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Abstract—A graph is half-arc-transitive if its 
automorphism group acts transitively on its vertex set, 
edge set, but not arc set. Let n be a product of three 
primes. The problem on classification of the half-arc-
transitive graphs of order n has been considered in [J 
Algebraic Combin 1(1992) 275-282, Discrete Math 
310(2010) 1721-1724, European J Combin 28(2007) 726-
733], and it was solved for the cases where n is a prime 
cube or twice a product of two primes. In this paper, we 
give the classification of the tetravalent half-arc-transitive 
graphs of order pqr, where p, q, r are distinct odd primes. 

Keywords- cayley graph; vertex-transitive graph; half-

arc-transitive graph; simple group;quotient graph 

I. INTRODUCTION 
All graphs considered in this paper are finite, connected, 
undirected and simple, but with an implicit orientation 
of the edges when appropriate. Given a graph X, denote 
by V(X), E(X), A(X) and Aut(X) the vertex set, edge 
set, arc set and automorphism group of X, respectively. 
A graph X is said to be vertex-transitive, edge-transitive 
and arc-transitive(symmetric) if Aut(X) acts transitively 
on V(X), E(X) and A(X), respectively. The graph X is 
said to be half-arc-transitive provided that it is vertex- 
and edge- but not arc-transitive. More generally, by a 
half-arc-transitive action of a subgroup G of Aut(X) on 
X we shall mean a vertex- and edge-, but not arc-
transitive action of G on X. In this case we say that the 
graph X is G-half-arc-transitive. 

In 1947, Tutte[1] initiated the investigation of half-
arc-transitive graphs by showing that a vertex- and 
edge-transitive graph with odd valency must be arc-
transitive, and few years later, Bouwer[2] gave a 
construction of 2k-valent half-arc-transitive graph for 
every k ≥ 2. Following these two classical articles, half-
arc-transitive graphs have been exten-sively studied 
from different perspectives over decades by many 
authors. (for example, see [3,4,5,6]). 

In fact, constructing and characterizing half-arc-
transitive graphs with small valencies is currently an 
active topic in algebraic graph theory. In view of the 
fact that 4 is the smallest admissible valency for a half-
arc-transitive graph, special attention has rightly been 
given to the study of tetravalent half-arc-transitive 
graphs. In particular, constructing and classifying the 
tetravalent half-arc-transitive graphs is currently one of 
active topics in algebraic graph theory (for example, see 
[7-9] and [10-13]). 

II. RESULTS 
For the purpose of this paper, we introduce a result due 
to Marusic. 

Let m≥3 be an integer, n≥3 an odd integer and let 
r∈   satisfy rm = ±1. The graph X(r; m, n) is defined to 
have vertex set V={  | i∈Zm , j∈ Zn } and edge set E= 
{{  ,u } | i∈Zm , j∈Zn }. 

A. Proposition 2.1  

[14, Theorem 3.4] A connected tetravalent graph X is a 
tightly attached half-arc-transitive graph of odd radius n 
if and only if X X(r;m,n), where m≥3, and 
r∈ satisfying rm = ±1, and moreover none of the 
following conditions is fulfilled: 
(1) r2 = ±1; 
(2) (r;m,n) = (2;3,7); 
(3) (r;m,n) = (r;6,7k), where k≥1 is odd, (7,k) = 1, r6 = 1, 
and there exists a unique solution q∈{r,-r, r−1 ,-r−1 } of 
the equation x2+x-2=0 such that 7(q−1)=0 and 
q 5(mod 7). 
Now we state two simple observations about half-arc-
transitive graphs. 

B. Proposition 2.2  

[13, Proposition 2.6] Let X be a connected half-arc-
transitive graph of valency 2n. Let A=Aut(X) and let Au 
be the stabilizer of u∈V(X) in A. Then each prime 
divisor of |Au| is a divisor of n!. 

C.  Proposition 2.3  

[9, Propositions 2.1 and 2.2] Let X = Cay(G, S) be half-
arc-transitive. Then S contains no involutions, and there 
is no α∈Aut(G, S) such that sα=s−1 for some s∈S. In 
particular, there are no half-arc-transitive Cayley graphs 
on abelian group. 

The following propositions are some results about 
group theory. Check the orders of the non-abelian 
simple groups, we have the following proposition. 

D. Proposition 2.4 

[15, pp. 12-14, 135-136] Let G be a non-abelian simple 
group and let p>q>r be odd primes. If |G| has at most 
three prime divisors then G is isomorphic to one of the 
following: 
A5,A6,PSL(2,7),PSL(2,8),PSL(2,17),PSL(3,3),PSU(3,3)
,PSU(4,2). If |G| = 2mpqr then G  Sz(8), PSL(2,p), or 
PSL(2,2t ) with an integer t ≥ 4.  
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Let p be a prime and G = PSL(2,pf ). Assume that P 
is a Sylow p-subgroup of G, A and B are cyclic 
subgroups of G of order (pf-1)/(2tpf-1) and (pf+1)/(2tpf-
1), respectively. It is well known that for any g∈G, P 
∩Pg = 1 or P = Pg, A∩Ag = 1 or A=Ag , and B∩Bg =1 or 
B = Bg . Furthermore, NG(A)  D2|A|, NG(B) D2|B| , 
NG(A) and NG(B) are maximal subgroups of G. Then 
we have the following proposition 

E. Proposition 2.5. 

Let p be a prime and G = PSL(2,p f ). Assume that P is a 
Sylow psubgroup of G and H is a maximal dihedral 

subgroup of G. Then for any element g ∈G,P = Pg or 
P∩Pg = 1, and H = Hg or |H ∩ H g | ≤ 2. 

III. CLASSIFICATION 
In this section, we determine the classification of 
tetravalent half-arc-transitive graphs of order pqr. The 
mainly ideas for the paper comes from two situation 
which named “Primitive” and “Non-Primitive”. Fig .1 
showed the idea for the method.  

A=Aut(x)

N is solvable

N≌Zp N≌Zq N≌Zr

M≌Zpq,Z
pr M≌Zqr,Zpr M≌Zpr,Zqr

M≌Zpq,Zpr

X≌X(sk;qr,p) , X(sk;r,pq), X(sk;q,pr)

M Is not isomorphic to Zqr

 N is a minimal normal subgroup of A
 M is a normal subgroup of A 

 
Figure 1.  Method idea  process 

A. Theorem 3.1 

Let 3≤r<q<p be distinct primes and let X be a 
connected tetravalent graph of order pqr. Then X is half-
arc-transitive if and only if X  X(sk;qr,p), X(sk;r,pq) or 
X(sk;q,pr). 

B. Proof 

Let X be a connected tetravalent half-arc-transitive 
graph of order pqr. Let A=Aut(X) and u∈V(X). By 
Proposition 2.2, the stabilizer Au of u in A is a 2-group. 
Thus, |A|=2mpqr for some positive integer m. In 
particular, 2pqr||A|. Let N be a minimal normal subgroup 
of A, C = CA(N) and let M be a normal subgroup of A. 
Now, we prove the following claims. 

C. Claim I 

A has a solvable minimal normal subgroup. Suppose 
that all minimal normal subgroups of A are non-solvable. 
Then N =Tk where T is a non-abelian simple group. 
Note that |A| = 2mpqr. Thus, k=1 and N is a non-abelian 
simple group. By Proposition 2.4, N A5, PSL(2,7), 
Sz(8), PSL(2,p) with  p≥11 or PSL(2,2t) with t≥4. Since 
C∩N is a normal subgroup of N and N C, we have 

C∩N = 1. First suppose that N = A5 or PSL(2,7). Then C 
is solvable. By the assumption, we have C = 1. By N/C-
theorem, A  A/C ≤ Aut(N), a contradiction. Thus, 
N Sz(8), PSL(2,p) or PSL(2,2t). Furthermore, N is 
transitive on V(X). It follows that X Cos(N,H,HSH) 
where H = Nα is a Sylow 2-subgroup of N. Since X has 
valency 4, there exists an element s ∈ S such that 
|H|/|H∩Hs|=2. Note that the intersection of any two 
distinct Sylow 2-subgroups of Sz(8) and PSL(2,2t ) is 
trivial. Hence, N  Sz(8) or PSL(2,2t). It follows that 
N=PSL(2,p) with p≥11. Note that 4||H| and 
|N|=p(p+1)(p−1)/2. By Proposition 2.5, |H ∩Hs | ≤ 2, 
implying that |H| = 4. Thus, p(p+1)(p−1)/2= 4pqr, that is 
(p + 1)(p − 1) = 8qr. Note that 3 ≤ r < q < p and 3 | p2 − 1. 
Then r = 3. A simple calculation shows that p = 11 or 13. 
Then, N = PSL(2,11) or PSL(2,13). Since C∩N = 1, we 
have that C is 2-group, implying that C=1. Hence, 
A=PSL(2,11), PGL(2,11), PSL(2,13) or PGL(2,13). 
Suppose that A = PGL(2,11) or PGL(2,13). Then |H| = 8. 
By magma, there no exists an element s∈A such that |H 
∩Hs| = 4, HsH≠Hs−1H and <H，s>=A, a contradiction. 
Suppose that A=PSL(2,11) or PSL(2,13). Then|H| = 4. 
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Then there exists an element s∈A such that |H∩Hs| = 2,  
<H，s>=A  and HsH≠Hs−1H. However, by magma, 
there exists an element g∈PGL(2,11) or PGL(2,13) 
such that (HsH)g = Hs−1H. It follows that X is 
symmetric, a contradiction. Thus, we may assume that N 

is solvable. From the “Primitive” situation we could get 
the complete graph. Fig .2 showed the algorithms for 
“Non-Primitive” situation. We can get the graphs from 
four different lengths. 

 Support N is non-solvable 

 N≌Tk, T non-abelian simple group 

  

 A5  PSL(2, 7 ) 

 

 Sz (8) 

() 

 PSL(2, 2t) t≥4 

 

 PSL(2,p) 

 

|A|︱120 |A|︱336  |A| cannot be divisible by 4 

 

 P=11,13 

 

 X is symmetric 

 

 a cortadiction 

 

 N is solvable 

 
 

Figure 2.  Non-Primitive algorithm process 

D. Claim II 

M  is not isomorphic to Zqr
, Suppose that M  . Let 

C=CA(M). Then A/C ≤ Zq−1×Z r−1. Since p > q > r, we 
have pqr | |C|, that is C > M. Take a minimal normal 
subgroup B/M of A/M such that B/M ≤ C/M. Then 
B/M  Zp or  . Note that A has no non-trivial normal 
2-subgroup. Suppose that B/M  . Then the Sylow 2-
subgroup of B is normal in A, a contradiction. Thus 
B/M  Zp , that is B  Zpqr. Then X is a Cayley graph on 
group B, by Proposition 2.3, it is impossible. 

E. Claim III 

If M Zpt for t=q or r, then X X(s;q,pr) or X(s;r,pq). 
In this case, A/C ≤ Zp−1×Z t−1 . Consider the quotient 
graph XM of X corresponding to the orbits of M. Then 
|XM |=qr/t. If XM has valency 4, then the stabilizer Ku of 
u in K fixes each neighborhood of u in X because K 
fixes each orbit of M. It follows that Ku = 1 and K = M. 
This implies that XM is A/M-half-arc-transitive, 
furthermore, A/M is non-abelian. Thus C > M. If XM 
has valency 2 and Ku = 1, then A/M D2qr/t. In this case 
we have C > M. Take a minimal normal subgroup B/M 
of A/M such that B/M ≤ C/M. Note that A has no non-
trivial normal 2-subgroup. Then B/M Zqr/t. Thus 
B/M Zqr/t, that is B Zpqr . Then X is a Cayley graph on 
group B, a contradiction. Thus XM has valency 2 and Ku 
≠1. It is easy to know that X X(s;q,pr) or X(s;r,pq). 

By Claim I, N Zp , Zp , or Zr . Let C = CA(N). First, we 
assume that N  Zr. Then A/C ≤ Zr−1 . Note that q >q > r. 
That means that pq||C|. Take a minimal normal 
subgroup B/N of A/N such that B/N ≤ C/N. Then B/N  
Zp or Zq . It follows that B  Zpr or Zqr and B  is a 
normal subgroup of A . By Claim II and III, we have 
that B  Zpr and X X(s;q,pr). Second, we assume that 
N Zq. Similarly, we have X X(s;r,pq). Now we 
assume that N Zp . Similarly argument to Claim III, we 
have that X X(s;r,pq), X(s;q,pr) or X(s;qr,p).By 
Proposition 2.1, X  X(s;r,pq), X(s;q,pr) and X(s;qr,p) 
are half-arc-transitive graphs. 

F. Remark 

In fact, by [6], we know these graphs are normal Cayley 
graphs on Frobenius group. 

CONCLUSION 
In the paper, we give the  classification of tetravalent  
half -arc transitive graph of order pqr, and proved that 
tetravalent half-arc transitive graph of order pqr must be 
tightly attached half-arc-transitive graph. In fact, we 
know that these graphs must be normal Cayley graphs 
on meta-cyclic group (see [6]), implying  that these 
graphs must be meta-circulant. So far, the known half -
arc transitive graphs are mostly meta-circulant, many 
scholars focus on judging whether half -arc transitive 

IV.
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graphs is meta-circulant or not and how to form non-
meta-circulant half-arc transitive graphs. Next, we want 
to give the  classification of tetravalent half-arc transitive 
graphs of order square free and give some examples of  
non-meta-circulant  half- arc-transitive graph. 
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