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Abstract--- In this paper, we will illustrate the mechanism of 

metastability issues in ASICs designs that are driven by multiple 

asynchronous clocks. In order to solve this problem, effective 

synchronization method is described first. Using the proposed 

design techniques and optimization methods, metastability could 

be controlled and system reliability could be improved. We 

provide the structure of the system to show the process of the 

workflow, and then analyzed the high and low impact on the 

system. We divided the system into different parts, and designed 

the schematic for each part to realize the system. After all 

modules have been completed, we designed an experiment to test 

the performance of the system. The test results showed that the 

system is running well which has some practical value. 

Keywords- Metastability; Synchronizer; Handshake protocol; 

Asynchronous FIFO 

I. INTRODUCTION 
Metastability is unavoidable in asynchronous systems. 

Whenever asynchronous data is registered by a clocked 
flip-flop, there is a probability of setup or hold time violation 
on that flip-flop. In applications such as FPGAs, have defined 
signal-timing requirements that allow each register to correctly 
capture data at its input ports and produce an output signal. To 
ensure reliable operation, the input to a register must be stable 
for a minimum amount of time before the clock edge (setup 
time or tSU) and a minimum amount of time after the clock edge 
(hold time or tH). The flip-flop output is available after a 
specified clock-to-output delay (tCO). If the data violates the 
setup or hold time requirements, the output of the register 
might go into a metastable state. In a metastable state, the 
voltage at the register output hovers at a value between the high 
and low states, which means the output transition to a defined 
high or low state is delayed beyond the specified tCO. Different 
destination registers might capture different values for the 
metastable signal, which can cause the system to fail. In 
synchronous systems, the input signals must always meet the 
register timing requirements, so that metastability does not 
occur. Metastability problems commonly occur when a signal 
is transferred between circuitry in unrelated or asynchronous 
clock domains, because the signal can arrive at any time 
relative to the destination clock.  

Although metastability is unavoidable, the probability of 
occurrence of this issue can be calculated and managed. The 
MTBF is an estimate of the average time between instances 

when metastability causes a design failure. The calculated 
MTBF due to metastability indicates whether designers should 
take steps to reduce the chance of such failures. This paper 
explains how MTBF is calculated from various design and 
device parameters, and how both FPGA vendors and designers 
can increase the MTBF. System reliability can be improved by 
reducing the chance of metastability failures with design 
techniques and optimizations.  

In order to minimize the failures due to metastability in 
asynchronous signal transfers, this paper details the method of 
using signal synchronization. Synchronization register is 
typically used for resynchronizing the signal from the 
destination clock domain to the new clock domain. These 
registers allow additional time for a potentially metastable 
signal to resolve to a known value before the signal is used in 
the rest of the design.  

Past studies have shown that the synchronization register 
has very good results in the solution of signal synchronization. 
But in today’s high speed digital system design, more and more 
complicated and multiple bus always needs to be used to 
communicate with more than one other systems simultaneously. 
For example, TI’DSP TMS320DM642 has UART port, Host 
Parallel Interface port(16bit or 32 bit), USB port, Ethernet port 
etc. to exchange data with different peripherals. Therefore only 
use synchronization register method to eliminate the chances of 
metastability in high speed circuit is very difficult. To solve 
this problem, we presents an effective way of using dual 
synchronization and gray code FIFO to transmit data between 
different clock domains.  

The paper is structured as follows: First, section Ⅱ 
introduce the reason and hazards during the process of 
communication between different clock domains, metastability 
is likely to happen. And then from the study of the key factor of 
impact metastability----section Ⅲ  details the synchronizer 
failure rate----MTBF. Although the occurrence of metasbility 
in integrated circuit is unavoidable, we can gain some 
understanding of what different parts of the brain do. the  
After a brief introduction of our DARTS architecture in the 
following section, we will then investigate this circuit’s 
potential for metastability generation and propagation. Next, 
Section IV will be concerned with the derivation of an analytic 
model for the circuit and its metastable decay. The propagation 
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of metastability will be studied by means of simulation in 
Section V. Finally, Section VI concludes the paper and presents 
future prospects. 

During the process of communication between different 
clock domains, metastability is likely to happen. This paper 
discusses several applications of different synchronizers in IC 
asynchronous design. Asynchronous FIFO is applied to the 
design of asynchronous data buffer between the interface and 
the core of ATM communication chip. The results of 
simulation show that the method can increase the reliability as 
well as realize the desired function. 

II. METASTABILITY 
When a signal crosses a clock domain, it appears to be an 

asynchronous signal to the circuitry in the new clock domain. 
The circuit that receives this signal needs to synchronize it. 
Synchronization prevents the metastable state of the first 
storage element (flip-flop) in the new clock domain from 
propagating through the circuit.  

Metastability is the inability of a flip-flop to arrive at a 
known state in a specific amount of time. When a flip-flop 
enters a metastable state, a designer cannot predict the output 
voltage level or when the output will settle to a correct voltage 
level. During this settling time, the flip-flop’s output is at some 
intermediate voltage level or may oscillate and can cause a 
cascade of failures when the flip-flops further down the signal 
path capture the invalid output level. 

A Metastable causes 

For any flip-flop, there is a small window of time where the 
input must be stable (Figure 1: Stable Window). This window 
of time is a function of the design of the flip-flop, the 
implementation technology, operating conditions and the load 
on the output for outputs not buffered. Also sharp edge rates on 
the input signal minimize the window of time. The probability 
of a flip-flop entering a metastable state is also a function of the 
data and clock frequencies. There are more windows of 
vulnerability as the clock frequency goes up and there is greater 
probability of hitting the window as the data frequency goes 
up.  

D Q

Q

Data

Clock

Output
Clock

Data Data

Stable Window

 
Figure 1. Stable Window 

Past studies have shown that the flip-flop delay in the 
metastable region is exponential in nature where two 
parameters can be extracted from simulation to model the 
behavior of the delay in the metastable region [5]. Metastability 

window, given by Equation (1), is a common metric used to 
analyze metastability. 

Here's a brief analysis. When the circuit is in a metastable 
state, enter '1 'or '0' may be sentenced to '0 'or '1', this state is 
called a flip (upset).The mathematical expression of the flip 
probability P as follows: 

       
   

  
          (1) 

It represents the period where data transition will not be 
resolved within a given settling time (s), which is related to the 
clock frequency and represents the amount of time given for 
the output to settle to a stable state.    is the width of the 
metastability window with no resolution time, and is the 
resolution time constant that represents the inverse of the 
gain-bandwidth product of the feedback element in the flip-flop. 
As seen from Equation (1), the time of metastability has the 
greatest impact on due to the exponential relationship. A small 
value results in fast resolving time from the metastable region 
and thus decreases.  

As we have seen that whenever setup and hold violation 
time occurs, metastability occurs, so we have to see when 
signals violate this timing requirement: 

·When the input signal is an asynchronous signal. 

·When the clock skew/slew is too much (rise and fall time 
are more than the tolerable values). 

·When interfacing two domains operating at two different 
frequencies or at the same frequency but with different phase. 

·When the combinational delay is such that flip-flop data 
input changes in the critical window (setup+hold window) 

B Mean Time Between Failures 

FPGA manufacturers and IC foundries claimed that they 
have qualified their flip-flops and determine their 
characteristics. However, if the restriction of a minimum 
separation between input edges is lifted, then two edges very 
close together will not be seen by the circuit and two edges 
much further apart will count as two. In this situation 
metastable behavior is unavoidalle due to the continuum of 
edge interarrival times possible between no effect and two 
counts.  

Since the occurrence of metastable behavior is inevitable, 
We can effectively control probability of this phenomenon 
from the analysis above mean time between two successive 
failures. MTBF(Mean Time Between Failures) describes the 
metastability characteristic of a flip-flop using statistics to 
determine the probability of a flip-flop failure. The MTBF is 
based in part on the length of the time window during which a 
change in the input signal causes the flip-flop to become 
unstable. In addition, MTBF calculation uses the frequency of 
the input signal and the frequency of the clock driving the 
flip-flop. The industry standard formula for Mean Time 
Between Failures (MTBF) for a metastable flip-flop is given by 

963



     
 

            
 

   
  
  

             
        (2) 

where: 

• exp = 2.718281828... 

•   =  time delay for the metastability to resolve itself 

•        = the clocking frequency 

•       = the data frequency 

•    = a constant representing the metastability catching 

setup time window 

•    = a constant describing the speed with which the 
metastable condition is resolved 

The variables in the expression are functions of the flip-flop 
design, its process technology, the clocking rate, and the data 
switching speed, which are discussed following sections. 

III. METASTABLE AND SYSTEM RELIABILITY 
Synchronization circuit, the metastable still could happen, 

connected with this is the mean time between failures MTBF 
(mean time between failure), the probability of occurrence of 
the metastable and independent of the clock frequency, but 
closely related to the MTBF and clock. Article provides an 
example of a 20MHz clock work under MTBF is about 50 
years, but the clock frequency to 40MHz, MTBF only 1 minute! 
Seen to reduce the clock frequency can be greatly reduced 
metastable lead to system errors appear, the reason is that, if 
the clock cycle than the resolution time can be reduced to the 
metastable state is passed to the next level of opportunity to 
improve system MTBF shown in Fig .2. 
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Figure 2.  

IV. COMMON SOLUTION 
IC foundries help with signal synchronization by providing 

specially designed synchronizer cells. Usually this 
synchronizer cells consists of a flip-flop with a very high gain 
that uses more power and is larger than a standard flip-flop. 
This flip-flop has reduced setup and hold time requirements for 

the input signal and is resistant to oscillating when input signal 
causes a metastable condition. Another type of synchronizer 
cell contains two flip-flops, which eases the layout engineerís 
job by meeting the requirement of placing the flip-flops close 
to each other and prevents the designer from placing any 
combinational logic between the flip-flops. 

Thus, the synchronizer for high-speed digital circuits, 
usually take the strategy is to trigger cascade time buffer to 
provide time for the circuit to recover from the metastable state, 
that the time delay to reduce the metastable impact on the 
circuit has occurred. 

A Flip-Flop Synchronizer 

Synchronizing signals begins by protecting downstream 
logic from the metastable state of the first flip-flop in a new 
clock domain. A simple synchronizer consists of two flip-flops 
in series without combinational circuitry between them (see 
Figure 1-4: A Simple Synchronizer). This design ensures the 
first flip-flop exits its metastable state and its output settles 
before the second flip-flop samples the first oneís output.  
Besides the circuit design, there is another requirement to 
make a successful synchronizer. The layout engineer needs to 
place the flip-flops close to each other. This guarantees the 
shortest signal wire between the output of the first flip-flop 
and the input of the second one and ensures the smallest 
possible clock skew between the flip-flops. There are many 
different designs for synchronizers and each has specific uses 
because one type does not work well in all applications. All 
synchronizers fall into three basic categories: edge-detect and 
pulse. 

B The Edge Synchronizer 

As shown in Fig .3, the edge detection synchronous increase 
in the level synchronizer output a trigger. New trigger output 
by the output of the inverting and level synchronizer operation. 
This circuit detects the rising edge of the synchronous input 
signal, resulting in a synchronized clock cycle wide active high 
pulse. If the two input AND gate is used interchangeably, can 
constitute a detection of the falling edge of the input signal 
synchronizer. AND gate NAND gate instead, you can build a 
circuit to generate an active-low pulse. 
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Figure 3. Edge-Detect Synchronizer 

The edge-detect synchronizer’s main application is 
synchronizing a pulse going to a faster clock domain. This 
circuit produces a pulse that indicates the rising (or falling) 
edge of the input signal. A restriction on the application of this 
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synchronizer is the width of the input pulse must be greater 
than the period of the synchronizer clock plus the required hold 
time of the first synchronizer flip-flop. The safest pulse width 
is twice the synchronizer clock period. This synchronizer does 
not work if the input is a single clock-wide pulse going to a 
slower clock domain; however, the pulse synchronizer solves 
this problem.  

C The Pulse Synchronizer 

As shown in Fig .4, the pulse synchronizer input signal is a 
single clock width pulse, which triggers a flip circuit of the 
original clock domain. Whenever the flip circuit receives a 
pulse, it will be converted in the high, low, and then through 
thelevel synchronization to reach the input of the XOR gate, 
while another signal by one clock cycle delay into different 
conversion time state of the door the other side, flip the circuit, 
the output of the synchronizer to produce a single clock pulse 
width.  
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Figure 4. Pulse Synchronizer 

The basic function of a pulse synchronizer is to take a 
single clock wide pulse from one clock domain and create a 
single clock wide pulse in the new domain. One restriction on 
this synchronizer design is the input pulses must have a 
minimum time between them. This minimum spacing between 
the pulses is equal to two synchronizer clock periods. If the 
input pulses are closer, the output pulses in the new clock 
domain are adjacent to each other resulting in an output pulse 
that is wider than one clock cycle. This is a more severe 
problem when the clock period of input pulse is greater than 
twice the synchronizer clock period. In this case, if the input 
pulses are too close, the synchronizer does not detect every 
one.  

D FIFO synchronizer 

If we use two Flip-Flop synchronizers to synchronize the 
system, this probability can be reduced to an acceptable range. 
Another problem is the design of the FIFO address generator. 
Although binary counters work fine for addressing the 
memory trying to synchronize binary counters into a new 
clock domain is problematic. The binary counter changes 
more than one bit at the same time and every bit change at 
different time. The address which is sampled by the 
synchronous clock may be different with its true value. If we 
use this pointer to do the comparison work and produce full 
and empty flag which is unadvisable. A better approach for 

passing pointers between clock domains is to use a gray-code 
counter for the two FIFO pointers.  

The Gray Code counter is a binary adder with converters 
from and to Gray Code before and after the adder. Since 
converting to and from Gray Code is a XOR operation, this 
counter design has only two more levels of logic than a binary 
counter. A design can use the same technique to compare Gray 
Code pointer values by adding converters between the pointers 
and binary comparison logic.   

This FIFO status technique gives pessimistic status for 
both reads and writes. The status on the write side indicates 
full when the FIFO fills and continues to indicate full after it is 
read since synchronization delays the read pointer to the 
write-side comparison logic. This is also true for the empty 
status on the read side since synchronization delays the write 
pointer to the read-side comparison logic.  
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Figure 5. Pulse Synchronizer 

Fig .5 shows the general junction asynchronous FIFO 
Institutions. How to correctly determine the FIFO empty / full 
status is the key to the design of the FIFO. In order to 
effectively improve the empty / full flag generation logic 
reliability in set in total, can be read / write address is divided 
into counts and internal address by the former to produce the 
empty / full flag, the latter as a dual-port RAM read / Write 
address, thereby reducing the synchronization signal, reduce 
the number of signals Asia Steady state production. To count 
the address of the synchronization, it is recommended using 
Gray Code instead of binary code. Gray code is a time to 
transform a significantly drop Low number of address signal 
transition to eliminate the count of the address bus Bit 
different synchronization when the competition. Its 
synchronization, at most An address data into the metastable 
state, and therefore further reduce the probability of the 
metastable For the circuit delay consideration in the design of 
the empty full flag to generate Logic, it is best to let the state 
of the FIFO circuit in the FIFO is about to read Send empty or 
filled with empty / full flag in order to effectively guarantee 
the FIFO not low or overflow. Asynchronous FIFO design by 
raising the empty / full The flag logic reliability, can inhibit 
the metastable state. 
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V. THE SIMULATION RESULTS 
Verilog-HDL and Altera Cyclone EP2C35F484 FPGA are 

used to design the circuit. QuartusII and Modelsim SE are 
used as developing enviament. In the experiment we set the 
data width as 32 bit and the address depth 4bit.  

As shown in Fig .6,Fig .7, respectively, run under 
Modelsim simulation of the two sets of edge detection 
synchronization and pulse synchronizer. The following brief 
account. clk1 is the clock of the primary circuit; clk2 
synchronization clock; pulse_din input pulse synchronizer 
pulse_dout its output; edge_din input synchronizer edge 
detection, edge_dout its output. Figure 4 shows the 
synchronization input and output of the edge detection 
synchronization and pulse under normal conditions. In Figure 
5, the pulse synchronizer input (pulse_din), pulse interval is 
too small, the synchronizer can not distinguish between the 
two input pulses, can only output (pulse_dout the) a 
synchronization clock cycle the width of the pulse.  

 
Figure 6. Pulse Synchronizer 

  
 

Figure 7. Pulse Synchronizer 

We can see that only if the empty flag is invalid the reading 
address will increase. Otherwise the reading pointer keeps 
itself invariable until the empty flag is invalid. The reading 
enable will valid as soon as the full flag is invalid. Fig .7 
shows the simulation results when the writing clock is faster 

than the writing clock. If the full flag is valid, the writing 
pointer has no change and the writing enable will be put down. 

VI. CONCLUSION 
The main causes of metastability, timing devices within the 

sampling window, and can not guarantee that the input signal is 
always maintained at a stable level. Therefore, we need by 
reducing the sampling window to increase the sampling 
success rate (using the edge of the trigger for level trigger, but 
also a way to reduce the sampling window), or by the stability 
window of the sampling window or input data move to ensure 
that sampling to resolve the metastability issue. But the 
participation of the asynchronous signal, the solution will 
become extremely complex. Therefore, there is not a universal, 
effective and feasible solution. However, the mechanism of the 
formation of metastable, allows us to ease from the engineering 
point of view to solve specific metastability may occur in the 
actual project. 
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