Hexavalent Half-arc-transitive G aphs of O der 6p

Xiuyun Wang
School of Mathematic Science
University of Jinan
Jinan, Shandong, China
1519168700@qq.com

Abstract

A graph is half-arc-transitive if its auto orphism group acts transitively on its vertex set and edge set, but not arc set. Y-Q. Feng et al. gave the classification of tetravalent half-arc-transitive graph of order $6 p$. In this paper, we proved that hexavalent half-arc-transitive graph of order 6 phas order 42.

Keywords- Cayley graph; half-arc-transitive graph; transitive graph; Heawood graph; quotient graph

I. InTRODUCTION

Throughout this paper graphs are assumed to be finite, simple and undirected, but with an implicit orientation of the edges when appropriate. For a graph X , let $\mathrm{V}(\mathrm{X})$, $\mathrm{E}(\mathrm{X}), \mathrm{A}(\mathrm{X})$ and $\operatorname{Aut}(\mathrm{X})$ be the vertex set, the edge set, the arc set and the auto orphism group of X , respectively. Let $D_{2 n}$ be the dihedral group of order $2 n$, and Z_{n} the cyclic group of order n as well as the ring of integers modulo n. Denote by \mathbb{Z}_{n}^{*} the multiplicative group of Z_{n} consisting of numbers coprime to n, and for a prime p , denote by $\mathbb{Z}_{p}^{n z}$ the elementary abelian group $Z_{p} \times Z_{p}$ $\times \cdots \times Z_{p}$ (m times). For a finite group G and a subset S of G such that $1 \notin S$ and $S=S^{-1}$, the Cayley graph Cay (G, S) on G with respect to S is defined to have vertex set G and edge set $\{\{\mathrm{g}, \mathrm{sg}\} \mid \mathrm{g} \in \mathrm{G}, \mathrm{s} \in \mathrm{S}\}$. A graph X is isomorphic to a Cayley graph on G if and only if its auto orphism group $\operatorname{Aut}(\mathrm{X})$ has a subgroup isomorphic to G , acting regularly on vertices [1, Lemma 16.3].

A graph X is said to be vertex-transitive, edgetransitive or arc-transitive if $\operatorname{Aut}(\mathrm{X})$ acts transitively on $\mathrm{V}(\mathrm{X}), \mathrm{E}(\mathrm{X})$, or $\mathrm{A}(\mathrm{X})$, respectively. A graph is said to be half-arc-transitive provided that it is vertex-transitive and edge-transitive, but not arc-transitive. More generally, by a half-arc-transitive action of a subgroup G of $\operatorname{Aut}(X)$ on a graph X we shall mean a vertextransitive and edge-transitive, but not arc-transitive action of G on X. In this case, we shall say that the graph X is G-half-arc-transitive.

The investigation of half-arc-transitive graphs was initiated by Tutte[2] and he proved that a vertex- and edge-transitive graph with odd valency must be arctransitive. In 1970 Bouwer[3] constructed a 2 k -valent half-arc-transitive graph for every $\mathrm{k} \geq 2$ and later more such graphs were constructed. In fact, constructing and characterizing half-arc-transitive graphs with small valencies is currently an active topic in algebraic graph theory (see[4, 5]). It was shown in [6] gave the classification of tetravalent half-arc-transitive graphs of
order 2 pq . In this paper, we proved that hexavalent half-arc-transitive graph of order 6 p has order 42 .

II. Preliminary Results

Now we state a simple observation about half-arctransitive graphs (see [7])

A. Proposition 2.1

There are no half-arc-transitive graphs with fewer than 27 vertices.
The following proposition is straightforward (see [8, Propositions 2.1 and 2.2]).

B. Proposition 2.2

Let $\mathrm{X}=\operatorname{Cay}(\mathrm{G}, \mathrm{S})$ be a half-arc-transitive graph. Then, there is no involution in S, and no $\alpha \in \operatorname{Aut}(G, S)$ such that $s^{\alpha}=s^{-1}$ for some $s \in S$. In particular, there are no half-arc-transitive Cayley graphs on abelian groups.
Li et al. [9] considered primitive half-arc-transitive graphs.

C. Proposition 2.3

[9, Theorem 1.4] There are no vertex-primitive half-arctransitive graphs of valency less than 10 .
The following proposition can be extracted from Theorem 2.4 and Table 1 in [10].

D. Proposition 2.4

Let X be a connected edge-transitive graph of order 2 p for a prime p .Then X is symmetric. Assume $\mathrm{p} \geqslant 7$. If X has valency 3 then one of the following holds:
(1) $\mathrm{X} \cong \mathrm{G}(2 \cdot 7,3)$), the Heawood graph of order 14 and $\operatorname{Aut}(\mathrm{G}(2 \cdot 7,3))=\operatorname{PGL}(2,7)$;
(2) $\mathrm{X} \cong \mathrm{G}(2 \mathrm{p}, 3), \mathrm{p} \geq 13$ and $3 \mid(\mathrm{p}-1)$. In this case, $\operatorname{Aut}(G(2 p, 3)) \cong\left(Z_{p} \times Z_{3}\right) \times Z_{2}$; If X has valency 6 then one of the following holds:
(3) $\mathrm{X} \cong \mathrm{B}(\mathrm{PG}(2,5)), \quad \mathrm{p}=31$ and $\operatorname{Aut}(\mathrm{B}(\operatorname{PG}(2,5)))=$ РГL $(3,5) \times \mathrm{Z}_{2}$;
(4) $\mathrm{X} \cong \mathrm{B}^{\prime}(\mathrm{H}(11)), \mathrm{p}=11$ and $\operatorname{Aut}(\mathrm{B} 0(\mathrm{H}(11)))=$ $\operatorname{PSL}(2,11) \times \mathrm{Z}_{2}$;
(5) $\mathrm{X} \cong \mathrm{G}(2 \mathrm{p}, 6)$ and $6 \mid(\mathrm{p}-1)$. In this case, $\operatorname{Aut}(\mathrm{G}(2 \cdot 7,6))$
$\cong S_{7} \times Z_{2}$ and $\operatorname{Aut}(G(2 p, 6)) \cong\left(Z_{p} \times Z_{6}\right) \times Z_{2}$ for $p \geq 13$.
Now we give a well-known result.

E. Proposition 2.5

Let X be a connected arc-transitive cubic graph of order 4 p , where p is a prime. Then X is one of the following: Q_{3}, the 3-dimensional cube; D_{20}, the dodecahedron; C_{28}, the Coxeter graph; and $\operatorname{GP}(10,3)$, the generalized Peterson graph.
The following proposition can be extracted from [11] and [12].

F. Proposition 2.6

Let X be a connected hexavalent edge-transitive graph of order $3 p$, where p is a prime. If X is half-arc-transitive, then $\mathrm{X} \cong \mathrm{M}(\mathrm{d} ;, 3, \mathrm{p})$ where $(\mathrm{d}, \mathrm{p}) \neq(2,7)$ or $(3,19)$ with $\mathrm{d} \mid(\mathrm{p}-1) / 3$. If X is symmetric then one of the following holds:
(1) $\mathrm{X} \cong T_{6}{ }^{C}$, the graph of order 30 and $\operatorname{Aut}\left(T_{6}{ }^{C}\right)=\mathrm{S}_{6}$;
$(2) \mathrm{X} \cong \mathrm{L}_{2}(19){ }_{57}^{6}, \mathrm{p}=19$ and with $\operatorname{Aut}(\mathrm{X}) \cong \operatorname{PSL}(2,19)$.
(3) $\mathrm{X} \cong \mathrm{G}(3 \mathrm{p}, 3)), 3 \mid \mathrm{p}-1$ and $\operatorname{Aut}(\mathrm{X})=\left(\mathrm{Z}_{\mathrm{p}}: \mathrm{Z}_{3}\right): \mathrm{S}_{3}$; (4) $\mathrm{X} \cong \mathrm{G}(\mathrm{p}, 2)\left[3 \mathrm{~K}_{1}\right]$.

Now we state two simple observations about half-arctransitive graphs.

G. Proposition 2.7

[13, Proposition 2.6] Let X be a connected half-arctransitive graph of valency 2 n . Let $\mathrm{A}=\operatorname{Aut}(\mathrm{X})$ and let A_{u} be the stabilizer of $u \in V(X)$ in A. Then each prime divisor of $\left|A_{u}\right|$ is a divisor of $n!$. In particular, if X has valency 6 then A_{u} is a $\{2,3\}$-group.

H. Lemma 2.8

Let X be a connected edge-transitive graph of order 2 n and $A=\operatorname{Aut}(X)$. If A has an abelian normal subgroup N of order n, then X is a Cayley graph. Furthermore, If N is cyclic, and then X is non-half-arc-transitive.

I. Proof

Suppose that N be an abelian normal sub group of A . Then X is bipartite graph with the two orbits of N as its two bipartite sets. It is easy to see that N acts regularly on each partite set of X. Thus, one may identify $R(N)=$ $\{R(n) \mid n \in N\}$ and $L(N)=\{L(n) \mid b \in N\}$ with the two partite sets of X . The actions of $\mathrm{n} \in \mathrm{N}$ on $\mathrm{R}(\mathrm{N})$ and on $\mathrm{L}(\mathrm{N})$ are just the right multiplication by n , that is $\mathrm{R}(\mathrm{g})^{\mathrm{n}}=\mathrm{R}(\mathrm{gn})$ and $\mathrm{L}(\mathrm{g})^{\mathrm{n}}=\mathrm{L}(\mathrm{gn})$ for any $\mathrm{g} \in \mathrm{N}$. Let $\mathrm{L}\left(\mathrm{n}_{1}\right)$, $\mathrm{L}\left(\mathrm{n}_{2}\right), \mathrm{L}\left(\mathrm{n}_{3}\right)$ and $\mathrm{L}\left(\mathrm{n}_{4}\right)$ be the vertices adjacent to $\mathrm{R}(1)$. Then $L\left(n_{1} n\right), L\left(n_{2} n\right), L\left(n_{3} n\right)$ and $L\left(n_{4} n\right)$ be the vertices adjacent to $R(n)$ for each $n \in N$. Since N is abelian, $R\left(n_{1}^{-1} n\right), R\left(n_{2}^{-1} n\right), R\left(n_{3}^{-1} n\right)$ and $R\left(n_{4}^{-1} n\right)$ are the vertices adjacent to $L(n)$ for each $n \in N$. Define a map α by $\mathrm{R}(\mathrm{n}) \rightarrow \mathrm{L}\left(\mathrm{n}^{-1}\right)$ and $\mathrm{L}(\mathrm{N}) \rightarrow \mathrm{R}\left(\mathrm{n}^{-1}\right)$. It is easy to show that $\alpha \in \operatorname{Aut}(\mathrm{X})$. It follows that $\langle N, \alpha\rangle=2 \mathrm{n}$ and $\langle N, \alpha\rangle$ acts regularly on $\mathrm{V}(\mathrm{X})$. Thus, X is a Cayley graph. Furthermore, if N is cyclic, then $\langle N, \alpha\rangle=\mathrm{D}_{2 \mathrm{n}}$. We assume that $\mathrm{X}=\operatorname{Cay}\left(\mathrm{D}_{2 \mathrm{n}}, \mathrm{S}\right)$ and $\mathrm{D}_{2 \mathrm{n}}=<\mathrm{a}, \mathrm{b} \mid \mathrm{a}^{\mathrm{n}}=\mathrm{b}^{2}=1, \mathrm{a}^{\mathrm{b}}=$ $\mathrm{a}^{-1}>$. Note that X is a bipartite graph. It follows that S has no element of odd order. Thus, S contains involutions. By Proposition 2.2, X is not half-arctransitive.

Figure 1. Process flowchart of Theorem 3.1

III. Main result

The following theorem is the main result of this paper. Fig . 1 showed the Proof flowchart of the theorem.

A. Theorem 3.1

Let p be a prime and X be a hexavalent half-arctransitive graph of order6p. Then X has order 42.

B. Proof

Suppose that X is a hexavalent half-arc-transitive graph of order $6 p$. Let $A=\operatorname{Aut}(X), u \in V(X)$ and denote by A_{u}
the stabilizer of u in A. By Proposition 2.7, A_{u} is a $\{2,3\}$-group and hence A is a $\{2,3, \mathrm{p}\}$-group with $|\mathrm{A}|$ not divisible by p^{2}. The edge-transitivity of X implies that $18 \mathrm{p} \| \mathrm{A} \mid$. By Proposition 2.1, $\mathrm{p} \geq 5$, let N be a minimal normal subgroup and P a Sylow p -subgroup of A. Then $|\mathrm{P}|=\mathrm{p}$. Let B be abnormal subgroup of A. Let K be the kernel of A acting on the quotient graph X_{B} of X corresponding to the orbits of B. First we prove the following claims. Fig .2 showed peocess flowchart of the imprimitive part.

Figure2. process flowchart of the imprimitive

C. Claim I

B is not isomorphic to $Z_{6}, Z_{2 p}, Z_{3 p}$, Note that $|X|=6 \mathrm{p}$. By Lemma 2.8, B is not isomorphic to $\mathrm{Z}_{3 \mathrm{p}}$. Let $\mathrm{C}=\mathrm{C}_{\mathrm{A}}(\mathrm{B})$. Suppose that $\mathrm{B}{ }^{\simeq} \mathrm{Z}_{6}$. Then $\mathrm{A} / \mathrm{C} \leq \mathrm{Z}_{2}$. Note that $\mathrm{p} \geq 5$. It follows that $\mathrm{P} \leq \mathrm{C}$. Then $\mathrm{BP} \cong \mathrm{Z}_{6 \mathrm{p}} \leq \mathrm{A}$ and BP acts regularly on $\mathrm{V}(\mathrm{X})$. It follows that X is a Cayley graph on group BP, by Proposition2.2, it is impossible. Suppose that $\mathrm{B}=\mathrm{Z}_{2 \mathrm{p}}$. Consider the quotient graph X_{B}. Then $\left|\mathrm{X}_{\mathrm{B}}\right|=3$ and X_{B} has valency 2, that is, X_{B} is a 3-cycle, say $X_{B}=$ (B_{0}, B_{1}, B_{2}) with B_{i} and B_{i+1} adjacent for each $i \in Z_{3}$. The induced subgraph $T=<B_{i}, B_{i+1}>$ of $B_{i} \cup B_{i+1}$ in X is an edge-transitive cubic graph of order 4 p . Furthermore, T is bipartite. By Proposition 2.5, it is impossible.

D. Claim II

If B is r-group, then $B \xlongequal{\cong} Z_{r}$, where $r=2,3$ or p. If B is p-group, then $B \cong Z_{p}$. Assume that B is a 2 -group. Clearly, $B \leq K$ and since $|V(X)|=6 p$, orbits of B on $V(X)$ are of length 2. Then, $\left|X_{B}\right|=3 p$ and X_{B} has valency 2 or 6 . If X_{B} has valency 2 then X has at most valency 4 , a contradiction. Thus, X_{B} has valency 6 . In this case, $K_{u}=$ $1, \mathrm{~K}=\mathrm{B} \xlongequal{\cong} \mathrm{Z}_{2}$. Now we assume that B is a 3-group. Then $\left|X_{B}\right|=2 p$ and X_{B} has valency 2,3 or 6 . Suppose that X_{B} has valency 2. Then $X \cong C_{2 p}\left[3 \mathrm{~K}_{1}\right]$ is symmetric, a contradiction. If X_{B} has valency 3 , then K_{u} fixes every out-neighbor of u in the directed graph D , which implies $K_{u}=1$. Thus, $B=K=Z_{3}$. If X_{B} has valency 6 then $K_{v}=1$ and $B=K=Z_{3}$.

E. Claim III

A has a solvable minimal normal subgroup. Suppose that all minimal normal subgroups of A are no solvable. Then $\mathrm{N} \cong \mathrm{T}^{\mathrm{m}}$ where T is a nonabelian simple $\{2,3, \mathrm{p}\}$ group. Since $|\mathrm{A}|$ is not divisible by p^{2} and $\mathrm{p} \geq 5$, by $[14$, pp.12-14], we have that $\mathrm{m}=1$ and $\mathrm{N}=\mathrm{T}$ is isomorphic to $\mathrm{A}_{5}, \mathrm{~A}_{6}, \mathrm{~L}_{2}(7), \mathrm{L}_{2}(8), \mathrm{L}_{3}(3), \mathrm{U}_{3}(3), \mathrm{L}_{2}(17), \mathrm{U}_{4}(2)$. Let C $=\mathrm{C}_{\mathrm{A}}(\mathrm{N})$ and K be the kernel of N acting on the orbits of N . Since $\mathrm{C} \cap \mathrm{N}$ is a normal subgroup of N , then C is a $\{2,3\}$-group. Thus, C is solvable, it follows that $\mathrm{C}=1$. Then $\mathrm{A} \cong \mathrm{A} / \mathrm{C} \leq \operatorname{Aut}(\mathrm{N})$. Thus, N is not isomorphic to A_{5} or $\mathrm{L}_{2}(7)$ since $2 \cdot 3^{2} \cdot \mathrm{p} \| \mathrm{A} \mid$. Suppose that $\mathrm{N} \cong$ $\mathrm{L}_{2}(8)$. Then $\mathrm{A}=\mathrm{L}_{2}(8)$ or $\operatorname{Aut}\left(\mathrm{L}_{2}(8)\right)$, implying that $\left|\mathrm{N}_{\mathrm{v}}\right|=2^{2} \cdot 3$ or $2^{23} 3^{2}$. However, by Atlas, N has no subgroup of order $2^{2} \cdot 3$ or $2^{2} 3^{2}$, a contradiction. For the case $\mathrm{N} \cong \mathrm{U}_{3}(3)$ or $\mathrm{U}_{4}(2)$, we have the similarly contradiction. Suppose that $N \cong \operatorname{} \cong$ PSL $(2,17)$. Then $\mathrm{A}=$ $\operatorname{PSL}(2,17)$ or $\operatorname{PGL}(2,17)$. If $\mathrm{A}=\operatorname{PSL}(2,17)$, then $\left|\mathrm{A}_{\mathrm{v}}\right|=2^{3} \cdot 3$. Then $\mathrm{A}_{\mathrm{v}} \cong{ }^{\cong} \mathrm{S}_{4}$ is a maximal subgroup of A , it follows that A acts primitively on $\mathrm{V}(\mathrm{X})$. By Proposition 2.3 , it is impossible. If $A=\operatorname{PGL}(2,17)$, then $\left|A_{v}\right|=2^{4} \cdot 3$, which is impossible because A has no subgroup of order $2^{4} \cdot 3$.

Suppose $N \cong A_{6}$. Then $A \xlongequal{\cong} A_{6}$, or $\mathrm{A}_{6}<\mathrm{A} \leq \operatorname{Aut}\left(\mathrm{A}_{6}\right)$. Note that $3^{2}| | N \mid$. If N is transitive, then N is half-arctransitive. Thus, $\left|\mathrm{N}_{\mathrm{v}}\right|=12$ and $\mathrm{X} \xlongequal{\cong} \cos \left(\mathrm{A}_{6}, \mathrm{~N}_{\mathrm{v}}\left\{\mathrm{g}, \mathrm{g}^{-1}\right\} \mathrm{A}_{\mathrm{v}}\right)$ such that $\left|N_{v}\right| /\left|N_{v} \cap N^{g}\right|=3$ and $\left\langle N_{v}, g\right\rangle=A_{6}$ where $g \in$ A_{6}. By Magma, it is impossible. Thus, N has two orbits, it follows that $\mathrm{N}_{\mathrm{v}} \cong \mathrm{S}_{4}<\mathrm{A}_{\mathrm{v}}$. Then N is primitive on each orbit since S_{4} is a maximal subgroup of N . By [15], the
length of the orbits of N on each orbit is $1,7,7$. It means that X cannot has valency 6 , a contradiction.

Suppose $N \xlongequal{\cong} L_{3}(3)$. Set $H=A_{v}$. Then $A=L_{3}(3)$ or $\operatorname{Aut}\left(\mathrm{L}_{3}(3)\right)$ and $\left|\mathrm{A}_{\mathrm{v}}\right|=2^{3} \cdot 3^{2}$ or $2^{4} \cdot 3^{2}$. Suppose that A $=\mathrm{L}_{3}(3)$. Then $\mathrm{X} \cong \cos \left(\mathrm{A}, \mathrm{H}\left\{\mathrm{g}, \mathrm{g}^{-1}\right\} \mathrm{H}\right)$ where $|\mathrm{H}|=72$ and $g \in L_{3}(3)$ such that $|H| /\left|H \cap H^{g}\right|=3$. It follows that $H \cap H^{g}$ is a subgroup of H with order 24 , which is impossible since H has no subgroup of order 24 . Now suppose that $\mathrm{A}=\mathrm{Aut}\left(\mathrm{L}_{3}(3)\right)$ and $\mathrm{X} \cong \cos \left(\mathrm{A}, \mathrm{H}\left\{\mathrm{g}, \mathrm{g}^{-1}\right\} \mathrm{H}\right)$ where $|\mathrm{H}|=2^{4} 3^{2}$ and $\mathrm{g} \in \mathrm{A} \backslash L_{3}(3)$ such that $|\mathrm{H}|\left|\mathrm{H} \cap \mathrm{H}^{\mathrm{g}}\right|=3$. By ATLAS, A_{v} is a subgroup of $L_{3}(3)$. Thus, $H \cap H^{g}$ is a subgroup of H. By magma, it is impossible.

We have proved that A has at least one solvable minimal normal subgroup, say N. By Claim II, we have $\mathrm{N} \cong \mathrm{Z}_{\mathrm{p}}, \mathrm{Z}_{2}, \mathrm{Z}_{3}$. Let $\mathrm{C}=\mathrm{C}_{\mathrm{A}}(\mathrm{N})$. Suppose that $\mathrm{N} \cong \mathrm{Z}_{\mathrm{p}}$. Then $A / C \leq Z_{p-1}$. Suppose that $C=N$. Then A is abelian, which is impossible. Thus, $\mathrm{C}>\mathrm{N}$. Let M / N be a minimal normal subgroup of A / N contained in C / N. Then M is a normal subgroup of A and M / N is an elementary abelian r-group for $\mathrm{r}=2$ or 3 . Furthermore, $\mathrm{M}=\mathrm{N} \times \mathrm{R}$, where R is a Sylow r-subgroup of M . Clearly, R is characteristic in M and so normal in A. By Claim II, $\mathrm{R} \cong \mathrm{Z}_{2}$ or Z_{3}. It follows that $M \xlongequal{\cong} Z_{2 p}$ or $Z_{3 p}$, contrary to Claim I Suppose that $\mathrm{N} \cong \mathrm{Z}_{2}$. By Claim II, we have X_{N} has valency 6 , $\mathrm{K}_{\mathrm{u}}=1, \mathrm{~K}=\mathrm{N} \xlongequal{\cong} \mathrm{Z}_{2}$ and $\mathrm{A} / \mathrm{N} \leq \operatorname{Aut}\left(\mathrm{X}_{\mathrm{N}}\right)$. Then X_{N} is A / N -half-arc-transitive. Let M / N be a minimal normal subgroup of A / N. Suppose that M/N is solvable. By Claim II, N is a maximal normal 2 -subgroup of A . Then M / N is an elementary abelian r -group for $\mathrm{r}=3$ or p . Similarly, we have $\mathrm{M} \xlongequal{\cong} \mathrm{Z}_{6}$ or $\mathrm{Z}_{2 \mathrm{p}}$, contrary to Claim I. Thus, M / N is unsolvable, it follows that A / N is unsolvable. Note that $\mathrm{A} / \mathrm{N} \leq \operatorname{Aut}\left(\mathrm{X}_{\mathrm{N}}\right)$. By Proposition 2.6, $\mathrm{X}_{\mathrm{N}} \cong \mathrm{T}_{6}{ }^{\mathrm{C}}$ and $\mathrm{A}_{6} \leq \mathrm{A} / \mathrm{N} \leq \mathrm{S}_{6}$, or $\mathrm{X}_{\mathrm{N}} \cong \mathrm{L}_{2}(19)^{6}{ }_{57}$ and $\mathrm{A} / \mathrm{N}^{\cong} \mathrm{OSL}(2,19)$. For the latter case, $|\mathrm{A} / \mathrm{N}|=2^{2} \cdot 3^{2} \cdot 5 \cdot 19$, which is impossible because A is a $\{2,3, p\}$ group. Thus, $\mathrm{A} / \mathrm{N} \cong{ }^{\cong} \mathrm{A}_{6}$ or S_{6}, implying that A / N is arc-transitive on X_{N}, a contradiction.
Suppose that $\mathrm{N} \cong_{Z_{3}}$. Then $\mathrm{A} / \mathrm{C} \leq \mathrm{Z}_{2}$. It follows that $\mathrm{p}||\mathrm{C}|$ and so $\mathrm{C}>\mathrm{N}$. Let M / N be a minimal normal subgroup of A / N contained in C/N. Suppose that M/N is solvable. By Claim II, N is a maximal normal 3subgroup of A . Then M / N is an elementary abelian r group for $r=2$ or p. Similarly, we have $M \xlongequal{\cong} Z_{6}$ or $Z_{3 p}$, contrary to Claim I. Thus, M / N is unsolvable, it follows that A / N is unsolvable. By Claim II again, we have X_{N} has valency 3 or $6, \mathrm{~K}_{\mathrm{u}}=1, \mathrm{~K}=\mathrm{N} \cong \mathrm{Z}_{3}$ and $\mathrm{A} / \mathrm{N} \leq \operatorname{Aut}\left(\mathrm{X}_{\mathrm{N}}\right)$. Suppose that X_{N} has valency 6. Then X_{N} is A / N-half-arctransitive. By Proposition 2.4, $\mathrm{X}_{\mathrm{N}} \cong \mathrm{B}^{\mathfrak{}}(\mathrm{H}(11))$ and $\operatorname{PSL}(2,11) \leq \mathrm{A} / \mathrm{N} \leq \operatorname{PSL}(2,11) \times \mathrm{Z}_{2}$, or $\mathrm{X}_{\mathrm{N}} \cong \mathrm{C}(\mathrm{PG}(2,5))$ and $\operatorname{PSL}(3,5) \leq \mathrm{A} / \mathrm{N} \leq \operatorname{P\Gamma L}(3,5) \times \mathrm{Z}_{2}, \mathrm{X}_{\mathrm{N}} \cong_{\mathrm{G}}(2 \cdot 7,6)$ and $\mathrm{L}_{2}(7) \times \mathrm{Z}_{2} \leq \mathrm{A} / \mathrm{N} \leq \mathrm{S}_{7} \times \mathrm{Z}_{2}$, or $\mathrm{X}_{\mathrm{N}} \cong_{\mathrm{O}_{3}}{ }^{\mathrm{C}}$ and $\mathrm{A}_{5} \leq \mathrm{A} / \mathrm{N} \leq \mathrm{S}_{5}$. For the first two cases, $|\operatorname{PSL}(2,11)|=2^{2} \cdot 3 \cdot 5 \cdot 11| | \mathrm{A} / \mathrm{N} \mid$ or $|\operatorname{PSL}(3,5)|=2^{5} \cdot 3 \cdot 5^{3} \cdot 31 \| \mathrm{A} / \mathrm{N} \mid$, which is impossible because A is $\{2,3, p\}$-group. For the last two cases, X_{N} is A / N-arc-transitive graph, a contradiction. Thus, X_{N} has valency 3, then $\mathrm{X}_{\mathrm{N}} \cong \mathrm{O}_{3}$ and $\mathrm{A}_{5} \leq \mathrm{A} / \mathrm{N} \leq \mathrm{S}_{5}$, or X_{N} is isomorphic to the Heawood graph and $\mathrm{A} / \mathrm{N} \cong \operatorname{PGL}(2,7)$. Then $\mathrm{M} \xlongequal{\cong} \mathrm{A}_{5} \times \mathrm{Z}_{3}$ or $\operatorname{PSL}(2,7) \times \mathrm{Z}_{3}$. Set $\mathrm{L}=\mathrm{A}_{5}$ or
$\operatorname{PSL}(2,7)$. Then L is a normal subgroup of A. Consider the quotient graph X_{L}. Then the length of the orbits of L is p or $2 p$ where $p=5$ or 7 . Furthermore, $\left|L_{v}\right|>1$, it follows that X_{L} has valency 2.Then X_{L} is a 3- or 6-cycle. Assume that the induced subgraph $T=<B_{i}, B_{i+1}>$ of $B_{i} \cup B_{i+1}$ where B_{i} and B_{i+1} are adjacent. Then T is a cubic edgetransitive graph of order 2 p or 4 p . Furthermore, T is bipartite. By Proposition 2.4-2.5, we have T is isomorphic to Heawood graph and $\mathrm{p}=7$, that is X has order 42.

IV. CONCLUSION

In the paper, we give the classification of hexavalent half-arc-transitive graphs of order 6 p . It is proved that the graph must have order 42 if hexavalent half-arc transitive graph of order $6 p$ is available. In addition, from the proof we know that the quotient graph is a well-known graph-Heawood graph. However, we should further verify whether the graph belongs to half-arc transitive graph or not. In addition, we [6] proved that if tetravalent half-arc-transitive graphs of order 2pq exist, then $p-1$ is divisible by $2 q$. In another paper[13], we showed that hexavalent half-arc-transitive graphs of order 4 p exist if and only if $\mathrm{p}-1$ is divisible by 12 . Therefore, we guess that hexavalent half-arc-transitive graphs of order 2 pq exist if and only if $\mathrm{p}-1$ is divisible by 3 q , where q is a prime number no less than 5 . In next paper, we wish to determine whether the 42 -point half-arc-transitive graph exists or not.. In addition, we hope to classify the hexavalent half-arc-transitive graphs of order 2 pq .

Acknowledgment

This work was supported by the National Natural Science Foundation of China (11201180), the National

Natural Science Foundation of Shandong (ZR2012AQ023) and the Doctoral Program of University of Jinan (XBS1212).

References

[1] N. Biggs, Algebraic Graph theory (Second ed), Cambridge university Press, Cambridge, 1993.
[2] W.T. Tutte, Connectivity in Graphs, University of Toronto Press, Toronto, 1966.
[3] I.Z. Bouwer, Vertex and edge-transitive but not 1-transitive graphs, Canad.Math.Bull. 13(1970), 231-237.
[4] Y.Q, Feng, J.H. Kwak, M.Y. Xu, Tetravalent half-arctransitivegraphs of order p4, European J. Combin. 29(2008), 555-567.
[5] K. Kutnar, D. Maru^ si c, P. S` parl, Classification of half-arctransitive graphs of order4p, Euro J. Combinatorics 34(2013), 1158-1176.
[6] Y.Q, Feng, J.H. Kwak, X. Wang, Tetravalent half-arctransitivegraphs of order 2pq, J. Algebra Comb. 33(2011), 543553.
[7] B. Alspach, D. Maru sǐ c and L. Nowitz, Constructing graphs which are 1/2-transitive,J. Austral. Math.Soc. A 56(1994), 391402.
[8] Y.Q. Feng, K.S. Wang and C.X. Zhou, Tetravalent halftransitive graphs of order4p, European J. Combin. 28(2007), 726-733.
[9] C.H. Li, Z.P. Lu and D. Maru sǐ c, On primitive permutation groups with small suborbits and their orbital graphs, J. Algebra. 279(2004), 749-770.
[10] Y. Cheng and J. Oxley, On weakly symmetric graphs of order twice a prime, J.Combin. Theory B 42(1987), 196-211.
[11] B. Alspach and M.Y. Xu, 1/2-transitive graphs of order 3p, J. Algebraic Combin.3(1994), 347-355.
[12] R.J. Wang, M. Y. Xu, A classification of symmetric graphs of order 3p, J. Combin.Theory B 58(1993) 197-216.
[13] X.Y. Wang, Y.Q.Feng, Hexavalent half-arc-transitive graphs of order 4 p , EuropeanJ. Combin. 30 (2009) 1263-1270.

