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Abstract—To estimate the Melt Index(MI) value accurately and 
quickly in the quality control process of polypropylene (PP), the 
paper proposed a forecast model of MI (PHKT-GRBFNN-
CRBFNN-HMM) integrating the technologies of data mining, 
model constructing and two error compensation based on the 
data. Firstly applied the integrating data processing algorithm 
including PCA, Holt Exponential Smoothing, Kernel Density 
Estimation and Time-Variable scale Weighting to mine the data 
deeply to extract the useful information of the data; Then 
constructed the MI NARMA prediction model based on Gaussian 
Radial Basis Function Neural Network and Compound RBFNN 
on the basis of the data mining; Due to Markov property of the 
error sequence, used Hidden Markov Model to predict the error 
as the second compensation for the MI prediction values. The 
proposed model has been checked based on a real plant history 
data and the MRE(%), RMSE, STD and TIC of the 
generalization database  is respectively 1.40, 0.045, 0.0457 and 
0.0088. The results indicate that the proposed model has better 
comprehensive characteristics and is worth popularization and 
application in the PP industry process. 

Keywords: integrating data processing; compound basis 

function Neural Network; HMM; exponential smoothing; melt 

index prediction Of polypropylene  

I. INTRODUCTION 
Propylene polymerization (PP) process is a typical nonlinear 

process which is influenced by a variety of factors. Different 
grades of PP product determine different properties and uses. 
Melt Index (MI) is one of the most important parameters which 
judges the grade of product and determines the control strategy 
of process parameters. At present, most chemical enterprises still 
use traditional method of manual sampling and off-line 
analyzing data to get the analytical value of MI between which 
and actual production process there is a big lag(2-4h)[1]. It 
can’t guide industrial production real-time with the lagged MI. 
So it is important to measure MI in time and accurately. By 
digging the inherent laws of PP MI analytical value and 
historical data of its process variables and establishing the model 
between them to predict the MI value has become a popular way. 
How to improve the accuracy and generalization performance of 
the model is the task of our study. 

Many scholars have researched the statistical modeling by 
RBF neural network(NN). But most people focus on network 
architecture improvements[2-6] or algorithms optimization[7-
12],etc. This paper mainly introduces the basis function 
improvement of RBFNN for error compensation and its 
modelling, besides, the methods of data processing before 
modeling and the second error compensation by HMM are also 
the exploratory topics in the text. The proposed model of 
applying the above technologies achieves better accuracy and 
generalization performance in the MI prediction by test. 

II.  M  

A. Brief introduction to Propylene polymerization process  
The PP process with continuous stirred tank reactor is shown 

in Fig .1 in brief[13]. The PP MI is affected by many factors 
which are called process variables referring to propylene 
polymerization mechanism and the subjacent diagram. Among 
there are nine variables which are commonly used to estimate 
the MI value[14]. They are primary and auxiliary catalyst 
feeding flow rate, three streams of propylene feeding flow rate, 
temperature, pressure, liquid level and the volume concentration 
of hydrogen in reactor. Measure these process variables and 
build a precise model between them and the analytical value of 
MI from the laboratory, the MI value can be accurately 
predicted on-line by the model with the measurements of process 
variables. This helps to effectively control these process 
variables to meet the production requirement and greatly shorten 
the production cycle. 

In this article, a total of 85 groups of time series data are 
extracted from the same petrochemical enterprise to be used to 
model, including nine process variables’ measurements obtained 
from the DCS database of actual PP production and the MI 
analyses got from the laboratory. Among them 70 groups of 
data ahead belong to the same batch consisting of train set (50 
groups ahead) and test set(20 groups behind) chronological, the 
remaining 15 groups of data attribute to another batch used as 
generalization set. 
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Figure 1.   flow chart of polypropylene production 

 

B. Integrating data processing before modeling    
The measurement values of PP process variables from the 

real plant are multidimensional, correlative each other and 
contain a amount of information. Thus it is vital to deal with 
data with some methods before modeling. Before this, the 
measurements of the nine process variables are firstly 
standardized to be zero-mean and one-standard-deviation. 

1) Principal Component Analysis(PCA) 
PCA is one of the methods of de-correlation and 

dimensionality reduction[15-16], and is applied widely in many 
fields. In the text, if X denotes the standardized process variables, 
uses PCA to simplify the X firstly(see Eq. 1).  

X= TP
T
 ≈ t1p1

T
 +t2p2

T
+…+ tm0

pm0

T .               (1) 
Where, T is score matrix, T=[t1,t2,…,tm]; P is load matrix, 

P=[p1,p2,…,pm]; the superscript T is the transpose symbol; the 
subscript m0 is the number of principal components, which 
generally is selected the minimal number of the principal 
components that their accumulative contribution rate is greater 
than 85 percent. Here, m0 takes 5 by testing.  

2) Holt-Winters Exponential Smoothing(HES) 
Drawing each principal component data sequence of the PP 

process variables in figure, it is easy to find these data sequences 
with slow trends and periodicities. For improvement the 
accuracy and generalization ability of the MI prediction model, 
HES[17-18] is led into these principal components data 
sequences: Firstly, the horizontal items S, trend items B and 
periodic items C are respectively updated by following the 
principles of using the weighted average of past values to predict 
the future value, and the weights are assigned exponentially-
decreasing according to the distance to the current time from 
near to far(see Eq. 2); Then these principal components data 
sequence are smoothed with the trend items B and periodic 
items C be got rid of the data sequence. To prevent the data 
series over-smoothing, the trend items B and periodic items C 
should be removed in certain proportion from these principal 
components data sequence (see Eq. 3). 

   St = αXt/Ct-l+ (1-α) ( St-1 + Bt-1 )   

Bt = β(St - St-1) + (1-β) Bt-1                                       (2) 

  Ct = γXt/St+ (1-γ) Ct-l. 

Where: X denotes the principal components data sequence 

of the PP process variables after PCA; S is a horizontal items; B 

is a trend items; C signifies the periodic items; α, β, γ are 

respectively smooth coefficients of the horizontal items, trend 

items and periodic items which values are between 0 and 1; the 

subscript l is the period of periodic items in X; the subscript t 

represents the t moment. 

Xt=Xt-m1Bt-m2Ct.                                                       (3) 
Where: m1,m2 are respectively the removal proportion 

factors of trend items and periodic items. 

The smooth coefficients(α, β, γ) affect the smoothing effect, 
which selections have no universal method at present. In the 
paper they are determined by enumeration method under the 
following guidelines: the more marked the data sequence feature 
including horizontality, trend and periodicity is, the greater the 
corresponding coefficient is; conversely, the smaller. Moreover, 
the initial values of the three feature items(S0, B0, C0)also have 
certain effect on the smooth effect. Here they are selected by 
experience: S0 is taken for the mean of X, B0 is taken for the 
average value of the differences of the corresponding sample 
values between the first two period of X and C0 is taken as 0.6. 
Besides, the other factors in HES are respectively chosen by test 
according to the principle of minimum error. After HES the 
smoothness of X data sequences is improved obviously than 
before. 

3) Kernel Density Estimation(KDE) 
In order to obtain more reasonable distribution properties of 

the X data sequence after HES, Kernel Density Estimation 
method[19-20] is led into the X data sequence to re-estimate 
their distributional rule only taking advantage of the data 
themselves. Here the work is accomplished by ‘ksdensity’ of 
Matlab function  and uses Gaussian kernel. Finished this step 
the X data sequence spread more logically and reliably to 
benefit to improve the model generalization. 

4) Time-Variable scale Weighting
The time series of the PP process variables have both time 

scale characteristic and variable dimension feature. Usually the 
data column at different moment plays different role in the 
modeling of multi-input single-output system, and the role of 
each dimension variable is also different. So the data had better 
be given the weights respectively in time scale and variable 
dimension. Take the following function(see Eq. 4) as a weight 
function and the X data sequence after KDE is weighted based 
on the Euclidean distance to the space origin in time scale. 

ψ(dt)=exp(-（2^a·dt-b）/T0) .                        (4) 
Where, dt is the Euclidean distance of the X data column to 

the space origin at t moment; a, b is respectively the scale factor 
and the shifting factor of dt, which are introduced to enhance the 
weighting effect and their values are both positive; T0 is the 
width factor of the weight function. These three factors are 
determined by the X data sequence in accordance with the rule 
of minimal error. 

In order to reasonably weight in the dimension of the X 
data, each dimension variable makes a Gray Correlation 
Analysis (GCA)[21-22] with target vector y on the train dataset  
(see Eq. 5). The obtained gray correlation coefficient reflects the 
relevant degree of each dimension variable to the goal vector 
value at every time, which is normalized as Eq. 6 to get the 
relative gray correlation coefficients used for the weight of the 
value of each dimension variable of X at each time. 
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)()()()(
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Where, ρ is the resolution factor(ρ )1,0( ), which is 
selected as 0.092 here; i is the ith dimension; n is the nth sample 
on the timeline. 
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Different variables of the X data should be given different 
weights according to their contribution to the prediction 
precision, and the weights are ascertained in the following 
manner: establishing the linear regression model of the aim 
variable y and each dimension variable of the X data on the 
train database abiding by the minimal error criterion, then 
calculating the reciprocal of each regression error, finally 
normalizing each error reciprocal as the weight of each 
dimension variable. 

It is worth mentioning that the above obtained weights of the 
X data on time scale and variable dimension need to be adjusted 
to fluctuate around one within a tiny scope if necessary.  

C. model architecture 
Real industrial PP process is complicated, full of strong 

nonlinearity, large delay and unknown interference[23]. 
Therefore, adopts the nonlinear model to predict the MI value in 
this paper. Given a multidimensional input variable x(t)∈Rv×1, 
the approximation of output variable y(t) is gained by the 
following Nonlinear Autoregressive (NAR) model (see Eq. 7) 
[24-27]: 

y=f1(x,y)+ f2(x,y)x.                                 (7) 
Where, f1(•) and f2(•) are two different nonlinear continuous 

functions involving input x and output y.  
Owing to NAR model only having low-order terms, the 

approximation of output y(t) by NAR model is bound to lower 
precision. If an error term is added to the Eq. 1 for compensation, 
Nonlinear Autoregressive Moving Average (NARMA) 
model[24-27] comes into being (see Eq. 8) . 

y=f1(x,y)+ f2(x,y)x+ ),( yx .                      (8) 
Where, ε(•) is the high-order error term involving input x 

and output y. 
Because NARMA model has higher precision than NAR 

model, NARMA model is selected as the prediction model of the 
PP MI in this paper. To improve the performance of the model, 
the strategy of model predictive control is introduced to the 
modeling process. At the current time k, taking U[k] 
(U[k]=[y[k],y[k-1],x[k-1]]T) as input, the MI output of the 
[k+d]th time will be gotten by Eq. 9. 

)1]- x[k1],-y[k y[k],(x[k])1]- x[k1],-y[k y[k],()1]- x[k1],-y[k y[k],(][ˆ 21  ffdrky

(9) 
Where, dr represents the relative order of system which is 

an index of characterizing time-delay and its value takes 2 here 
by verification. 

D. RBF Neural Network   
1) The prediction model by Gaussian RBFNN 

RBFNN is a multilayer feed-forward NN, of which three-
layer network has been widely used in many engineering fields. 
The three layers are generally input layer, hidden layer and 
output layer. Here employs three-layers-RBFNN to approximate 
the nonlinear functions in the MI NARMA model because of 
their better approximation characteristic, faster convergence 
rate, higher precision level, etc[28]. Corresponding to the three 
functions f1, f2 and ε in the model, three different RBFNNs with 
the common input U[k] are built successively to respectively 
approach them(see Eq. 10).  
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.          (10) 

Where, )( is the selected radial basis function; wj is the 
weight of the jth hidden-layer-node output; cj is the jth center 
vector of the hidden layer; ‖·‖represents the euclidean distance 
between the input U[k] and the center cj; N represents the node 
number of the hidden layer.  

The radial basis function )( may adopt many forms, 
which influences the network’s approximation capability. Here 
the most frequently used Gaussian radial basic functions 
( )(rg ) is employed as the mapping function from input to 
output  (see Eq. 11). 

)(1 r )(2 r )
2

exp()( 2

2




rrg   .        (11) 

Where, δ represents the breadth of the Gaussian radial basis 
function. 

Owing to the sample size is not larger in the paper, this text 
picks fewer hidden node number for RBFNNs of predicting the 
MI to prevent over-fitting and the networks parameters are 
initially determined on the basis of unsupervised method in the 
training. To acquire the desired predicting performance, the 
centers, width and the weights of the two approximation 
RBFNNs are carried out collaborative optimization with 
gradient descent algorithm 

and adaptive-changing learning rate in the model training. 
2)The error compensation by non-gaussian RBFNN 

Because PP process is highly nonlinear and non-gaussian, 
the RBFNNs for predicting the MI take Gaussian basis function, 
and the RBFNN for error compensation adopts the non-gauss 

basis functions( )(3  ), e.g. Wavelet function, Thin-Plate-Spline 
function, Descending-Cosine function (see Eq. 12 to 14),etc[28]. 
The complementary NN system consisting of Gauss basis 
function and non-gauss basis function is usful to improve the 
forecasting precision and generalization performance of the 
model. Those functions mentioned in Eq. 12 to 14 are freely 
assembled or separately combined with quadratic polynomial 
function to form the convergent compound basis functions, like 
Gaussian-Wavelet, Gaussian-polynomial function (see Eq. 15 
and 16), and so on. The error compensation NN based on the 
formed compound basis functions play a better compensatory 
effect on the MI prediction through verification. Moreover, the 
mixed basis function error networks having different types of 
basis functions at different hidden nodes can yet achieve good 
error compensation characteristics by test. In short, the basis 

function( )(3  ) of RBFNN for approximating the error 
item(ε(·)) in the MI prediction may choose the arbitrary 
function forms in the Eq. 12 to 16, and the error networks based 
on these non-gauss basis functions would acquire better 
compensation effect on the MI prediction as long as their 
relevant parameters adjusted to appropriate values based on the 
principle of minimum MSE. 
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a) Wavelet function  

)
2

)2(2
exp()( 2
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


j
a

a

w

cbU
U



  
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22


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w

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Where, a is the stretch factor; b is the shift factor. 
b) Thin-Plate-Spline function  

)(rs r2log(cr2) .                           (13) 
Where, c is the coefficient of the thin-plate-spline function. 

c) Descending-Cosine function  
)(rdc exp(-c1r) ·cos(c2r+α).                   (14) 

Where, c1 and c2 are both the coefficients of the 
descending-cosine function; α is the initial phase angle of the 
cosine function. 

d) Gaussian–Wavelet Compound function  

)( = ))(2(2)2(2 22
wg

a
a

w
a

a

brb w

w

w

w

  .    (15)      
Where, aw is the stretch factor; bw is the shift factor. 

e) Gaussian-Polynomial Compound function  
   )( = c0+c1θ+c2θ2 =c0+c1 )(rg +c2 )(2 rg .    (16)                    

Where, c0 ,c1and c2 are the polynomial coefficients. 
During the network training of error compensation, uses 

the regularized cost function to simultaneously ensure small 
training error and simple network structure. 

E. The second error compensation by HMM 
HMM is embedded two random processes, of which one is 

implicit state transition sequence corresponding to a discrete 
Markov process, another is the observable sequence[29-30]. 
The parameters of a simplified HMM are commonly expressed 
as λ = {A, B, π}, among which π represents hidden state initial 
probability matrix and A is hidden state transition probability 
matrix, B is observed state radiation probability matrix. HMM 
can precisely infer the observation sequence output tendency by 
double analyzing of hidden state operating mechanism and 
observed state probability, so it is able to predict time series and 
there are also successful examples in engineering field[31-32]. 

The error is generally thought to have Markov property 
owing to having three cases of: positive, negative and 
approximate zero, so the hidden states number of HMM is 
naturally taken for three.  Here uses HMM with three hidden 
states to estimate the future values of the deviation between the 
analytic MI values and the MI prediction values after the first 
compensation based on compound RBFNN as the second 
compensation of the MI prediction. Through this step the 
accuracy of the MI prediction values is improved again by 
testing. 

The predicting modeling progress via HMM describes as 
follows[29-32]: 

Step 1: Define the initial parameters of the HMM model: λ = 
{A, B, π}. (1) Suppose hidden state set: S= {S1,…, SQ}, Q is 
hidden state number: Q=3 here. (2) Set the initial value of 
implicit state transition probability distribution at random: A= 

{aij}, aij=P{qt+1=sj∣qt=si}, 1≤i,j≤Q, and aij must meet the 

following conditions: aij≥0 and
1

1




Q

j
ija

. (3) If V is the sample 
space of observed variables, set the initial value of output 
observed variables probability distribution: B= {bi(v), 
1≤i≤Q,v  V}, bi(v)=f{Ot=v∣qt=si}. Among, Ot is 
observation random variable at t time. This paper considers the 
stochastic deviation sequence after compound RBFNN error 
compensation as observation sequence written as O= 
(e1,…,eTl). Among, Tl represents the observation sequence 
length. (4)Set randomly the initial state probability distribution: 

π={πi,1≤i≤Q}. Among, πi=P{q1=si} ,
1

1




Q

i
i

. 
Step 2:Derive the tth time forward probability variables: 

αt(i)=P(o1, o2,…, ot, qt=Si∣λ). (1) Initialize the parameter: 
α1(i)= πibi(o1), 1≤i≤Q. (2) Deduce αt+1(j) : 

αt+1(j)=[
)(])( 1

1




 tjij

Q

i
t obi 

, 1≤j≤Q, 1≤t≤Tl-1. (3)Calculate 
the output probability of the observation sequence with  : 





Q

i
T iOP

l
1

)()/( 
. 

Step 3:Derive the tth time backward probability variables: 
βt(i)=P(ot, ot+1, ot+2,…, oTl

∣qt=Si, λ). (1) Initialize the 
parameter: βTl

(i)= 1, 1≤i≤Q. (2) Deduce βt(i)at  the tth time 

from back to front : βt(i)= )()( 1
1

1 job t

Q

j
tjij 



  ,1≤j≤Q, t=Tl-

1,Tl-2,…,1. 
Step4: Optimize the HMM model parameters using Baum-

Welch algorithm.  (1) Derive the probability of Si state at t time: 

γt(i)=
)()(
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1
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state at t time and Sj state at (t+1) time: 
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1≤i,j≤Q. (3) HMM parameters can be re-estimated using the 
following formula: (a) The state probability distribution is re-

estimated: )(1 ii   , 1≤i≤Q .(b) The state transition 

probability distribution is re-estimated: 
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),( mit  is the probabilities of the system which is in Si state at t 
time and  corresponds to the mth density estimate in the 
Gaussian kernel density estimations. 
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1≤m≤M. 

Among, fm(·) is the mth density estimation of the Gaussian 
kernel density estimates for the observed values in Si state at t 
time.(d) The observation sequence is re-estimated: t = 

{ )(it Ot}, 1≤t≤Tl, 1≤i≤Q.(e) The model parameters are 

updated: }.,,{},,{ itij OaBA    
Step5: Go back to step 2 to re-execute the steps and exit 

the loop while the Step2.3  value meets certain requirements or 
the iterations number attains maximum, then remember the 
corresponding model parameters, denoted as 

},,{ iopttoptijoptopt Oa   . Assign opt
 to  : opt 

, 

optijij aa 
, opttt OO 

, optii  
. 

Step6: Determine the path of hidden states corresponding 
to the maximum output probability of the observation sequence 
on the train database based on Viterbi algorithm. (1)define two 
functions )(it and )( jt : )(it  represents the maximum 
output probability of the observation sequence in i state at t 

time: )(it = ),...,,,...,(max)( 11,..., 11

 ttqqt ooiqqPi
t




; )( jt  is a 

function of storing the optimal state sequence which is 
corresponding to the maximum output probability of the 
observation sequence at t time. (2) Initialize the variable: 
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Derive inversely to get the optimal hidden state sequence of the 
deviations after compound RBFNN error compensation on the 
train database and store them in )( jt  function: 

)(
*

11

* qq ttt 
 ,t=Tl-1,…,1. 

Step7: According to the best hidden state sequence of the 
deviations on the train database, predicts the deviations 

sequences on test database and generalization database by 
HMM. 

III. MELT INDEX PREDICTION 

A. Error indicators 
In order to measure the performance of the above proposed 

PP MI prediction models, this paper adopts four conventional 
indicators to quantize the differences between the MI predicted 
values and the MI analytic values from the laboratory: Mean 
Relative Error (MRE), Root of Mean Square Error (RMSE), 
error Standard Deviation (STD) and Theil’s Inequality 
Coefficient (TIC) . Among, the first two indicators are used to 
characterize the accuracy of the model, STD measures the 
stability of the model, and TIC measures the consistency of the 
MI predicted value and the MI analytic values. Define the 
parameters as follows: 

MRE= 


N

i i

ii

y
yy

N 1

ˆ1    （i=1,2,…,N）.    (17) 

RMSE= 



N

i
ii yy

N 1

2)ˆ(1 （i=1,2,…,N）. (18) 

STD= 





N

i
i ee

N 1

2)(
1

1 （i=1,2,…,N）.  (19) 

TIC=











N

i
i

N

i
ii

y

yy

1

2

1

2)ˆ(  （i=1,2,…,N） .      (20) 

Among, iy denotes the laboratory analysis value of MI; iŷ  
represents the MI prediction value. 

B. Results and discussions 
On the basis of different data processing methods(HES, 

KDE and TVW) and error compensation by HMM and RBF 
NN, several various MI prediction models are established in this 
paper. To compare the effect of the different data processing 
method and the integrating data processing means on the MI 
forecasting, the results of the prediction models are listed in 
TABLE Ⅰ in the form of the above four error indicators, and 
the TABLE Ⅱ offers the performance comparisons of the 
models with various basis function compensation network in the 
premise of HES_KDE_TVW data processing and the  HMM 
error compensation. 

The results of the TABLE Ⅰ show that:(1)the prediction 
values of the models using data processing methods are more 
accurately than the predicting value of the model without data 
processing;(2)the prediction precisions of the models using 
multiple data processing technologies are higher than the models 
using single data processing technology;(3) the prediction 
values of the models that their error compensation networks 
have compound basis function have better generalization ability 
than the predicting value of the models with Gaussian basis 
function compensation networks;(4) the model with error 
compensation by HMM improves the accuracy of the prediction 
result further;(5)the RBFNN compensatory model with a 
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complex basis function is better than the model with a single 
function as the basis function on the matching effect and a 
variety of data processing technologies, so the prediction value 
of the model (PHKT_GRBFNN_CRBFNN_HMM)with 
compound basis function NN and HMM as error compensation 
on the basis of HES_KDE_TVW data processing has both 
higher prediction precision and generalized ability.  

From the TABLE Ⅱ it is seen that:(1) the compensatory 
models with non-gauss basis function have better prediction 
performance of precision and generalization;(2) in all the 
models of the compensatory networks with non-gauss basis 
functions, the model with thin-plate-spline basis 
function(PHKTRTSRH) has best prediction accuracy and better 
generalized property, the model with wavelet basis 
function(PHKTRWRH) has higher prediction precision and 
lower generalization, and the models with compound basis 
functions including Gaussian-Polynomial function(PHKTRCR-
GPH) and Gaussian-Wavelet function (PHKTRCR-GW H) 
have best generalization ability and slightly lower prediction 
precision, the model with descending-cosine basis 
function(PHKTRDRH) has the same predicting performance as 
the models with compound basis functions.  

For simple and clear, the models in the graphs express by 
simplified form as follows: PRR denotes PCA_GRBF_GRBF, 
PHKTRR denotes PCA_HKT_GRBF_GRBF, PHKTRCR 
represents PCA_HKT_GRBF_CRBF, and PHKTRCRH 
represents PCA_HKT_GRBF_CRBF_HMM. The predictive 
results of the above four models are displayed on the Matlab 
graphs (see Fig .2 and Fig .3). The predicted results of the 
models which basis functions of the compensatory networks are 
non-gauss functions are shown in Fig .4 and Fig .5. It is easily to 
see that the PP MI prediction values got from the models in the 
graphs can more accurately approximate the MI analysis values 
from the laboratory in the overall trend whether on the test 
database or on the generalization database. 

TABLE Ⅰ.  performance comparison of MI prediction models  

Models 

Test database Generalization database 

MRE 

(%) 
RMSE STD TIC 

MRE 

(%) 
RMSE STD TIC 

PRCR 5.14 0.1540 0.1465 0.0648 0.93 0.0319 0.0313 0.0125 

PRCRH 5.14 0.1535 0.1454 0.0645 0.94 0.0322 0.0313 0.0126 

PKRCR 4.56 0.1454 0.1451 0.0611 2.54 0.0705 0.0574 0.0276 

PRR 4.75 0.1449 0.1472 0.0304 1.51 0.0442 0.0314 0.0087 

PKRCRH 4.56 0.1442 0.1434 0.0606 2.56 0.0712 0.0574 0.0278 

PRRH 4.75 0.1442 0.1464 0.0606 1.49 0.0437 0.0314 0.0171 

PKRR 4.47 0.1426 0.1463 0.0600 1.66 0.0558 0.0577 0.0218 

PTRCR 4.46 0.1414 0.1390 0.0595 7.10 0.1928 0.0684 0.0754 

PKRRH 4.47 0.1412 0.1448 0.0594 1.68 0.0558 0.0577 0.0218 

PTRCRH 4.46 0.1410 0.1385 0.0593 7.09 0.1925 0.0686 0.0753 

PTRR 4.44 0.1379 0.1390 0.0580 7.67 0.2072 0.0684 0.0810 

PTRRH 4.44 0.1376 0.1386 0.0579 7.65 0.2070 0.0685 0.0809 

PHRCR 4.47 0.1328 0.1262 0.0559 1.00 0.0341 0.0337 0.0134 

PHRCRH 4.47 0.1323 0.1251 0.0556 1.02 0.0344 0.0337 0.0135 

PHRR 4.11 0.1244 0.1270 0.0523 1.54 0.0458 0.0339 0.0179 

PHRRH 4.11 0.1235 0.1260 0.0519 1.51 0.0453 0.0339 0.0177 

PHKTRR 3.72 0.1123 0.1111 0.0238 2.64 0.0794 0.0461 0.0157 

PHKTRRH 3.71 0.1109 0.1101 0.0466 2.61 0.0787 0.0461 0.0308 

PHKTRCR 3.48 0.1067 0.1084 0.0224 1.41 0.0452 0.0456 0.0089 

PHKTRCRH 3.47 0.1057 0.1071 0.0222 1.40 0.0450 0.0457 0.0088 

TABLE Ⅱ.  performance comparison of various basis function models 

Models 
Test database Generalization database 

MRE 

(%) RMSE STD TIC MRE 

(%) RMSE STD TIC 

PHKTRCR-GP 
H 3.47 0.1057 0.1071 0.0222 1.40 0.0450 0.0457 0.0088 

PHKTRCR-W 
H 3.47 0.1057 0.1071 0.0222 1.40 0.0450 0.0457 0.0088 

PHKTRDRH 3.47 0.1057 0.1071 0.0222 1.40 0.0450 0.0457 0.0088 

PHKTRWRH 3.50 0.1051 0.1073 0.0222 1.76 0.0571 0.0459 0.0112 

PHKTRTSRH 3.46 0.1046 0.1072 0.0220 1.66 0.0535 0.0459 0.0105 

 
Figure  2.   Performances of models on test database  

 

 
Figure 3.  Performances of models on generalization database 
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Figure  4.   Performances of various basis function models on test 

database  

 

 
Figure  5.  Performances of various basis function models on 

generalization database 

IV. CONCLUSION 
This article applies technologies of data processing 

including PCA, Holt-Winters exponential smoothing, kernel 
density estimation and data weighting on the time scale and 
variable dimension, model constructing of RBF neural network 
and two kinds of error compensations to build the forecast 
models of PP MI. Compared with other PP MI forecasting 
models, the models proposed in this paper have the following 
advantages: (1)HES method help to get rid of the trend term and 
periodic item from the input data to restore the authentic data 
sequence; Gaussian KDE method is helpful to correctly estimate 
the data sequence distribution; TVW method is good for 
highlighting the predominant variables and superior data in the 
database. Through data processing of the integrating 
technology, the data sequence for modeling, i.e. the data 
sequence of PP process variables, becomes closer to the real data 
distribution to make the prediction results of the models more 
believable; (2) the integrating data-processing algorithm run the 
shorter time and the result is more stable contrasted with the 
usual intelligence swarm algorithm; (3) the error sequence 
which is predicted by the compound basis function RBFNN or 
the other non-gauss RBFNN has more general nonlinear 
characteristics, so it is more accordance with the real error of the 
PP MI in the industry process; (4) the error sequence of MI that 
is inferred by HMM would be more reasonable as the second 
compensation for the MI prediction values because it is obtained 

based on the probability distributions of the MI real error; (5) 
lastly it has been proven that the proposed models of integrating 
multifold data-processing technologies and two error 
compensations show better overall performance in precision, 
generalization, reliability, efficiency, etc. 
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