures on the design, analysis, and optimization of the 
parallel six-axis force/torque sensor with static or 
hyperstatic structure are available in recent years. Gaillet 
and Reboulet [1] proposed an isostatic six-axis 
force/torque sensor based on the octahedral structure of the 
Stewart platform. Kerr [2] suggested that the Stewart 
platform with instrumented elastic legs be used as a six-
axis force/torque sensor and enumerated a few design 
criteria for the sensor structure. Dasgupta et al. [3] 
presented a design methodology for the Stewart platform 
sensor structure based on the optimal conditioning of the 
force transformation matrix. Jin et al. [4] proposed a 
unique design of a six-component force/torque sensor and 
analyzed the translational stiffness and the torsional 
stiffness. Dwarakanath et al. [5, 6] presented a simply 
supported, „joint less‟ six-component parallel mechanism- 
based force/torque sensor. Hou et al. [7] proposed a 
hyperstatic six-axis force/torque sensor based on Stewart 
platform, and discussed the performance analysis and 
comprehensive index optimization of the six-axis force 
sensor. Another kind of six-axis force/torque sensor is 
unitary structure based on strain gauge bridge, which has 
the advantages of high rigidity, miniaturization, compact 
structure, etc. Huang et al. [8] performed the mechanical 
analysis of a novel six-degree-of-freedom wrist 
force/torque sensor with a simple structure and small 
cross-sensitivity. Liu et al. [9] presented a six-axis parallel 
force sensor for human dynamics analysis and adopted 
finite element method to optimize mechanism dimension 
of the force sensor. Kim et al. [10, 11] developed a six-axis 
force/torque sensor to use as an intelligent robot‟s gripper 
for safely grasping an unknown object and accurately 
perceiving the position of the object in the grippers. 

For the pre-stressed force/torque sensor with a certain 
pre-tightening force, the measurement range is the limit 
force/ torque that can be applied on the measuring platform 
while all the limbs are in the state of compressed. So when 
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the measurement range is known, determination of the pre-
tightening force is the key in establishing a design 
procedure. Having external force calculated as a function 
of the axial force on limbs, the problem is reduced to 
adjusting initial condition by selecting a proper pre-
tightening force so that all the axial forces of the limbs are 
always compressed. 

II. DETERMINATION OF THE MEASURING LIMBS‟ 
NUMBER 

To improve the traditional Stewart force sensor, a 
cone-shaped spherical pairs with unilateral constraint is 
used to connect the measuring limb and the platforms 
instead of the traditional sphere pairs. The unilateral 
constraint of cone-shaped spherical pairs is similar to the 
frictionless point contact. So if the sensor wants to resist 
any external force, it must be in the state of force-closure. 
Moreover, the pattern of force-closure is determined by the 
number of the sensor‟s measuring limbs. For the pre-
stressed six-axis force sensor, upper and lower bounds for 
the number of measuring limbs required for a force-closure 
constraint can be obtained by using two classical theorems 
in convex analysis. 

Theorem 1 (Caratheodory). If a set 
 1 2, , ...,X kv v v  positively spans R p , then 1k p  .  

Theorem 2 (Steinitz). If S R p  and  int co Sq , 

then there exists  1 2, , ...,X Skv v v   such that 

 int co Xq  and 2k p . Let co S  denote the convex 

hull of a set S,  int co S  denote the interior of the convex 
hull. 

Theorem 1 and Theorem 2 allow us to bound the 
number of contacts required for a force-closure grasp 
using frictionless point contacts. Caratheodory‟s theorem 
implies that if a rigid body can be restricted with a force-
closure state, then it must have at least p+1 unilateral 
contacts. And Steinitz‟s theorem places an upper bound 
on the minimal number of unilateral contacts which are 
needed. For a rigid body in three-dimensional space, the 
applied external force is six-dimensional (three-
dimensional force and three-dimensional torque), so at 
least seven and at most twelve measuring limbs will be 
available in order to restrict the measuring platform in the 
state of static balance. Considering that the structure of 
the sensor may be as simple and Symmetric as possible to 
reduce the error source, eight measuring limbs are chosen 
to the design in this paper. 

III. STRUCTURE CHARACTERISTICS OF THE PRE-
STRESSED SIX-AXIS FORCE SENSOR 

The pre-stressed six-axis force sensor based on 
modified Stewart platform with dual layers architecture is 
shown in Fig .1. It is composed of pre-stressing platform, 
measuring platform, base platform, pre-stressing bolts and 
eight measuring limbs. Each measuring limb is a high 
performance single-axis force transducer to ensure the 
accuracy of the six-axis force sensor system. The pre-
tightening force is applied to the pre-stressing platform and 
base platform by pre-stressing bolts in order to hold down 
all the limbs before measuring. The measuring limbs are 
divided into two layers, four measuring limbs are placed 

above the measuring platform, and other four limbs are 
placed below the measuring platform. As the unilateral 
constraint of cone-shaped spherical pairs, it must insure 
that all the measuring limbs are always compressed in the 
measuring process, so a certain pre-tightening force must 
apply on the measuring limbs. 

 
1.measuring platform, 2.pre-stressing platform, 3. measuring limb, 

 4.ball socket, 5. pre-stressing bolt, 6. base platform 

Figure 1.  The pre-stressed six-axis force sensor with dual layers 

Besides the advantages of lower joint frictional 
moment, lower nonlinearity and mechanical hysteresis, 
convenient series products etc, the pre-stressed and dual 
layers architecture force sensor proposed in this paper has 
several additional advantages to improve the superiority of 
pre-stressed parallel structure. The dynamic stiffness of the 
sensor will be much more improved with the action of the 
pre-tightening force. It can endure more rotational torque 
due to the measuring limbs placed at both sides of the 
measuring platform. The sensor structure is symmetrical. 
Furthermore, the infliction way of the pre-tightening force 
can ensure the condition of pre-stressed more safety and 
stability. 

IV. PRE-TIGHTENING FORCE ANALYSIS 

A. Static mathematical model 
As the foundation for hyperstatic analysis, the static 

mathematical model of the six-axis force/torque sensor 
should be built firstly. As shown in Fig .2, the Cartesian 
coordinate system o-xyz is set up with its origin coinciding 
with the underside geometric center of the measuring 
platform. And the symbols are defined as follows: bi and 
Bi ( i=1, 2, 3, 4) denote the position vectors of the ith 
spherical joint of the upside of the measuring platform and 
the pre-stressing platform about the coordinate system, and 
bj and Bj (j=5,6,7, 8) denote the position vectors of the jth 
spherical joint of the underside of the measuring platform 
and the base platform. R denotes the radii of the circle, 
with which the center of spherical joint located on the pre-
stressing platform and base platform, r denotes the radii of 
the circle of the measuring platform, and l denotes the 
length of the measuring limb. H is the distances between 
the pre-stressing or base platform and the upside of the 
measuring platform. h denotes the height from upside to 
underside of the measuring platform.  ,   and   denote 
the central angle of the spherical joint (b1) of the upside of 
the measuring platform, the spherical joint (B5) of the base 
platform and the spherical joint (B1) of the pre-stressing 
platform with respect to x-axis of the coordinate system, 
respectively. 
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Figure 2.  Schematic drawing of the pre-stressed six-axis  

force/torque sensor. 
For the equilibrium of the measuring platform, the 

following equation can be obtained as 

  F G f  

where T[ ]x y z x y zF F F M M MF  is the vector 
of six-dimension force applied on the center of measuring 
platform; T

1 2 3 4 5 6 7 8[ ]f f f f f f f ff  is the 
vector composed of the forces of the eight limbs; G  is the 
force Jacobin matrix. 

If the rank of matrix [ ]G  equates to the rank of matrix 
[ ]G F , the solution to Eq. (1) can be obtained as follows. 

     f G F I G G y  

where G is the 8×6 generalized inverse matrix for the 6×8 
active statics Jacobian matrix, and the matrix of G is not 
unique. I is the 8×8 identity matrix. 

 
T

1 2 8...y y yy  is a 8-dimensional arbitrary vector. 
Eq.(2) is made up of two parts: the particular solution 

fp and the homogeneous solution fh 

 p
f G F  

  hf I G G y   

We define that the forces on limbs are positive when 
the limbs are compressed. So, the value of f  in Eq. (1) 
must be positive when a measured force applied to the 
sensor. From Eqs. (3) and (4), it can be seen that the forces 
of the eight limbs are divided into two parts. The particular 
solution pf  is produced by the external force, while the 
homogeneous solution hf  is not related to the external 
force but the pre-tightening force. 

In Eq. (2), the particular solution equation pf  is the 
least-squares solution to achieve the desired wrench, and 
the homogeneous solution hf  projects y into the null space 
of G . So in principle the Eq. (4) may be used to increase 
limb stresses until all measuring limbs are compressed 
when the sensor is subjected to the expected range of 

external loads. It can be seen that the forces of pre-
tightening are not related to external force, but the internal 
forces of the hyperstatic structure. So we can define the 
pre-tightening force as the homogeneous solution hf , 
which is only related to the vector y in Eq.(4) when the 
architecture of sensor is determined. Then the problem of 
determining the pre-tightening force can be formulated as 
the quantity of the vector y. 

B. Maximum reacting force on limbs 
In order to ensure that all the measuring limbs are 

always in compression, which limb generated the 
maximum of reacting force when subjected to the expected 
range of external loads will be evaluated firstly. Eq. (3) 
expresses the mathematical relationship between the 
external force and the reacting force on limbs 

 p f C F  

where C G . 
For a general six-axis force/torque sensor, the 

measuring range can be given as the maximal magnitudes 
on the six axes xmF , ymF , zmF , xmM , ymM , zmM . Based on 
the discussion above, the maximum reacting forces on 
limbs are deduced in the following analysis by solving 
inequations. 

Separation of reacting force on the i-th limb of the 
sensor, the following result can be produced 

p 1 x 2 y 3 z 4 x 5 y 6 z

1 x 2 y 3 z 4 x 5 y 6 z

1 xm 2 ym 6 zm pmax

i i i i i i i

i i i i i i

i i i i

f C F C F C F C M C M C M

C F C F C F C M C M C M

C F C F C M f

     

     

    L





where   represents the absolute value of the 
corresponding expression, p if  is the particular solution 

component of reacting force on the i-th limb, pmax if  
denotes the maximum of reacting force on the i-th limbs 
when the permissible force applied on the sensor, and 

 1,2,...,8, 1,2,...,6ijC i j   is the element at the i-th 
row and the j-th column of matrix C . 

Obviously, the reacting force on the i-th limb gets 
maximal value both only if the external force gets maximal 
value, and relates to the positive and negative of the 
coefficient ijC . This is because the space models of the 
permissible external force are convex. 

C. Determination of the pre-tightening force hf  

If the space model of the permissible external force is 
symmetrical about the origin, the reacting force on the ith 
limb p if  in Eq. (5) can be limited as 

 p p pmax maxi i if f f    
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We will adjust the arbitrary vector y in Eq. (2) to make 
sure that the forces f are always positive when the external 
force of measuring range is applied on the sensor. But y is 
a 8-dimensional vector which contains eight parameters to 
be determined, the following transformation is introduced 
to reduce the unknown parameters. 

Suppose that u1 and u2 are the independent column 
vector, and then the column vector in matrix ( )I G G  
can be expressed as 

  1 1 2 2 1,2, ,8i i i i   ω u u L  

where ωi  is the i-th column vector in matrix ( )I G G , 

1 2,i i   is the vector of linear transformation. 
Substituting Eq. (8) into Eq. (4), obtains 



  

  

   

T
h 1 2 8 1 2 8

T
11 1 12 2 81 1 82 2 1 8

1 11 1 12 2 8 81 1 82 2
8 8

1 1 2 2 1 1 2 2
1 1

, , ,

, ,

i i i i
i i

y y y

y y
y y

y y k k

   

   

 
 



  

    

    

f ω ω ω

u u u u
u u u u

u u u u

L L

L L
L 

where 1 2,k k  are arbitrary numerical value. 
Combining Eqs. (2), (5) and (9), we have 

 1 1 2 2k k  f G F u u  

Make sure that the forces f are always positive, Eq. (10) 
is always greater than zero vector, then 

 1 1 2 2k k    0G F u u  

Solving the inequation, the pre-tightening force can be 
obtained by determination of 1 2,k k . It can be concluded 
that if the pre-tightening force is greater than the critical 
value of 1 1 2 2k ku u  in Eq. (9), all the measuring limbs will 
be compressed when the sensor is subjected to the 
expected range of external loads. 

V. NUMERICAL EXAMPLE 
For the pre-stressed six-axis force/torque sensor, force 

transmission performance is closely related to the seven 
structural parameters, which include the radii of the base 
platform and pre-stressing platform R, the radii of the 
measuring platform r, the height l, h, the directional angles 
,  and γ. The preliminary values of the structural 
parameters are given as below: 

25mmr  , 40mmR  , 9mmh  , 31mml  , 4  , 
6  , 3  . 

According to the structural parameters, the 
corresponding force Jacobin matrix can be calculated as 

0.078 0.078 0.078 0.078 0.570 0.570 0.570 0.570
0.570 0.570 0.570 0.570 0.078 0.078 0.078 0.078
0.817 0.817 0.817 0.817 0.817 0.817 0.817 0.817
0.009 0.009 0.009 0.009 0.014 0.014 0.014 0.014
0.013 0.013 0.013 0.013

   

   

   


   

 

G

0.014 0.014 0.014 0.014
0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008

 
 
 
 
 
 
  
 
     

(12) 

Suppose that the maximal magnitudes of expected 
external force are given as Fxm = Fym = Fzm = 250N, Mxm = 
Mym = Mzm = 20Nm, then by Eq. (6) the maximum of 
particular solution component of reacting force is 


 

 
Rm

Rm

888.13N 1,2,3,4
847.46 N 5,6,7,8

i

j

f i
f j

 


 
 

And then solving the inequation of Eq. (11), we obtain 

 1 2888, 554k k   

Substituting the critical value of 1 2,k k  into Eq. (9), 
then the pre-tightening force can be expressed as follows 

 
T

h 0.89 0.55 0.89 0.55 0.89 0.55 0.89 0.55 Nf


Fig .3 illustrates the calculation results of how the 
forces on limbs change their magnitudes with respect to 
the arbitrary numerical value 1 2,k k  Obviously, it can be 
seen that when 1 2888, 554k k  , all the forces on limbs 

1f  and 8f  are positive and present linear increase with 1k  
and 2k . Further, the Surface in Fig .3 show that in order to 
make the force on limbs always maintain positive value, 
the magnitude of 1k  must be greater than 888, while 2k  
greater than 554. 

 
Figure 3.  Results of the force on limbs with respect to 1k  and 2k . 

VI. CONCLUSIONS 
In this paper, the pre-tightening force analysis of a pre-

stressed six-axis force/torque sensor with double layers 
have been conducted. In principle, by using the cone-
shaped spherical pairs instead of the traditional sphere 
pairs, the proposed pre-stressed six-axis force/torque 
sensor has the advantages of high rigidity, low nonlinearity 
and mechanical hysteresis, safe and steady structure and so 
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on. By using convex theorem, for the force/torque sensor, 
the applied external force is six-dimensional (three-
dimensional force and three-dimensional torque), so at 
least seven and at most twelve measuring limbs will be 
available in order to restrict the measuring platform in the 
state of static balance. With the aim of minimizing the 
maximum reacting force of measuring limbs when applied 
a predefined task, a linear transformation method is 
presented to determine the pre-tightening force. The 
structural parameters of the sensor are obtained by 
mapping the relationship between the maximum forces of 
measuring limbs and the structural parameters. Finally, the 
numerical example is carried out. It shows that the force on 
limbs can always maintain positive value with the 
appropriate pre-tightening force, which proves the 
correctness of the theoretical analysis and the validity of 
the sensor structure. The contents of this paper should be 
useful for the further research of the pre-stressed six-axis 
force/torque sensor. 
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