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Abstract

The study of fractional q-calculus in this paper serves as a bridge between the fractional
q-calculus in the literature and the fractional q-calculus on a time scale Tt0

= {t : t =
t0q

n, n a nonnegative integer } ∪ {0}, where t0 ∈ R and 0 < q < 1. By use of time
scale calculus notation, we find the proof of many results more straight forward. We
shall develop some properties of fractional q-calculus, we shall develop some properties
of a q-Laplace transform, and then we shall employ the q-Laplace transform to solve
fractional q-difference equations.

1 Introduction

In this article, we shall study fractional calculus on the specific time scale, Tt0 = {t : t =
t0q

n, n a nonnegative integer }∪ {0}, where t0 ∈ R and 0 < q < 1. In general, a time scale
is a closed subset of the reals [8].

The purpose of the article is two-fold. First, we shall develop a q-transform method
on T. We shall then define some q-fractional difference equations on T and apply the
q-transform method to obtain solutions. The application of a q-transform method to q-
fractional difference equations is new. Second, throughout this article, we shall apply the
time scales calculus notation [8]. We shall illustrate calculations using time scales calculus
notation with the implication that the time scales calculus notation will make the theory
and calculations more transparent. In addition to providing more transparent arguments,
we do produce new properties, e.g., a useful power rule, through this application on time
scales.

Much is already known about q-calculus. Early developments for q-fractional calculus can
be found in the work of Al-Salam and co-authors [3], [4], or [5]. A q-Laplace transform
method has been developed by Abdi ([14]) and applied to q-difference equations ([1], [2]).
Moreover, there is currently much activity to reexamine and further develop the q-special
functions. Notable early work includes the work of Jackson ([15], [16], [17], [18], [19]) and
Hahn ([13], [14]). We also refer the reader to more recent articles by De Sole and Kac
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[10], McAnally ([22], [23]), Ernst [12], and Koornwinder [20], [21] and books by Andrews,
Askey, Verma [6] and Carlson [9] for current and excellent accounts of q-special functions.
For further reading on the fractional calculus on a time scale T = R the books by Miller
and Ross [24] and by Podlubny [25] are excellent sources.

We intend that the article be self-contained; we shall introduce sufficient notation from
the calculus on time scales so the reader does not need previous familiarity; an excellent
account of the calculus on time scales is found in the monograph of Bohner and Peterson
[8].

In Sections 2 and 3, we shall present the introductory definitions. We shall employ both the
traditional notation employed in the references cited above and the time scales notation.
Definitions will include the q-factorial function, the q-fractional integral, a version of the
q-exponential function, and a q-Gamma function. Of note, we shall then obtain an integral
representation of the q-Gamma function and obtain a power rule for fractional derivatives.
In Section 4, we shall illustrate the Laplace transform method and define and solve several
families of linear fractional q-difference equations with constant coefficients. Sections 3 and
4 are modelled after a recent development [7] for the fractional calculus of finite difference
equations on Z.

2 q-Gamma and the q-exponential functions

Let t0 ∈ R and define

Tt0 = {t : t = t0q
n, n a nonnegative integer } ∪ {0}, 0 < q < 1.

If there is no confusion concerning t0 we shall denote Tt0 by T. For a function f : T → R,
the nabla q-derivative of f is

∇qf(t) =
f(qt) − f(t)

(q − 1)t
(2.1)

for all t ∈ T \ {0}. The nabla q-integral of f is

∫ t

0
f(s)∇s = (1 − q)t

∞
∑

i=0

qif(tqi). The

fundamental theorem of calculus applies to the nabla q-derivative and nabla q-integral; in
particular,

∇q

∫ t

0
f(s)∇s = f(t),

and if f is continuous at 0, then

∫ t

0
(∇qf(s))∇s = f(t) − f(0).

Change of variables is valid in times scales integration ([8, 11]). In the following theorem,
we state a special case as it applies in the article. In each application throughout this
article, g(t) = at for some positive constant a. Thus, ∇qg(t) = a.
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Theorem 1. Let Tt1 , Tt2 denote two time scales. Let f : Tt1 → R be continuous, let
g : Tt1 → Tt2 be nabla q−differentiable, strictly increasing, and g(0) = 0. Then for
b ∈ Tt1 ,

∫ b

0
f(t)∇qg(t)∇t =

∫ g(b)

0
(f ◦ g−1)(s)∇s.

Definition 1. The q-factorial function is defined in the following way. If n is a positive
integer, then

(t − s)(n) = (t − s)(t − qs)(t − q2s)...(t − qn−1s).

If ν is not a positive integer, then

(t − s)(ν) = tν
∞
∏

n=0

1 −
s

t
qn

1 −
s

t
qν+n

.

We shall state several properties of the q-factorial function; each property is verified using
the definition and a straightforward calculation.

Theorem 2. (i) (t − s)(β+γ) = (t − s)(β)(t − qβs)(γ)

(ii) (at − as)(β) = aβ(t − s)(β)

(iii) The nabla q-derivative of the q-factorial function with respect to t is

∇q(t − s)(ν) =
1 − qν

1 − q
(t − s)(ν−1)

(iv) The nabla q-derivative of the q-factorial function with respect to s is

∇q(t − s)(ν) = −
1 − qν

1 − q
(t − qs)(ν−1),

where β, γ ∈ R.

Definition 2. The q-exponential function is defined as

eq(t) =

∞
∏

n=0

(1 − qnt), eq(0) = 1.

Note that eq(1) = 0 and

∇q(eq(t)) =
eq(qt)

q − 1
. (2.2)

We are now in a position to give the integral representation of the q-gamma function. Let
α ∈ R \ {...,−2,−1, 0}. Define the q-Gamma function by

Γq(α) =
1

1 − q

∫ 1

0
(

t

1 − q
)α−1eq(qt)∇t. (2.3)
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Remark 2.1. Make the change of variable (1− q)s = t in the above definition and apply
the change of variable theorem, Theorem 1. It is clear that the definition of the q-Gamma
function given by (2.3) is equivalent to the form defined in [20] and employed in [10]:

Γq(α) =

∫ 1

1−q

0
sα−1eq(q(1 − q)s)∇s.

Lemma 1. Γq(α + 1) =
1 − qα

1 − q
Γq(α); Γq(1) = 1, where α ∈ R

+.

Proof. Integration by parts is a valid tool in time scales calculus [8, page 332], and it
follows from the product rule for differentiation:

∇q(fg)(t) = f(qt)∇qg(t) + (∇qf(t))g(t).

Γq(α + 1) =
1

1 − q

∫ 1

0
(

t

1 − q
)αeq(qt)∇t

=
1

1 − q

∫ 1

0

tα

(1 − q)α−1
[−

eq(qt)

q − 1
]∇t

=
1

1 − q

∫ 1

0

tα

(1 − q)α−1
∇qeq(t)∇t

=
1

1 − q

(

−
tα

(1 − q)α−1
eq(t)|

1
0 +

1 − qα

1 − q

∫ 1

0

tα−1

(1 − q)α−1
eq(qt)∇t

)

=
1 − qα

1 − q
Γq(α).

Γq(1) =
1

1 − q

∫ 1

0
eq(qt)∇t =

1

1 − q

∫ 1

0
∇qeq(t)∇t = −eq(t)|

1
0 = 1.

�

For any positive integer k,

Γq(k + 1) =
(1 − qk)

(1 − q)

(1 − qk−1)

(1 − q)
...

(1 − q2)

(1 − q)

(1 − q)

(1 − q)
.

This observation allows us to see k! on qN0

[k]! =
(1 − qk)

(1 − q)
...

(1 − q2)

(1 − q)

(1 − q)

(1 − q)
= 1(1 + q)(1 + q + q2)...(1 + q + q2 + ... + qk−1).

The notation [k]! has been used in [4] previously.

Remark 2.2. In [4], Al-Salam defined the q-Gamma function in the following way:

Γ∗
q(α) =

eq(q)

(1 − q)α−1eq(qα)
, α 6= 0,−1,−2,−3, .... (2.4)

To see that Γq(α) = Γ∗
q(α), we use the following formula given by Hahn in [13]:

∫ 1

0
sα−1eq(qs)∇s = (1 − q)

∞
∏

i=0

1 − qi+1

1 − qα+i
.

Hence the q-Gamma function satisfies the functional equation in Lemma 1 for any α other
than negative integers.
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3 Fractional q-integral

The fractional q derivative and the fractional q-integral have been defined in earlier work
[3, 4, 5]. We shall employ the following definition of the fractional q- integral:

∇q
−ν(f(t)) =

1

Γq(ν)

∫ t

0
(t − qs)(ν−1)f(s)∇s. (3.1)

The first elementary property we derive is a power rule. We shall employ the q- beta
function

Bq(t, s) =

∫ 1

0
xt−1(1 − qx)(s−1)∇x,

recently defined in [10].

Lemma 2.

∇−ν
q tµ =

Γq(µ + 1)

Γq(µ + ν + 1)
tµ+ν .

Proof. Begin with the left hand side of the equality

∇−ν
q tµ =

1

Γq(ν)

∫ t

0
(t − qs)(ν−1)sµ∇s.

Set tr = s and apply Theorem 1. Then

∇−ν
q tµ =

1

Γq(ν)

∫ 1

0
(t − qtr)(ν−1)(tr)µt∇r.

Apply Theorem 2 (ii) and

∇−ν
q tµ =

1

Γq(ν)
tν+µ

∫ 1

0
rµ(1 − qr)(ν−1)∇r

=
1

Γq(ν)
tν+µBq(µ + 1, ν).

Employ the identity Bq(µ + 1, ν) =
Γq(µ + 1)Γq(ν)

Γq(µ + ν + 1)
proved in [10], and the power rule

follows.

�

Lemma 3. If f(t) is defined and finite, then for 0 < ν < 1

∇ν
qf(t) = ∇q∇

−(1−ν)
q f(t),

where t ∈ [qa, qb] ⊂ T with a, b ∈ N0, b < a.

Proof. The following equality [8, page 333] is crucial for the proof:

∇q[

∫ t

a
f(t, s)∇s] =

∫ t

a
∇q(f(t, s))∇s + f(qt, t).
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Using this identity and Remark 2.2 and since (t− qs)(−ν−1) is continuous as a function of
t on [qa, qb], we have

∇q∇
−(1−ν)
q (f(t)) = ∇q[

1

Γq(1 − ν)

∫ t

0
(t − qs)(−ν)f(s)∇s]

=
1

Γq(1 − ν)

∫ t

0

1 − q−ν

1 − q
(t − qs)(−ν−1)f(s)∇s + (qt − qt)(−ν)f(t)

=
1

Γq(−ν)

∫ t

0
(t − qs)(−ν−1)f(s)∇s = ∇ν

qf(t).

Remark 3.1. If µ > 0 and m − 1 < µ < m for a positive integer m, we extend the idea
of the proof of Lemma 3 and write

∇q
µf(t) = ∇q

m−(m−µ)f(t) = ∇q
m(∇q

−(m−µ)f(t))

on [qa, qb] and treat the operator ∇q
m as an iterated higher order q-difference as defined

by (2.1).

4 The q-Laplace transform

We shall employ the q-Laplace transform defined by W. Hahn in 1949 [14].

Lq{f(t)}(s) =
1

1 − q

∫ 1

s

0
f(t)eq(qst)∇t

Lemma 4. For any α ∈ R \ {...,−2,−1, 0},

Lq{
tα−1

(1 − q)α−1
}(s) =

Γq(α)

sα
.

Proof. We again illustrate the integration methods of time scale calculus.

Lq{
tα−1

(1 − q)α−1
}(s) =

1

1 − q

∫ 1

s

0

tα−1

(1 − q)α−1
eq(qst)∇t.

Set r = st.

Lq{
tα−1

(1 − q)α−1
}(s) =

1

1 − q

∫ 1

0

rα−1

(s(1 − q))α−1
eq(qr)

∇r

s
=

Γq(α)

sα
.

�

We now turn our attention to a shift theorem for the q-Laplace transform. First note the
following identity.

∇q(e
−1
q (t)) =

1

1 − q
e−1
q (t).

Lemma 5. Let a be any real number. Then

Lq{e
−1
q (at)}(s) =

1

s − a
.
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Let n denote a positive integer. Then

Lq{t
ne−1

q (at)}(s) =
1

s − a

n
∏

j=1

1 − qj

s − qja
=

(1 − q)n[n]!

(s − a)(n+1)
. (4.1)

Proof. Note that

∇q(e
−1
q (at)eq(st)) =

s − a

q − 1
e−1
q (at)eq(qst).

So for n = 0,

Lq{e
−1
q (at)}(s) =

1

s − a
.

The proof proceeds by induction. Let n ≥ 1 be an integer. Note that

∇q(t
ne−1

q (at)eq(st)) = tne−1
q (at)∇qeq(st) + ∇q(t

ne−1
q (at))eq(qst)

=
s − qna

q − 1
tne−1

q (at)eq(qst) +
qn − 1

q − 1
tn−1e−1

q (at)eq(qst).

Integrate this identity from 0 to 1
s . The left hand side vanishes and the right hand side

yields

Lq{t
ne−1

q (at)}(s) =
1 − qn

s − qna
Lq{t

n−1e−1
q (at)}(s).

�

Remarkably, Hahn [14] obtained a convolution theorem for specific classes of functions. In

particular, set F1(t) = tµ and set F2(t) = tν−1. Define F2[t] = (t − qrt)(ν−1). Define the
convolution

(F1 ∗ F2)(t) =
t

1 − q

∫ 1

0
F2[t]F1(rt)∇r =

t

1 − q

∫ 1

0
(t − qrt)(ν−1)F1(rt)∇r,

where ν ∈ R \ {...,−2,−1, 0}.
We can obtain Hahn’s [14] result directly as an application of the power rule and Lemma
4. Note that with the change of variable s = rt,

(F1 ∗ F2)(t) =
t

1 − q

∫ 1

0
(t − qrt)(ν−1)F1(rt)∇r

=
Γq(ν)

1 − q

1

Γq(ν)

∫ t

0
(t − qs)(ν−1)F1(s)∇s =

Γq(ν)

1 − q
∇q

−ν(F1(t)).

Hence, we calculate F1 ∗ F2 for F1(t) = tµ and F2(t) = tν−1. By the power rule,

(F1 ∗ F2)(t) =
Γq(ν)Γq(µ + 1)

(1 − q)Γq(µ + ν + 1)
tµ+ν .

Now simply apply Lemma 4 to each of F1, F2, F1 ∗ F2 and obtain a conolution theorem,

Lq{(F1 ∗ F2)(t)}(s) = Lq{F1(t)}(s)Lq{F2(t)}(s).
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Note then, as Hahn [14] noted, that the convolution theorem will be valid for functions
F1 representing linear sums of functions of the form tµ. Clearly, µ is not necessarily an
integer. We do not state a general theorem, but we do state a corollary which will be
applied in Example 3.

Corollary 1. Let F1 be an analytic function and let F2(t) = tν−1 on T \ {0}. Then

Lq{(F1 ∗ F2)(t)}(s) = Lq{F1(t)}(s)Lq{F2(t)}(s). (4.2)

We now obtain some of the standard properties for the Lq-transform.

Lemma 6. Assume f = F1 is of the type such that (4.2) is valid. Then

Lq{∇
−ν
q f(t)}(s) =

(1 − q)ν

sν
Lq{f(t)}(s).

Proof. First note that

∇q
−νf(t) =

1

Γq(ν)

∫ t

0
(t − qs)(ν−1)f(s)∇s

=
1

Γq(ν)

∫ 1

0
(t − qrt)(ν−1)f(rt)t∇r

=
t

Γq(ν)

∫ 1

0
(t − qrt)(ν−1)f(rt)∇r

=
1 − q

Γq(ν)
(f ∗ F2)(t),

where F2(t) = tν−1. Thus,

Lq{∇q
−νf(t)}(s) =

(1 − q)

Γq(ν)
Lq{(f ∗ F2)(t)}(s)

=
(1 − q)

Γq(ν)
Lq{f(t)}(s)Lq{F2(t)}(s)

=
(1 − q)

Γq(ν)
Lq{f(t)}(s)(1 − q)ν−1 Γq(ν)

sν

=
(1 − q)ν

sν
Lq{f(t)}(s).

�

For the next set of properties, first note that

∇q(eq(st)f(t)) = (∇qeq(st))f(t) + (∇qf(t))eq(qst).

Thus,

Lq{∇qf(t)}(s) =
1

1 − q
(sLq{f(t)}(s) − f(0)).

It follows by induction that if m denotes a positive integer, then

Lq{∇q
mf(t)}(s) =

sm

(1 − q)m
Lq{f(t)}(s) −

m−1
∑

i=0

sm−1−i

(1 − q)m−i
∇q

if(0). (4.3)
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Lemma 7. If f is analytic function on T \ {0}, then we have

Lq{∇
m
q ∇ν

qf(t)}(s) =
sm+ν

(1 − q)m+ν
Lq{f(t)}(s) −

m−1
∑

i=0

sm−1−i

(1 − q)m−i
∇i

q∇
ν
q (f(t))|t=0

.

Proof. The proof easily follows from the equality (4.3) and Lemma 6. �

By ∇i
q∇

ν
q (f(t))|t=0 we mean limt→0+ ∇i

q∇
ν
q (f(t)).

Example 1. Consider the following fractional q-difference equations:

a) ∇
3/2
q y(t) = 0 for T \ {0}.

b) ∇q∇
1/2
q y(t) = 0 for T \ {0}. Assume that ∇

1/2
q y(0) is defined and finite.

c) ∇2
q∇

−1/2
q y(t) = 0 for T \ {0}. Assume that ∇

−1/2
q y(0) is defined and finite.

Note that the operators on the left side of each equation (i.e ∇
3/2
q , ∇q∇

1/2
q and ∇2

q∇
−1/2
q )

are equivalent on [qa, qb] ⊂ T. Since our method requires knowledge of the fractional
derivatives of the solution defined at zero as well, the equations given in each of (a), (b),
and (c) are not equivalent.

We search for analytic solution(s) on T \ {0} for each equation by use of q-Laplace trans-
form.

For part (a), if we take the Lq-transform of the each side of the equation, then by use of
Lemma 6 we have y(t) = 0.

For part (b), we take the Lq-transform of the each side of the equation then we use the
properties of the Lq transform and obtain

Lq{y(t)} =
(1 − q)1/2

s3/2
∇1/2

q y(t)|t=0.

By use of Lemma 4 we have the solution

y(t) =
∇

1/2
q y(t)|t=0

Γq(3/2)
t1/2.

For part (c), we take the Lq-transform of the each side of the equation then we use the
properties of the Lq transform and obtain

Lq{y(t)} =
1

s1/2(1 − q)1/2
∇−1/2

q y(t)|t=0 +
(1 − q)1/2

s3/2
∇q∇

−1/2
q y(t)|t=0.

By use of Lemma 4 we have the solution

y(t) =
∇

−1/2
q y(t)|t=0

Γq(1/2)
t−1/2 +

∇q∇
−1/2
q y(t)|t=0

Γq(3/2)
t1/2.

Example 2. Consider the problem ∇q∇
−2/3
q y(t) = tµ for T \ {0}.

Applying Lq-transform for the each side of the given equation, we have

s1/3(1 − q)−1/3Lq(y(t)) − (1 − q)−1∇
−2/3
q y(t)|t=0 =

(1 − q)µΓq(µ + 1)

sµ+1
.

Lq{y(t)} =
∇

−2/3
q y(t)|t=0

s1/3(1 − q)2/3
+

(1 − q)µ+1/3Γq(µ + 1)

sµ+4/3
.



350 Ferhan M. Atici and Paul W. Eloe

Then the solution is y(t) =
∇

−2/3
q y(t)|t=0

Γq(1/3)
t−2/3 +

Γq(µ + 1)

Γq(µ + 4/3)
tµ+1/3.

The above calculation makes clear that if f(t) is a linear sum of terms of the form tµi ,

f(t) =
∑

i aµi
tµi , then a solution of ∇q∇

−2/3
q y(t) = f(t) for t ∈ T \ {0} has the form

y(t) =
∇

−2/3
q y(t)|t=0

Γq(1/3)
t−2/3 +

∑

i

aµi

Γq(µi + 1)

Γq(µi + 4/3)
tµi+1/3,

where µi ∈ R \ ({...,−2,−1} ∪ {...,−2 − 4/3,−1 − 4/3,−4/3}).

Example 3. Consider the problem ∇2
q∇

−1/3
q y(t) + α∇q∇

−1/3
q y(t) = t2e−1

q (q(q − 1)αt) for
T \ {0}.
Applying Lq-transform to each side of the equation, we have

Lq{y(t)} =
s1/3

(1 − q)1/3(s + (1 − q)α)
∇−1/3

q y(t)|t=0

+
1

s2/3(1 − q)−2/3(s + (1 − q)α)
(∇q∇

−1/3
q y(t)|t=0+α∇−1/3

q y(t)|t=0)+
(1 − q)11/3[2]!

s2/3(s + (1 − q)α)(4)
.

As a result of Corollary 1 and Lemma 5, we have the solution of the fractional q-difference
equation

y(t) =
(1 − q)∇

−1/3
q y(t)|t=0

Γq(−1/3)
e−1
q ((q − 1)αt) ∗ t−4/3

+
(1 − q)(∇q∇

−1/3
q y(t)|t=0 + α∇

−1/3
q y(t)|t=0)

Γq(2/3)
e−1
q ((q − 1)αt) ∗ t−1/3

+
(1 − q)

(1 + q + q2)Γq(2/3)
(t3e−1

q ((q − 1)αt)) ∗ t−1/3.

We close by illustrating a second form of solution in Example 3. As a corollary, we exhibit
a method to calculate ∇−ν

q (e−1
q (t)).

Lemma 8. [2, 14] (i) If Lq{f(t)} = F (s), then Lq{f(at)} =
1

a
F (

s

a
)

(ii) Lq{t
β−1

2ϕ1(q
α, 0; qβ ; t)} =

(1 − q)(β−1)

sβ

1

(1 − 1
s )(α)

,

where 2ϕ1(a, 0; b; t) =
∞
∑

r=0

(1 − a)(r)

(1 − b)(r)(1 − q)(r)
tr is q-hypergeometric function.

Remark 4.1. One can easily verify the following using Corollary 1 and Lemma 8 (ii) for
the case α = 1:

Lq{∇
−ν
q (e−1

q (t))} =
1 − q

Γq(ν)
Lq(t

ν−1 ∗ e−1
q (t)) =

(1 − q)ν

sν(s − 1)
and

Lq{
(1 − q)ν

(1 − q)(ν)
tν2ϕ1(q, 0; q

ν+1; t)} =
(1 − q)ν

sν(s − 1)
.

The uniqueness of q-Laplace transform [14] implies that

∇−ν
q (e−1

q (t)) =
(1 − q)ν

(1 − q)(ν)
tν2ϕ1(q, 0; q

ν+1; t)).
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After observing all these nice relations, we have another way to write the solution of the
Example 3:

y(t) =
(1 − q)∇

−1/3
q y(t)|t=0

(1 − q)(−1/3)
((q − 1)t)−1/3

2ϕ1(q, 0; q
2/3; (q − 1)αt)

+
(1 − q)(∇q∇

−1/3
q y(t)|t=0 + α∇

−1/3
q y(t)|t=0)

(1 − q)(2/3)
((q − 1)t)2/3

2ϕ1(q, 0; q
5/3; (q − 1)αt)

+
(1 − q)

(1 + q + q2)Γq(2/3)
(t3e−1

q ((q − 1)αt)) ∗ t−1/3.

Acknowledgement: The authors thank to the referee for his/her constructive comments
and suggestions.
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