
B ased on FPGA

 The Solution of Metastability in Asynchronous

System Design
Lu Lin

Dept. of Mechanical and Electrical Engineering
Beijing Institute of Technology

Beijing, 100081, P. R. China
lulin10902063@bit.edu.cn

Wu Fei
Dept. of Ammunition Professional

Navy in Shenyang Military Representative Office
Shenyang, 110045, P. R. China

Abstract--- In this paper, we will illustrate the mechanism of

metastability issues in ASICs designs that are driven by multiple

asynchronous clocks. In order to solve this problem, effective

synchronization method is described first. Using the proposed

design techniques and optimization methods, metastability could

be controlled and system reliability could be improved. We

provide the structure of the system to show the process of the

workflow, and then analyzed the high and low impact on the

system. We divided the system into different parts, and designed

the schematic for each part to realize the system. After all

modules have been completed, we designed an experiment to test

the performance of the system. The test results showed that the

system is running well which has some practical value.

Keywords- Metastability; Synchronizer; Handshake protocol;

Asynchronous FIFO

I. INTRODUCTION
Metastability is unavoidable in asynchronous systems.

Whenever asynchronous data is registered by a clocked
flip-flop, there is a probability of setup or hold time violation
on that flip-flop. In applications such as FPGAs, have defined
signal-timing requirements that allow each register to correctly
capture data at its input ports and produce an output signal. To
ensure reliable operation, the input to a register must be stable
for a minimum amount of time before the clock edge (setup
time or tSU) and a minimum amount of time after the clock edge
(hold time or tH). The flip-flop output is available after a
specified clock-to-output delay (tCO). If the data violates the
setup or hold time requirements, the output of the register
might go into a metastable state. In a metastable state, the
voltage at the register output hovers at a value between the high
and low states, which means the output transition to a defined
high or low state is delayed beyond the specified tCO. Different
destination registers might capture different values for the
metastable signal, which can cause the system to fail. In
synchronous systems, the input signals must always meet the
register timing requirements, so that metastability does not
occur. Metastability problems commonly occur when a signal
is transferred between circuitry in unrelated or asynchronous
clock domains, because the signal can arrive at any time
relative to the destination clock.

Although metastability is unavoidable, the probability of
occurrence of this issue can be calculated and managed. The
MTBF is an estimate of the average time between instances

when metastability causes a design failure. The calculated
MTBF due to metastability indicates whether designers should
take steps to reduce the chance of such failures. This paper
explains how MTBF is calculated from various design and
device parameters, and how both FPGA vendors and designers
can increase the MTBF. System reliability can be improved by
reducing the chance of metastability failures with design
techniques and optimizations.

In order to minimize the failures due to metastability in
asynchronous signal transfers, this paper details the method of
using signal synchronization. Synchronization register is
typically used for resynchronizing the signal from the
destination clock domain to the new clock domain. These
registers allow additional time for a potentially metastable
signal to resolve to a known value before the signal is used in
the rest of the design.

Past studies have shown that the synchronization register
has very good results in the solution of signal synchronization.
But in today’s high speed digital system design, more and more
complicated and multiple bus always needs to be used to
communicate with more than one other systems simultaneously.
For example, TI’DSP TMS320DM642 has UART port, Host
Parallel Interface port(16bit or 32 bit), USB port, Ethernet port
etc. to exchange data with different peripherals. Therefore only
use synchronization register method to eliminate the chances of
metastability in high speed circuit is very difficult. To solve
this problem, we presents an effective way of using dual
synchronization and gray code FIFO to transmit data between
different clock domains.

The paper is structured as follows: First, section Ⅱ
introduce the reason and hazards during the process of
communication between different clock domains, metastability
is likely to happen. And then from the study of the key factor of
impact metastability----section Ⅲ details the synchronizer
failure rate----MTBF. Although the occurrence of metasbility
in integrated circuit is unavoidable, we can gain some
understanding of what different parts of the brain do. the
After a brief introduction of our DARTS architecture in the
following section, we will then investigate this circuit’s
potential for metastability generation and propagation. Next,
Section IV will be concerned with the derivation of an analytic
model for the circuit and its metastable decay. The propagation

International Conference on Mechatronics, Electronic, Industrial and Control Engineering (MEIC 2014)

© 2014. The authors - Published by Atlantis Press 962

of metastability will be studied by means of simulation in
Section V. Finally, Section VI concludes the paper and presents
future prospects.

During the process of communication between different
clock domains, metastability is likely to happen. This paper
discusses several applications of different synchronizers in IC
asynchronous design. Asynchronous FIFO is applied to the
design of asynchronous data buffer between the interface and
the core of ATM communication chip. The results of
simulation show that the method can increase the reliability as
well as realize the desired function.

II. METASTABILITY
When a signal crosses a clock domain, it appears to be an

asynchronous signal to the circuitry in the new clock domain.
The circuit that receives this signal needs to synchronize it.
Synchronization prevents the metastable state of the first
storage element (flip-flop) in the new clock domain from
propagating through the circuit.

Metastability is the inability of a flip-flop to arrive at a
known state in a specific amount of time. When a flip-flop
enters a metastable state, a designer cannot predict the output
voltage level or when the output will settle to a correct voltage
level. During this settling time, the flip-flop’s output is at some
intermediate voltage level or may oscillate and can cause a
cascade of failures when the flip-flops further down the signal
path capture the invalid output level.

A Metastable causes

For any flip-flop, there is a small window of time where the
input must be stable (Figure 1: Stable Window). This window
of time is a function of the design of the flip-flop, the
implementation technology, operating conditions and the load
on the output for outputs not buffered. Also sharp edge rates on
the input signal minimize the window of time. The probability
of a flip-flop entering a metastable state is also a function of the
data and clock frequencies. There are more windows of
vulnerability as the clock frequency goes up and there is greater
probability of hitting the window as the data frequency goes
up.

D Q

Q

Data

Clock

Output
Clock

Data Data

Stable Window

Figure 1. Stable Window

Past studies have shown that the flip-flop delay in the
metastable region is exponential in nature where two
parameters can be extracted from simulation to model the
behavior of the delay in the metastable region [5]. Metastability

window, given by Equation (1), is a common metric used to
analyze metastability.

Here's a brief analysis. When the circuit is in a metastable
state, enter '1 'or '0' may be sentenced to '0 'or '1', this state is
called a flip (upset).The mathematical expression of the flip
probability P as follows:

 (1)

It represents the period where data transition will not be
resolved within a given settling time (s), which is related to the
clock frequency and represents the amount of time given for
the output to settle to a stable state. is the width of the
metastability window with no resolution time, and is the
resolution time constant that represents the inverse of the
gain-bandwidth product of the feedback element in the flip-flop.
As seen from Equation (1), the time of metastability has the
greatest impact on due to the exponential relationship. A small
value results in fast resolving time from the metastable region
and thus decreases.

As we have seen that whenever setup and hold violation
time occurs, metastability occurs, so we have to see when
signals violate this timing requirement:

·When the input signal is an asynchronous signal.

·When the clock skew/slew is too much (rise and fall time
are more than the tolerable values).

·When interfacing two domains operating at two different
frequencies or at the same frequency but with different phase.

·When the combinational delay is such that flip-flop data
input changes in the critical window (setup+hold window)

B Mean Time Between Failures

FPGA manufacturers and IC foundries claimed that they
have qualified their flip-flops and determine their
characteristics. However, if the restriction of a minimum
separation between input edges is lifted, then two edges very
close together will not be seen by the circuit and two edges
much further apart will count as two. In this situation
metastable behavior is unavoidalle due to the continuum of
edge interarrival times possible between no effect and two
counts.

Since the occurrence of metastable behavior is inevitable,
We can effectively control probability of this phenomenon
from the analysis above mean time between two successive
failures. MTBF(Mean Time Between Failures) describes the
metastability characteristic of a flip-flop using statistics to
determine the probability of a flip-flop failure. The MTBF is
based in part on the length of the time window during which a
change in the input signal causes the flip-flop to become
unstable. In addition, MTBF calculation uses the frequency of
the input signal and the frequency of the clock driving the
flip-flop. The industry standard formula for Mean Time
Between Failures (MTBF) for a metastable flip-flop is given by

963

 (2)

where:

• exp = 2.718281828...

• = time delay for the metastability to resolve itself

• = the clocking frequency

• = the data frequency

• = a constant representing the metastability catching

setup time window

• = a constant describing the speed with which the
metastable condition is resolved

The variables in the expression are functions of the flip-flop
design, its process technology, the clocking rate, and the data
switching speed, which are discussed following sections.

III. METASTABLE AND SYSTEM RELIABILITY
Synchronization circuit, the metastable still could happen,

connected with this is the mean time between failures MTBF
(mean time between failure), the probability of occurrence of
the metastable and independent of the clock frequency, but
closely related to the MTBF and clock. Article provides an
example of a 20MHz clock work under MTBF is about 50
years, but the clock frequency to 40MHz, MTBF only 1 minute!
Seen to reduce the clock frequency can be greatly reduced
metastable lead to system errors appear, the reason is that, if
the clock cycle than the resolution time can be reduced to the
metastable state is passed to the next level of opportunity to
improve system MTBF shown in Fig .2.

X 轴

Y
轴

101

102

103

104

105

106

107

108

109

1010

1011

2 4 6 8 10
T(ns)

MTBF
(s)

1 hour

1 day

1 month

1 year

1000 year

fdata = 1MHz
fclock=10MHz

Figure 2.

IV. COMMON SOLUTION
IC foundries help with signal synchronization by providing

specially designed synchronizer cells. Usually this
synchronizer cells consists of a flip-flop with a very high gain
that uses more power and is larger than a standard flip-flop.
This flip-flop has reduced setup and hold time requirements for

the input signal and is resistant to oscillating when input signal
causes a metastable condition. Another type of synchronizer
cell contains two flip-flops, which eases the layout engineerís
job by meeting the requirement of placing the flip-flops close
to each other and prevents the designer from placing any
combinational logic between the flip-flops.

Thus, the synchronizer for high-speed digital circuits,
usually take the strategy is to trigger cascade time buffer to
provide time for the circuit to recover from the metastable state,
that the time delay to reduce the metastable impact on the
circuit has occurred.

A Flip-Flop Synchronizer

Synchronizing signals begins by protecting downstream
logic from the metastable state of the first flip-flop in a new
clock domain. A simple synchronizer consists of two flip-flops
in series without combinational circuitry between them (see
Figure 1-4: A Simple Synchronizer). This design ensures the
first flip-flop exits its metastable state and its output settles
before the second flip-flop samples the first oneís output.
Besides the circuit design, there is another requirement to
make a successful synchronizer. The layout engineer needs to
place the flip-flops close to each other. This guarantees the
shortest signal wire between the output of the first flip-flop
and the input of the second one and ensures the smallest
possible clock skew between the flip-flops. There are many
different designs for synchronizers and each has specific uses
because one type does not work well in all applications. All
synchronizers fall into three basic categories: edge-detect and
pulse.

B The Edge Synchronizer

As shown in Fig .3, the edge detection synchronous increase
in the level synchronizer output a trigger. New trigger output
by the output of the inverting and level synchronizer operation.
This circuit detects the rising edge of the synchronous input
signal, resulting in a synchronized clock cycle wide active high
pulse. If the two input AND gate is used interchangeably, can
constitute a detection of the falling edge of the input signal
synchronizer. AND gate NAND gate instead, you can build a
circuit to generate an active-low pulse.

Q

Q
SET

CLR

S

RQ

Q
SET

CLR

S

R Q

Q
SET

CLR

S

R

clk2

&0

0

0

&
data

Figure 3. Edge-Detect Synchronizer

The edge-detect synchronizer’s main application is
synchronizing a pulse going to a faster clock domain. This
circuit produces a pulse that indicates the rising (or falling)
edge of the input signal. A restriction on the application of this

964

synchronizer is the width of the input pulse must be greater
than the period of the synchronizer clock plus the required hold
time of the first synchronizer flip-flop. The safest pulse width
is twice the synchronizer clock period. This synchronizer does
not work if the input is a single clock-wide pulse going to a
slower clock domain; however, the pulse synchronizer solves
this problem.

C The Pulse Synchronizer

As shown in Fig .4, the pulse synchronizer input signal is a
single clock width pulse, which triggers a flip circuit of the
original clock domain. Whenever the flip circuit receives a
pulse, it will be converted in the high, low, and then through
thelevel synchronization to reach the input of the XOR gate,
while another signal by one clock cycle delay into different
conversion time state of the door the other side, flip the circuit,
the output of the synchronizer to produce a single clock pulse
width.

Q

Q
SET

CLR

S

RQ

Q
SET

CLR

S

R Q

Q
SET

CLR

S

R

clk2

&0

0

0
=1

Q

Q
SET

CLR

S

R

0

1

data

output

clk1

Figure 4. Pulse Synchronizer

The basic function of a pulse synchronizer is to take a
single clock wide pulse from one clock domain and create a
single clock wide pulse in the new domain. One restriction on
this synchronizer design is the input pulses must have a
minimum time between them. This minimum spacing between
the pulses is equal to two synchronizer clock periods. If the
input pulses are closer, the output pulses in the new clock
domain are adjacent to each other resulting in an output pulse
that is wider than one clock cycle. This is a more severe
problem when the clock period of input pulse is greater than
twice the synchronizer clock period. In this case, if the input
pulses are too close, the synchronizer does not detect every
one.

D FIFO synchronizer

If we use two Flip-Flop synchronizers to synchronize the
system, this probability can be reduced to an acceptable range.
Another problem is the design of the FIFO address generator.
Although binary counters work fine for addressing the
memory trying to synchronize binary counters into a new
clock domain is problematic. The binary counter changes
more than one bit at the same time and every bit change at
different time. The address which is sampled by the
synchronous clock may be different with its true value. If we
use this pointer to do the comparison work and produce full
and empty flag which is unadvisable. A better approach for

passing pointers between clock domains is to use a gray-code
counter for the two FIFO pointers.

The Gray Code counter is a binary adder with converters
from and to Gray Code before and after the adder. Since
converting to and from Gray Code is a XOR operation, this
counter design has only two more levels of logic than a binary
counter. A design can use the same technique to compare Gray
Code pointer values by adding converters between the pointers
and binary comparison logic.

This FIFO status technique gives pessimistic status for
both reads and writes. The status on the write side indicates
full when the FIFO fills and continues to indicate full after it is
read since synchronization delays the read pointer to the
write-side comparison logic. This is also true for the empty
status on the read side since synchronization delays the write
pointer to the read-side comparison logic.

wdata rdata

FIFO MEMORY
Dual Port RAM

wclken

waddr raddr

FIFO
wptr&full

wptr

winc

wrst_n

FIFO
rptr&empty

rptr

rinc

rrst_n

cmp

Asynchronous
compare

wrst_n

wclk

winc

wdata rdata

rinc

rclk

wfull rempty

rrst_n

winc

wptr

wptr

rptr

rptr

afull_n aempty_n

wrst_n

Figure 5. Pulse Synchronizer

Fig .5 shows the general junction asynchronous FIFO
Institutions. How to correctly determine the FIFO empty / full
status is the key to the design of the FIFO. In order to
effectively improve the empty / full flag generation logic
reliability in set in total, can be read / write address is divided
into counts and internal address by the former to produce the
empty / full flag, the latter as a dual-port RAM read / Write
address, thereby reducing the synchronization signal, reduce
the number of signals Asia Steady state production. To count
the address of the synchronization, it is recommended using
Gray Code instead of binary code. Gray code is a time to
transform a significantly drop Low number of address signal
transition to eliminate the count of the address bus Bit
different synchronization when the competition. Its
synchronization, at most An address data into the metastable
state, and therefore further reduce the probability of the
metastable For the circuit delay consideration in the design of
the empty full flag to generate Logic, it is best to let the state
of the FIFO circuit in the FIFO is about to read Send empty or
filled with empty / full flag in order to effectively guarantee
the FIFO not low or overflow. Asynchronous FIFO design by
raising the empty / full The flag logic reliability, can inhibit
the metastable state.

965

V. THE SIMULATION RESULTS
Verilog-HDL and Altera Cyclone EP2C35F484 FPGA are

used to design the circuit. QuartusII and Modelsim SE are
used as developing enviament. In the experiment we set the
data width as 32 bit and the address depth 4bit.

As shown in Fig .6,Fig .7, respectively, run under
Modelsim simulation of the two sets of edge detection
synchronization and pulse synchronizer. The following brief
account. clk1 is the clock of the primary circuit; clk2
synchronization clock; pulse_din input pulse synchronizer
pulse_dout its output; edge_din input synchronizer edge
detection, edge_dout its output. Figure 4 shows the
synchronization input and output of the edge detection
synchronization and pulse under normal conditions. In Figure
5, the pulse synchronizer input (pulse_din), pulse interval is
too small, the synchronizer can not distinguish between the
two input pulses, can only output (pulse_dout the) a
synchronization clock cycle the width of the pulse.

Figure 6. Pulse Synchronizer

Figure 7. Pulse Synchronizer

We can see that only if the empty flag is invalid the reading
address will increase. Otherwise the reading pointer keeps
itself invariable until the empty flag is invalid. The reading
enable will valid as soon as the full flag is invalid. Fig .7
shows the simulation results when the writing clock is faster

than the writing clock. If the full flag is valid, the writing
pointer has no change and the writing enable will be put down.

VI. CONCLUSION
The main causes of metastability, timing devices within the

sampling window, and can not guarantee that the input signal is
always maintained at a stable level. Therefore, we need by
reducing the sampling window to increase the sampling
success rate (using the edge of the trigger for level trigger, but
also a way to reduce the sampling window), or by the stability
window of the sampling window or input data move to ensure
that sampling to resolve the metastability issue. But the
participation of the asynchronous signal, the solution will
become extremely complex. Therefore, there is not a universal,
effective and feasible solution. However, the mechanism of the
formation of metastable, allows us to ease from the engineering
point of view to solve specific metastability may occur in the
actual project.

REFERENCES
[1] Clifford E. Cummings, “Synthesis and Scripting Techniques for

Designing Multi-Asynchronous Clock Designs,” SNUG 2001 (Synopsys
Users Group Conference, San Jose, CA, 2010) User Papers, March 2001,
Section MC1, 3rd paper. Also available at
www.sunburst-design.com/papers.

[2] Managing metastability with the Quartus II Software[Z]. Altera, Quartus
II Handbook Version 9. 1Volume: Design and Synthesis, 2009:1-7-15.

[3] KILTS S. Advanced FPGA Design: Architecture,Implementation, and
Optimization [M] . New Jersey:John Wiley & Sons, Inc, 2007: 84 -97.

[4] Dinesh Tyagi, former CAE Manager for Synopsys DesignWare product,
personal communication Edward Paluch, personal communication Frank
Gray, "Pulse Code Communication." United States Patent Number
2,632,058. March 17, 1953.

[5] John O’Malley, Introduction to the Digital Computer, Holt, Rinehart and
Winston, Inc., 2011, pg. 190.

[6] L. Kleeman and A. Cantoni, “Metastable behavior in digital systems.”
IEEE Design and Test of Computers. Vol. 4, No.6, pp. 4-19, Dec. 1987.

[7] A.Scheibe, W.A.Krauss, “two-transistor SIMOS EAROM cell”. IEEE
Journal of Solid-State Circuits. Vol.15,No.3,pp. 353-357 ，
Nov,2010.

[8] S.Brown, J .Rose, “FPGA and CPLD architectures. A Tutorial”.
IEEE Design and Test of Computers, Vol.12, No.2, pp.
42-57,May.2011.

[9] J.Birkner, A.Chan, “A very-high-speed field-programmable gate
array using metalto-metal antifuse programmable elements”.
Microelectronics Journal. Vol.23, No.7, pp. 561-568, Dec,2010.

[10] L .O .Chua, “Memristor—the missing circuit element”. IEEE
Transactions on Circuit Theory Vol.18, No.5, p.507-519, Feb,2009.

966

