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Abstract

In this paper we attempt to establish some tauberian theorems in quantum calculus.
This constitutes the beginning of the study of the q-analogue of analytic theory of
numbers which is the aim of a forthcoming paper.

1 Introduction , notation and preliminaries

We begin with recalling some historical notions that we need to know before studying

their q-analogues. For further information see the nice book of D.V. Widder [9]. The
paper will give q-analogues of most of the results in sections 2 − 4 of Chapter 8 of this
book.

We say that a series

∞∑

k=0

ak (1.1)

is summable (A), in the Abel sense, to the value S if the power series f(x) =

∞∑

k=0

akx
k

converges for |x| < 1 and lim
x→1−

f(x) = S.

Abel [1826], proved that if the series (1.1) converges to S then it is summable (A) to
the value S. Nevertheless when we take ak = (−1)k it is easy to show that the converse
statement is not true.

Tauber [1897] proved that by the additional condition

nan = o(1) (1.2)

the converse holds.
Later J. E. Littlewood [1910], proved that if

∑
an is summable (A) to S and

nan = O(1) (1.3)
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then
∑

an converges to S.
Nonnegativity of the coefficients an implies that, if

∑
an is summable (A) to S then∑

an converges to S.
We recall that a series (1.1) is said to be summable (C), in the Cesaro sense, to S if

lim
n→∞

s0 + s1 + · · · + sn

n + 1
= S (1.4)

where we have put sk =

k∑

i=0

ai.

For this type of convergence the converse statement is not true. But G. H. Hardy [1910]
showed that the converse is valid under the tauberian condition (1.3).

The tauberian theorems given by Widder [9]are textbook versions of results obtained
earlier by others. They are analogues for integrals of the theorems for series discussed
above.

In this paper, our aim is to study a tauberian theorems in Quantum Calculus and we
establish some results which they will be used as in analytic number theory.

To this end and in order to make the paper more self contained we begin with giving
some usual notions used in the q-theory. Throughout this paper, we will fix q ∈]0, 1[ that
Log(1−q)

Logq
∈ Z and we adapt the notations of Gasper-Rahman’s book [4].

For a ∈ C, the q-shifted factorials are defined by

(a; q)0 = 1; (a; q)n =
n−1∏

k=0

(1 − aqk), n = 1, 2, . . . ; (a; q)∞ =
∞∏

k=0

(1 − aqk). (1.5)

We also denote

(a1, a2, . . . , ap; q)n = (a1; q)n(a2; q)n . . . (ap; q)n, n = 0, 1, 2, 3, . . .∞, (1.6)

[x]q =
1 − qx

1 − q
, x ∈ C and [n]q! =

(q; q)n
(1 − q)n

, n ∈ N. (1.7)

The q-derivative Dqf of a function f is given by

(Dqf)(x) =
f(x) − f(qx)

(1 − q)x
, if x 6= 0, (1.8)

(Dqf)(0) = f ′(0) provided f ′(0) exists. If f is differentiable then (Dqf)(x) tends to f ′(x)
as q tends to 1.
The q-Jackson integrals from 0 to a and from 0 to ∞ are defined by (see [7])

∫ a

0
f(x)dqx = (1 − q)a

∞∑

n=0

f(aqn)qn, (1.9)

∫
∞

0
f(x)dqx = (1 − q)

∞∑

n=−∞

f(qn)qn, (1.10)
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provided the sums converge absolutely.
The q-Jackson integral in a generic interval [a, b] is given by (see [7])

∫ b

a

f(x)dqx =

∫ b

0
f(x)dqx −

∫ a

0
f(x)dqx. (1.11)

The improper integral is defined in the following way (see [2])

∫ ∞

A

0
f(x)dqx = (1 − q)

∞∑

n=−∞

f

(
qn

A

)
qn

A
. (1.12)

We remark that for n ∈ Z, we have

∫ ∞

qn

0
f(x)dqx =

∫
∞

0
f(x)dqx. (1.13)

A q-analogue of the integration by parts formula is given by
∫ a

0
f(x)(Dqg(x))dqx = f(a)g(a) − lim

M→∞

f(aqM )g(aqM ) −
∫ a

0
(Dqf(x))g(x)dqx.

(1.14)

Jackson [7] defined a q-analogue of the Gamma function by

Γq(x) =
(q; q)∞
(qx; q)∞

(1 − q)1−x, x 6= 0,−1,−2, . . . . (1.15)

It is well known that it satisfies

Γq(x + 1) =
1 − qx

1 − q
Γq(x), Γq(1) = 1 and lim

q→1−
Γq(x) = Γ(x), ℜ(x) > 0.

(1.16)

In [6], the authors proved that

∀A > 0, Γq(s) = K(A, s)

∫ ∞

A(1−q)

0
xs−1e−x

q dqx, (1.17)

where

K(A, s) =
As

1 + A

(− 1
A

, q)∞(−A, q)∞

(− 1
A

qs, q)∞(−Aq1−s, q)∞
, (1.18)

and

ex
q =

1

((1 − q)x; q)∞
. (1.19)

In particular, for A =
1

1 − q
, we have

Γq(s) = Kq(s)

∫
∞

0
xs−1e−x

q dqx, (1.20)
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where

Kq(t) = K(
1

1 − q
, t) (1.21)

The q-cosine function is given by (see [8])

cos(x; q2) =

∞∑

0

(−1)nqn(n−1)x2n

[2n]q!
(1.22)

We denote by

Rq = {±qn : n ∈ Z} ∪ {0}, Rq,+ = {qn : n ∈ Z} and R̃q,+ = Rq,+ ∪ {0}.
(1.23)

A function f is said q-integrable on [0,∞[ if the series
∑

n∈Z

qnf(qn) converges absolutely.

We write L1(Rq,+) the set of all functions that are q-integrable on [0,∞[.
The q-Mellin transform of a suitable function f on Rq,+ is given by (see [3])

Mq(f)(s) =

∫
∞

0
ts−1f(t)dqt. (1.24)

We denote by 〈αq,f , βq,f 〉 the largest open vertical strip, called fundamental strip, such
that the integral(1.24) converges for s in that strip.
The inversion formula for the q-Mellin transform is given by[3]

∀x ∈ Rq,+, f(x) =
Log(q)

2iπ(1 − q)

∫ c+ iπ
Log(q)

c− iπ
Log(q)

Mq(f)(s)x−sds, (1.25)

where c ∈]αq,f , βq,f [.
The q-Mellin convolution product of suitable functions f and g is defined by [3]

f ∗M g(x) =

∫
∞

0
f(y)g

(
x

y

)
dqy

y
, x ∈ Rq,+. (1.26)

One has the following relation

Mq[f ∗M g] = Mq(f)Mq(g). (1.27)

2 Tauberian theorems

In the remainder a(t) is a function always satisfying the condition

∀R ∈ Rq,+,

∫ R

0
| a(t) | dqt < ∞. (2.1)
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Theorem 1. Let a(t) be a function defined on (0,+∞) and put

f(x) =

∫
∞

0
e−xt
q a(t)dqt, 0 < x < ∞. (2.2)

If

a(t) ∼ Atγ , t → ∞, γ > −1 (2.3)

then

f(x) ∼ AΓq(γ + 1)

xγ+1Kq(γ + 1)
, as x → 0+, x ∈ Rq,+, (2.4)

where the function Kq(s) is given by (1.21).

Proof. By (1.17)we have

∫
∞

0
e−xt
q tγdqt =

Γq(γ + 1)

xγ+1Kq(γ + 1)
, x ∈ Rq,+. (2.5)

By considering the function a(t) − Atγ , we see that we can suppose that A = 0 and
a(t) = o(tγ) as t → ∞.
Let ε > 0, we have a(t) = o(tγ) as t → ∞, it follows that there exists p0 ∈ N such that for
all p ≤ −p0, we have

| a(qp) |< εqpγ .

So, for all x ∈ Rq,+,

| f(x) | = | (1 − q)

∞∑

n=−∞

e−xqn

q a(qn)qn |

≤ (1 − q)

−p0∑

n=−∞

e−xqn

q | a(qn) | qn + (1 − q)
∞∑

n=−p0+1

e−xqn

q | a(qn) | qn

≤ ε(1 − q)

−p0∑

n=−∞

e−xqn

q qnγqn + (1 − q)

∞∑

n=−p0+1

| a(qn) | qn

≤ ε
Γq(γ + 1)

xγ+1Kq(γ + 1)
+ (1 − q)

∞∑

n=−p0+1

| a(qn) | qn.

Thus

xγ+1 | f(x) |≤ ε
Γq(γ + 1)

Kq(γ + 1)
+ xγ+1(1 − q)

∞∑

n=−p0+1

| a(qn) | qn. (2.6)

From the relation (2.1), we have

∞∑

n=−p0+1

| a(qn) | qn < ∞. (2.7)
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Therefore

lim
x→0

xγ+1(1 − q)

∞∑

n=−p0+1

| a(qn) | qn = 0. (2.8)

Which implies that

f(x) = o(
1

xγ+1
), as x → 0+. (2.9)

�

Definition 1. 1.We say that the q-integral
∫

∞

0
a(t)dqt (2.10)

is summable (A) to the value S if the q-Laplace integral

f(x) =

∫
∞

0
e−xt
q a(t)dqt (2.11)

converges for x > 0 and lim
x→0+

f(x) = S.

2. We say that the q-integral (2.10) is summable (C) if

lim
x→∞

1

x

∫ x

0
A(t)dqt = S, (2.12)

where we have put

A(x) =

∫ x

0
a(t)dqt.

The following result is the regularity theorem.

Theorem 2. Let a(t) be a function defined on (0,+∞) and for 0 < x < ∞, we put

f(x) =

∫
∞

0
e−xt
q a(t)dqt. (2.13)

If ∫
∞

0
a(t)dqt = S,

then

lim
x→0+

f(x) = S. (2.14)

Proof. For x ≥ 0 and t ∈ Rq,+, we have

|e−xt
q a(t)| ≤ |a(t)|. (2.15)

According to the Lebesgue theorem, we obtain

lim
x→0+

∫
∞

0
e−xt
q a(t)dqt =

∫
∞

0
a(t)dqt. (2.16)

�
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We deduce that the convergence of (2.10) implies its summability to the same value.
Conversely, we have the following result:

Theorem 3. Suppose that

1. f(x) =

∫
∞

0
e−xt
q a(t)dqt, 0 < x < ∞;

2. lim
x→0+

f(x) = S;

3. a(t) ≥ 0.

Then
∫

∞

0
a(t)dqt = S. (2.17)

Proof. According to the monotone convergence theorem from Lebesgue integration the-
ory, we have

lim
x→0+

f(x) = lim
x→0+

∫
∞

0
e−xt
q a(t)dqt (2.18)

=

∫
∞

0
lim

x→0+
e−xt
q a(t)dqt =

∫
∞

0
a(t)dqt. (2.19)

�

Remarks.1- The hypothesis (1) of Theorem 3 is one of the two q-Laplace transforms
introduced in §9 by W. Hahn [5], and further elaborated by W. H. Abdi [1].
2- The hypothesis (3) of Theorem 3 is essential and cannot be omitted. To confirm we
consider the function a(t) defined on Rq,+ by

a(qn) =

{
0 if n ≥ 0

(−1)n

qn if n < 0
, (2.20)

and put f(x) =

∫
∞

0
e−x2t
q a(t)dqt, x ∈ Rq,+.

We have

f(x) =

∫
∞

1
e−x2t
q a(t)dqt. (2.21)

By q-integration by parts, we obtain

f(x) = x2

∫
∞

1
e−x2t
q A(qt)dqt, (2.22)

where

A(t) =

∫ t

0
a(u)dqu. (2.23)
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Then,

f(x) = x2(1 − q)
−1∑

−∞

e−x2qn

q A(qn+1)qn. (2.24)

On the other hand, for t = qp, p < 0

A(t) =

∫ t

0
a(u)dqu =

∫ t

1
a(u)dqu

= (1 − q)

−1∑

n=p

a(qn)qn = (1 − q)

−1∑

n=p

(−1)n.

So,

A(q2p) = 0, et A(q2p+1) = −(1 − q), p < 0. (2.25)

From the relation (2.24), we have

f(x) = −(1 − q)2x2

−1∑

−∞

e−x2q2p

q q2p = −(1 − q)

∫
∞

x

te−t2
q dqt. (2.26)

We deduce that

lim
x→0+

f(x) = −(1 − q)

∫
∞

0
te−t2

q dqt, (2.27)

but the q-integral

∫
∞

0
a(t)dqt diverges.

Theorem 4. Let a(t) be a function defined on Rq,+ and

f(x) =

∫ +∞

0
e−xt
q a(t)dqt. (2.28)

If
∫ x

0
a(t)dqt ∼ Ax, as x → ∞, (2.29)

then

f(x) ∼ A

x
, as x → 0+, x ∈ Rq,+. (2.30)

Proof. Put A(x) =

∫ x

0
a(t)dqt, so DqA(x) = a(x) and f(x) =

∫
∞

0
e−xt
q DqA(t)dqt.

By q-integration by parts, we obtain

f(x) = x

∫
∞

0
e−xt
q A(qt)dqt.

From the relation (2.29) and the theorem (1) for γ = 1 and the fact that Γq(2) = 1 and
Kq(2) = q we have

f(x) ∼ AqΓq(2)

xKq(2)
=

A

x
, as x → 0+. (2.31)

�
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To obtain an adequate converse, we impose some additional condition that is the func-
tion a(t) is bounded.

Theorem 5. Let a(t) be a bounded function on Rq,+ and

f(x) =

∫ +∞

0
e−xt
q a(t)dqt. (2.32)

If

f(x) ∼ A

x
, x → 0+ (2.33)

then

∫ x

0
a(t)dqt ∼ Ax, x → + ∞. (2.34)

We shall obtain this result in the next section as a special case of a much more general
theorem.

3 A Basic Tauberian Theorem: uniqueness property.

Definition 2. A function g has the uniqueness property (g ∈ U) if the two assertions
hold

1. g ∈ L1(Rq,+)

2. For x ∈ Rq,+ and a ∈ B (bounded), the equation

∫ +∞

0
g(

t

x
)a(t)dqt = 0 implies

a(t) = 0, t ∈ Rq,+

Theorem 6. Given a, g, and h three functions defined on Rq,+ satisfying the following
conditions:

1. g ∈ U

2. a ∈ B

3. h ∈ L1(Rq,+)

4.
1

x

∫ +∞

0
g(

t

x
)a(t)dqt −→ A

∫ +∞

0
g(t)dqt, as x → +∞.

Then

1

x

∫ +∞

0
h(

t

x
)a(t)dqt → A

∫ +∞

0
h(t)dqt, as x → +∞, x ∈ Rq,+.
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Proof. Since we may consider the function a(t)−A instead of a(t), we can suppose A = 0.
Put

H1(y) = y

∫ +∞

0
h(yt)a(t)dqt

We shall to prove that

lim
y→0+

H1(y) = 0. (3.1)

Assuming the contrary, there must exist δ > 0 and a sequence of Rq,+ (xn)n tending
to 0 such that | H1(xn) |> δ.
Now, consider the sequence:

sn(x) = H1(xnx).

Since,

| H1(x) |≤
∫ +∞

0
| h(t)a(

t

x
) | dqt ≤ M

∫ +∞

0
| h(t) | dqt

then H1 is a bounded function on Rq,+.
Let (bm)m∈N the sequence defined by: b2m = qm, b2m+1 = q−m−1.
From the bounded sequence (sn(bm)) we may pick, by the familiar diagonal process, a
subsequence snk

(bm) such that

lim
k→+∞

snk
(bm) = s(bm), ∀ m ∈ N. (3.2)

Thus

lim
k→+∞

snk
(x) = s(x), ∀ x ∈ Rq,+. (3.3)

On the other hand, we have

G1 ∗M h1 = H1 ∗M g1 = g1 ∗M h1 ∗M a1. (3.4)

where G1(y) = y
∫ +∞

0 g(yt)a(t)dqt, g1(t) = tg(t), h1(t) = th(t), a1(t) = a(1
t
) and

f ∗M g the q-Mellin convolution product of the functions f and g (see 1.26).
Using the Lebesgue theorem, we obtain

lim
k→+∞

∫ +∞

0
g1(t)snk

(
y

t
)
dqt

t
= lim

k→+∞

∫ +∞

0
g1(t)H1(xnk

y

t
)
dqt

t

= lim
k→+∞

∫ +∞

0
h1(t)G1(xnk

y

t
)
dqt

t

=

∫ +∞

0
g1(t)s(

y

t
)
dqt

t

=

∫ +∞

0
g(t)s(

y

t
)dqt.

From the hypothesis lim
x→0+

G1(x) = 0, we have

1

x

∫ +∞

0
g(

t

x
)s1(t)dqt = 0, (3.5)
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where s1(t) = s(1
t
).

Since g ∈ U and s1 is a bounded function on Rq,+, then s1 = 0.
But

s1(1) = s(1) = s(q0) = lim
k→+∞

snk
(q0) = lim

k→+∞

H1(xnk
) ≥ δ. (3.6)

The contradiction shows that lim
y→0+

H1(y) = 0.

Therefore,

lim
x→+∞

1

x

∫ +∞

0
h(

t

x
)a(t)dqt = 0. (3.7)

�

Lemma 1. Let a(t) be a bounded function such that

∀x ∈ Rq,+,

∫
∞

0
tα−1e−xt

q a(t)dqt = 0, α > 0 (3.8)

then

∀x ∈ Rq,+,

∫
∞

0
tα−1e−xt

q cos(
√

t; q2)a(t)dqt = 0, (3.9)

where the q-cosine is given by (1.22).

Proof. We have
∫

∞

0
tα−1e−xt

q cos(
√

t; q2)a(t)dqt = (1 − q)
+∞∑

n=−∞

qnαe−xqn

q cos(q
n
2 ; q2)a(qn)

= (1 − q)

+∞∑

n=−∞

∞∑

k=0

(−1)k
qk(k−1)

[2k]q!
q(k+α)ne−xqn

q a(qn).

For all x ∈ Rq,+, we have

|(−1)k
qk(k−1)

[2k]q !
q(k+α)ne−xqn

q a(qn)| ≤ M
qk(k−1)

[2k]q !
q(k+α)ne−xqn

q . (3.10)

On the other hand, we have

(1 − q)

+∞∑

n=−∞

q(k+α)ne−xqn

q =

∫
∞

0
tk+α−1e−xt

q dqt (3.11)

=
1

xk+α

Γq(k + α)

Kq(k + α)
. (3.12)

By using the relation(1.16)and the fact that Kq(s + 1) = qsKq(s), we have

(1 − q)
+∞∑

n=−∞

q(k+α)ne−xqn

q =
1

xk+α

[k + α − 1]q . . . [α]q
qk+α−1 . . . qα

Γq(α)

Kq(α)
(3.13)

=
1

xk+α

[k + α − 1]q . . . [α]q

q
k(k+2α−1)

2

Γq(α)

Kq(α)
. (3.14)
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Thus

qk(k−1)

q
k(k+2α−1)

2

1

xk+α

[k + α − 1]q . . . [α]q
[2k]q!

= o(q
k2
4 ), as k → +∞ (3.15)

which implies that the double series

∞∑

k=0

+∞∑

n=−∞

|(−1)k
qk(k−1)

[2k]q!
q(k+α)ne−xqn

q a(qn)| (3.16)

converges.
Therefore,

+∞∑

n=−∞

∞∑

k=0

(−1)k
qk(k−1)

[2k]q!
q(k+α)ne−xqn

q a(qn) =
∞∑

k=0

+∞∑

n=−∞

(−1)k
qk(k−1)

[2k]q!
q(k+α)ne−xqn

q a(qn),

(3.17)

and
∫

∞

0
tα−1e−xt

q cos(
√

t; q2)a(t)dqt =

∞∑

k=0

(−1)k
qk(k−1)

[2k]q!

∫
∞

0
e−xt
q tk+α−1a(t)dqt. (3.18)

On the other hand, for all x ∈ Rq,+

∫
∞

0
tα−1e−xt

q a(t)dqt = 0, (3.19)

then, for all k ∈ N, Dk
q

(∫
∞

0
tα−1e−xt

q a(t)dqt

)
=

∫
∞

0
(−1)ktk+α−1e−xt

q a(t)dqt = 0.

Which completes the proof. �

Proposition 1. The function xα−1e−x
q ∈ U on Rq,+, α > 0.

Proof. Let a(t) be a bounded function such that

∀x ∈ Rq,+,

∫
∞

0
tα−1e−xt

q a(t)dqt = 0. (3.20)

According to lemma 1, we have

∀x ∈ Rq,+,

∫
∞

0
tα−1e−xt

q cos(
√

t; q2)a(t)dqt = 0. (3.21)

Thus

x−1

∫
∞

0
e

−t
x

q tα−1 cos(
√

t; q2)a(t)dqt = k ∗M a1(x) = 0, (3.22)

where k(t) = t−1e
−

1
t

q , a1(t) = tα−1 cos(
√

t; q2)a(t) and k ∗M a1(x) the q-Mellin convolution
product of the functions k and a1.
Therefore, from (1.27), we obtain

Mq(k ∗M a1) = Mq(k)Mq(a1) = 0. (3.23)
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Moreover,

Mq(k)(x) = Mq

[
1

t
e

−1
t

q

]
(x) = Mq

[
e−t
q

]
(1 − x) =

Γq(1 − x)

Kq(1 − x)
6= 0, 0 < ℜ(x) < 1.

(3.24)

Then

Mq(a1) = 0. (3.25)

Using the q-Mellin’s inversion formula (1.25), we obtain

a1(t) = cos(
√

t; q2)a(t) = 0. (3.26)

So, there exists t0 ∈ Rq,+ such that a(t0) = 0.
On the other hand let y ∈ Rq,+, we have

∀x ∈ Rq,+,

∫
∞

0
tα−1e

−
x
y
t

q a(t)dqt = 0. (3.27)

By making the change of variables u = 1
y
t, we obtain

∫
∞

0
tα−1e−xt

q a(yt)dqt = 0, (3.28)

which implies that,

a(yt0) = 0, (3.29)

thus

a(t) = 0, t ∈ Rq,+. (3.30)

�

By choosing in theorem 6, g(x) = e−x
q xα−1 α > 0 and h(x) = xβ−1 on (0, 1],

h(x) = 0 on ]1,+∞[, β > 0, we have the following result:

Theorem 7. Let a(t) be a bounded function on Rq,+ and let

f(x) =

∫ +∞

0
e−xt
q tα−1a(t)dqt, α > 0.

Suppose

f(x) ∼ AΓq(α)

xαKq(α)
as x → 0+,

then ∫ x

0
tβ−1a(t)dqt ∼ A

xβ

[β]q
as x → +∞.

In particular, for α = β = 1, we obtain the theorem (5).
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4 q-analogue of Tauber’s theorem

Definition 3. A function f is said to be satisfies the property (℘) if for all ε > 0, there
exists K > 0 such that

∀x > K, |f(x) − f(qx)| < ε.

Proposition 2. Let a(x) be a function defined on (0,∞) and satisfying the property (℘)
such that,

∫ x

0
a(t)dqt ∼ Ax, x → +∞, (4.1)

then
lim

x→+∞

a(x) = A.

Proof. We can suppose that A = 0.
Let ε > 0, there exists K > 0 such that, ∀x > K

(1 − q)x[a(qx) − ε] ≤ (1 − q)xa(x) ≤ (1 − q)x[a(qx) + ε].

Using the relation

∫ x

qx

a(t)dqt = (1 − q)xa(x), we obtain

(1 − q)x[a(qx) − ε] ≤
∫ x

qx

a(t)dqt ≤ (1 − q)x[a(qx) + ε].

Thus, for all x > K,

(1 − q)[a(qx) − ε] ≤ 1

x

∫ x

qx

a(t)dqt ≤ (1 − q)[a(qx) + ε].

From the hypothesis (4.1), we obtain

lim
x→+∞

1

x

∫ x

qx

a(t)dqt = 0,

thus,
−ε ≤ lima(x) ≤ lima(x) ≤ ε.

Which completes the proof. �

Theorem 8. Let a(t) be a function defined on (0,∞) and let A(x) =
∫ x

0 a(t)dqt.

suppose

1. lim
x→+∞

xa(x) = 0;

2.

∫ x

0
A(t)dqt ∼ Ax, as x → ∞,

then
∫

∞

0
a(t)dqt = A. (4.2)
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Proof. We have A(x)−A(qx) =

∫ x

qx

a(t)dqt = (1− q)xa(x). From the hypothesis (1), we

deduce that A(x) satisfies the property (℘). We apply the proposition 2 to the function
A(x), which completes the proof.

�

Theorem 9. Let a(x) be a function defined on (0,∞)and let f(x) =
∫
∞

0 e−xt
q a(t)dqt.

If

1. xa(x) ∈ B (bounded) ;

2. lim
x→0+

f(x) = A,

then ∫ x

0
A(t)dqt ∼ Ax, x → ∞. (4.3)

Proof. Let A(t) =

∫ t

0
a(u)dqu.

By q-integration by parts, we obtain
∫

∞

0
e−xt
q a(t)dqt = x

∫
∞

0
e−xt
q A(qt)dqt. (4.4)

From the hypothesis(2), we have
∫

∞

0
e−xt
q A(qt)dqt ∼

A

x
, x → 0+.

On the other hand, we have

A(x) − f(
1

x
) =

∫ x

0
a(t)[1 − e

−
t
x

q ]dqt −
∫

∞

x

e
−

t
x

q a(t)dqt, x ∈ Rq,+. (4.5)

It follows from the relation 1 − e−x
q =

∫ x

0
e−t
q dqt, that |1 − e−x

q | ≤ x.

Therefore,

|A(x) − f(
1

x
)| ≤ M

∫ x

0

1

x
dqt + M

∫
∞

x

e
−t
x

q

t
dqt (4.6)

≤ M + M

∫
∞

1

e−t
q

t
dqt ≤ 2M (4.7)

From the hypothesis(2) and the inequality (4.7), we deduce that the functions f and A(x)
are a bounded ones.
We apply the theorem(5) to the function A(qx), we obtain

∫ x

0
A(qt)dqt ∼ Ax, x → ∞. (4.8)

Finally the changes of variables u = qt, gives
∫ x

0
A(t)dqt ∼ Ax, x → +∞. (4.9)

Which completes the proof. �
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Theorem 10. Let a(x) be a function defined on (0,∞), and let f(x) =
∫
∞

0 e−xt
q a(t)dqt.

If

1. xa(x) ∈ B (bounded) ;

2. lim
x→+∞

xa(x) = 0;

3. lim
x→0+

f(x) = A,

then
∫

∞

0
a(t)dqt = A

Proof. From the hypothesis(1) and the theorem (9), we have

∫ x

0
A(t)dqt ∼ Ax, x → +∞. (4.10)

The result follows from the hypothesis(2), the relation (4.10) and the theorem 8. �

Remark.We can replace the hypothesis (1)of theorem 8 and the hypothesis (1) and (2)
of theorem 10 by

{x}a(x) ∈ B, (4.11)

where {x} =
qx − q−x

q − q−1
, although in fact the resulting statements are weaker than these

results.
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