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Abstract—A graph is half-arc-transitive if its auto 
orphism group acts transitively on its vertex set and edge 
set, but not arc set. Y-Q. Feng et al. gave the classification 
of tetravalent half-arc-transitive graph of order 6p. In this 
paper, we proved that hexavalent half-arc-transitive 
graph of order 6p has order 42.  
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I.  INTRODUCTION  
Throughout this paper graphs are assumed to be finite, 
simple and undirected, but with an implicit orientation of 
the edges when appropriate. For a graph X, let V(X), 
E(X), A(X) and Aut(X) be the vertex set, the edge set, 
the arc set and the auto orphism group of X, respectively. 
Let D2n be the dihedral group of order 2n, and Zn the 
cyclic group of order n as well as the ring of integers 
modulo n. Denote by  the multiplicative group of Zn 
consisting of numbers coprime to n, and for a prime p, 
denote by  the elementary abelian group Zp×Z p 
×···×Zp (m times). For a finite group G and a subset S of 
G such that 1∉ S and S = S−1 , the Cayley graph Cay(G,S) 
on G with respect to S is defined to have vertex set G 
and edge set {{g,sg} | g ∈ G,s ∈ S}. A graph X is 
isomorphic to a Cayley graph on G if and only if its auto 
orphism group Aut(X) has a subgroup isomorphic to G, 
acting regularly on vertices [1, Lemma 16.3]. 

A graph X is said to be vertex-transitive, edge-
transitive or arc-transitive if Aut(X) acts transitively on 
V(X), E(X), or A(X), respectively. A graph is said to be 
half-arc-transitive provided that it is vertex-transitive 
and edge-transitive, but not arc-transitive. More 
generally, by a half-arc-transitive action of a subgroup G 
of Aut(X) on a graph X we shall mean a vertex-
transitive and edge-transitive, but not arc-transitive 
action of G on X. In this case, we shall say that the graph 
X is G-half-arc-transitive. 

The investigation of half-arc-transitive graphs was 
initiated by Tutte[2] and he proved that a vertex- and 
edge-transitive graph with odd valency must be arc-
transitive. In 1970 Bouwer[3] constructed a 2k-valent 
half-arc-transitive graph for every k ≥ 2 and later more 
such graphs were constructed. In fact, constructing and 
characterizing half-arc-transitive graphs with small 
valencies is currently an active topic in algebraic graph 
theory (see[4, 5]). It was shown in [6] gave the 
classification of tetravalent half-arc-transitive graphs of 

order 2pq. In this paper, we proved that hexavalent half-
arc-transitive graph of order 6p has order 42. 

II.  PRELIMINARY RESULTS 
Now we state a simple observation about half-arc-
transitive graphs (see [7]) 

A. Proposition 2.1 

There are no half-arc-transitive graphs with fewer than 
27 vertices.  
The following proposition is straightforward  (see [8, 
Propositions 2.1 and 2.2]). 

B. Proposition 2.2 

Let X = Cay(G,S) be a half-arc-transitive graph. Then, 
there is no involution in S, and no α ∈Aut(G,S) such 
that sα = s-1 for some s ∈ S. In particular, there are no 
half-arc-transitive Cayley graphs on abelian groups.  
Li et al. [9] considered primitive half-arc-transitive 
graphs. 

C. Proposition 2.3 

[9, Theorem 1.4] There are no vertex-primitive half-arc-
transitive graphs of valency less than 10.  
The following proposition can be extracted from 
Theorem 2.4 and Table 1 in [10]. 

D. Proposition 2.4 

Let X be a connected edge-transitive graph of order 2p 
for a prime p.Then X is symmetric. Assume p ≥ 7. If X 
has valency 3 then one of the following holds: 
(1) X ≅G(2 • 7,3)), the Heawood graph of order 14 and 
Aut(G(2 • 7,3)) = PGL(2,7); 
(2) X  G(2p,3), p ≥ 13 and 3 | (p−1). In this case, 
Aut(G(2p,3))  (Zp×Z 3)×Z2; If X has valency 6 then one 
of the following holds: 

(3) X B(PG(2,5)), p=31 and Aut(B(PG(2,5))) = 

PΓL(3,5)×Z2; 

(4) X B’(H(11)), p = 11 and Aut(B 0 (H(11))) = 

PSL(2,11) ×Z2 ; 
(5) X G(2p,6) and 6 | (p-1). In this case, Aut(G(2 · 7,6)) 

S 7× Z2 and Aut(G(2p,6))  (Zp×Z 6 ) ×Z 2 for p ≥ 13. 
Now we give a well-known result. 
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E. Proposition 2.5 

Let X be a connected arc-transitive cubic graph of order 
4p, where p is a prime. Then X is one of the following: 
Q3, the 3-dimensional cube; D20 , the dodecahedron;C28 , 
the Coxeter graph; and GP(10,3), the generalized 
Peterson graph. 
The following proposition can be extracted from [11] 
and [12]. 

F. Proposition 2.6 

Let X be a connected hexavalent edge-transitive graph 
of order 3p, where p is a prime. If X is half-arc-transitive, 
then X M(d;,3,p) where (d,p) ≠ (2,7) or (3,19) with 
d|(p−1)/3. If X is symmetric then one of the following 
holds: 
(1)X T6

C, the graph of order 30 and Aut(T6
C) = S6 ; 

(2)X L2(19)  , p = 19 and with Aut(X)  PSL(2,19). 
(3)X G(3p,3)), 3 | p − 1 and Aut(X) = (Z p : Z 3 ) : S 3 ; 
(4)X G(p,2)[3K 1 ]. 
Now we state two simple observations about half-arc-
transitive graphs. 

G. Proposition 2.7 

[13, Proposition 2.6] Let X be a connected half-arc-
transitive graph of valency 2n. Let A=Aut(X) and let A u 
be the stabilizer of u∈V(X) in A. Then each prime 
divisor of |Au| is a divisor of n!. In particular, if X has 
valency 6 then Au is a{2,3}-group. 

H. Lemma 2.8 

Let X be a connected edge-transitive graph of order 2n 
and A = Aut(X). If A has an abelian normal subgroup N 
of order n, then X is a Cayley graph. Furthermore, If N 
is cyclic, and then X is non-half-arc-transitive. 

I. Proof 

Suppose that N be an abelian normal sub group of A. 
Then X is bipartite graph with the two orbits of N as its 
two bipartite sets. It is easy to see that N acts regularly 
on each partite set of X. Thus, one may identify R(N) = 
{R(n) | n ∈ N} and L(N) = {L(n) | b∈N} with the two 
partite sets of X. The actions of n∈N on R(N) and on 
L(N) are just the right multiplication by n, that is 
R(g)n=R(gn) and L(g)n = L(gn) for any g∈N. Let L(n1), 
L(n2), L(n3) and L(n4) be the vertices adjacent to R(1). 
Then L(n1n), L(n2n), L(n3n) and L(n4n) be the vertices 
adjacent to R(n) for each n∈N. Since N is abelian, 
R(n1

−1n), R(n2
−1n), R(n3

−1n) and R(n4
−1n) are the 

vertices adjacent to L(n) for each n ∈ N. Define a map 
α by R(n) → L(n−1) and L(N) → R(n−1). It is easy to 
show that α∈Aut(X). It follows that  = 2n and 

 acts regularly on V(X). Thus, X is a Cayley graph. 
Furthermore, if N is cyclic, then  =D2n .We assume 
that X = Cay(D2n ,S) and D2n =<a, b|an = b2 = 1,ab = 
a−1 >. Note that X is a bipartite graph. It follows that S 
has no element of odd order. Thus, S contains 
involutions. By Proposition 2.2, X is not half-arc-
transitive.  

 A=Aut(X) 

 A is primitive 
 A is imprimitive 

A is 2-transitive X≌K
4p-1=q

A is primitive But not 2-taansitive No graph

 
Figure1. Process flowchart of Theorem 3.1 

III. MAIN RESULT 
The following theorem is the main result of this paper. 
Fig .1 showed the Proof flowchart of the theorem. 

A. Theorem 3.1 

Let p be a prime and X be a hexavalent half-arc-
transitive graph of order6p. Then X has order 42. 

B. Proof 

Suppose that X is a hexavalent half-arc-transitive graph 
of order 6p. Let A =Aut(X), u∈V(X) and denote by Au 

the stabilizer of u in A. By Proposition 2.7, Au is a 
{2,3}-group and hence A is a {2, 3, p}-group with |A| 
not divisible by p2 . The edge-transitivity of X implies 
that 18p||A|. By Proposition 2.1, p ≥ 5, let N be a 
minimal normal subgroup and P a Sylow p-subgroup of 
A. Then |P|=p. Let B be abnormal subgroup of A. Let K 
be the kernel of A acting on the quotient graph XB of X 
corresponding to the orbits of B. First we prove the 
following claims. Fig .2 showed peocess flowchart of 
the imprimitive part. 

 
 A imprimitive 

 |B|=p  |B|=4 

 

 |B|=2p 

 

 |B|=2 

 

 no graph  XB≌Kp,p 
p=q 

 

 XB≌K2p 
2p-1=q 

  
Figure2. process flowchart of the imprimitive   
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C. Claim I 

B is not isomorphic to Z6, Z2p,  Z3p, Note that |X| = 6p. 
By Lemma 2.8, B is not isomorphic to Z3p. Let C=CA(B). 
Suppose that B Z6 .Then A/C ≤ Z2. Note that p ≥ 5. It 
follows that P ≤ C. Then BP  Z 6p≤ A and BP acts 
regularly on V(X). It follows that X is a Cayley graph on 
group BP, by Proposition2.2, it is impossible. Suppose 
that B=Z2p . Consider the quotient graph XB. Then |XB|=3 
and XB has valency 2, that is, X B is a 3-cycle, say XB = 
(B0 ,B1 ,B2 ) with Bi and Bi+1 adjacent for each i∈Z 3 . 
The induced subgraph T=<B i ,Bi+1> of Bi∪Bi+1 in X is 
an edge-transitive cubic graph of order 4p. Furthermore, 
T is bipartite. By Proposition 2.5, it is impossible. 

D. Claim II 

If B is r-group, then B Zr , where r = 2, 3 or p. If B is 
p-group, then B Zp. Assume that B is a 2-group. 
Clearly, B ≤ K and since |V(X)|=6p, orbits of B on V(X) 
are of length 2. Then, |XB|=3p and XB has valency 2 or 6. 
If XB has valency 2 then X has at most valency 4, a 
contradiction. Thus, XB has valency 6. In this case, Ku = 
1, K=B Z2 . Now we assume that B is a 3-group.Then 
|XB| = 2p and XB has valency 2, 3 or 6. Suppose that X B 

has valency 2. Then X C2p[3K1] is symmetric, a 
contradiction. If XB has valency 3, then Ku fixes every 
out-neighbor of u in the directed graph D, which implies 
Ku=1. Thus, B=K=Z3. If XB has valency 6 then Kv = 1 
and B =K=Z3. 

E. Claim III 

A has a solvable minimal normal subgroup. Suppose 
that all minimal normal subgroups of A are no solvable. 
Then N  Tm where T is a nonabelian simple {2,3,p}-
group. Since |A| is not divisible by  p2 and p ≥ 5, by[14, 
pp.12-14],we have that m=1 and N=T is isomorphic to 
A5 , A6 , L2(7), L2 (8), L3(3), U3(3),L2(17), U4(2). Let C 
= CA(N) and K be the kernel of N acting on the orbits of 
N. Since C∩N  is a normal subgroup of N, then C is a 
{2,3}-group. Thus, C is solvable, it follows that C=1. 
Then A  A/C ≤Aut(N). Thus, N is not isomorphic to 
A5 or L2(7) since 2·32·p||A|. Suppose that N  
L2(8).Then A = L2(8) or Aut(L2 (8)), implying that 
|Nv|=2 2·3 or 22·3 2. However, by Atlas, N has no 
subgroup of order 22 ·3 or 22·3 2 , a contradiction. For the 
case N U3(3) or U4(2), we have the similarly 
contradiction. Suppose that N PSL(2,17). Then A = 
PSL(2,17) or PGL(2,17). If A = PSL(2,17), then 
|Av|=23 ·3. Then Av S4 is a maximal subgroup of A, it 
follows that A acts primitively on V(X). By Proposition 
2.3, it is impossible. If A = PGL(2,17), then |Av| = 24·3, 
which is impossible because A has no subgroup of order 
2 4·3. 

Suppose N  A6. Then A A6 , or A6< A ≤Aut(A6 ). 
Note that 32||N|. If N is transitive, then N is half-arc-
transitive. Thus, |Nv|=12 and X cos(A6 ,Nv {g,g −1}A v) 
such that |Nv|/|Nv∩Ng|= 3 and <Nv ,g >= A6 where g∈ 
A6 . By Magma, it is impossible. Thus, N has two orbits, 
it follows that Nv S4 < Av . Then N is primitive on each 
orbit since S4 is a maximal subgroup of N. By [15],  the 

length of the orbits of N on each orbit is 1, 7, 7. It means 
that X cannot has valency 6, a contradiction. 

Suppose N L3(3). Set H=Av . Then A = L3(3) or 
Aut(L3 (3)) and |A v | = 23 ·32 or 24·32 . Suppose that A 
=L3(3). Then X  cos(A,H{g,g−1}H) where |H| = 72 and 
g∈ L3(3) such that |H|/|H∩Hg

 |= 3. It follows that H ∩Hg 

is a subgroup of H with order 24, which is impossible 
since H has no subgroup of order 24. Now suppose that 
A=Aut(L3(3)) and X cos(A,H{g,g−1}H) where 
|H|=24·3 2 and g∈A\L3(3) such that |H|/|H∩Hg|= 3. By 
ATLAS, Av is a subgroup of L3(3). Thus, H∩Hg is a 
subgroup of  H. By magma, it is impossible. 

We have proved that A has at least one solvable 
minimal normal subgroup, say N. By Claim II, we have 
N  Zp , Z2, Z3. Let C=CA(N). Suppose that N  Zp. 
Then A/C ≤ Zp−1 . Suppose that C = N. Then A is abelian, 
which is impossible. Thus, C > N. Let M/N be a minimal 
normal subgroup of A/N contained in C/N. Then M is a 
normal subgroup of A and M/N is an elementary abelian 
r-group for r=2 or 3. Furthermore, M = N × R, where R 
is a Sylow r-subgroup of M. Clearly, R is characteristic 
in M and so normal in A. By Claim II, R  Z2 or Z3 . It 
follows that M Z2p or Z3p , contrary to Claim I Suppose 
that N Z2 . By Claim II, we have XN has valency 6, 
Ku=1 , K=N Z2 and A/N ≤Aut(X N ). Then XN is A/N-
half-arc-transitive. Let M/N be a minimal normal 
subgroup of A/N. Suppose that M/N is solvable. By 
Claim II, N is a maximal normal 2-subgroup of A. Then 
M/N is an elementary abelian r-group for r=3 or p. 
Similarly, we have M Z6 or Z2p, contrary to Claim I. 
Thus, M/N is unsolvable, it follows that A/N is 
unsolvable. Note that A/N ≤Aut(XN). By Proposition 2.6, 
XN T6

C and A6 ≤A/N≤S 6, or XN L2(19)6
57and 

A/N PSL(2,19). For the latter case, |A/N| = 2 2·3 2·5·19, 
which is impossible because A is a {2,3,p} group. Thus, 
A/N A6 or S6 , implying that A/N is arc-transitive on 
XN , a contradiction. 

Suppose that N Z3 . Then A/C ≤ Z 2 . It follows that 
p||C| and so C>N. Let M/N be a minimal normal 
subgroup of A/N contained in C/N. Suppose that M/N is 
solvable. By Claim II, N is a maximal normal 3-
subgroup of A. Then M/N is an elementary abelian r-
group for r = 2 or p. Similarly, we have M Z6 or Z3p, 
contrary to Claim I. Thus, M/N is unsolvable, it follows 
that A/N is unsolvable. By Claim II again, we have XN 

has valency 3 or 6, Ku=1, K=N  Z3 and A/N ≤Aut(XN). 
Suppose that XN has valency 6. Then XN is A/N-half-arc-
transitive. By Proposition 2.4, XN B‘(H(11)) and 
PSL(2,11) ≤ A/N ≤ PSL(2,11) × Z2 , or XN B(PG(2,5)) 
and PSL(3,5) ≤ A/N ≤ PΓL(3,5)×Z 2 , XN G(2·7,6) and 
L2(7)×Z 2 ≤ A/N ≤ S7×Z 2, or XN O3

C   and A5≤ A/N ≤ S5 . 
For the first two cases, |PSL(2,11)| = 2 2 ·3·5·11 | |A/N| 
or |PSL(3,5)| = 25·3·5 3·31||A/N|, which is impossible 
because A is {2,3,p}-group. For the last two cases, XN is 
A/N-arc-transitive graph, a contradiction. Thus, XN has 
valency 3, then XN O3 and A5≤A/N≤S5, or XN is 
isomorphic to the Heawood graph and A/N  PGL(2,7). 
Then M A5 ×Z 3 or PSL(2,7) × Z3 . Set L=A5 or 
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ONCLUSION

PSL(2,7). Then L is a normal subgroup of A. Consider 
the quotient graph XL . Then the length of the orbits of L 
is p or 2p where p=5 or 7. Furthermore, |Lv|>1, it follows 
that XL has valency 2.Then XL is a 3- or 6-cycle. Assume 
that the induced subgraph T=<Bi, Bi+1> of Bi∪Bi+1 
where Bi and B i+1 are adjacent. Then T is a cubic edge-
transitive graph of order 2p or 4p. Furthermore, T is 
bipartite. By Proposition 2.4-2.5, we have T is 
isomorphic to Heawood graph and p=7, that is X has 
order 42. 

IV. C  
In the paper, we give the  classification of hexavalent 
half-arc-transitive graphs of order 6p. It is proved that 
the graph must have order 42 if hexavalent half-arc 
transitive graph of order 6p  is available. In addition, 
from the proof we know that the quotient graph is a 
well-known graph-Heawood graph. However, we should 
further verify whether the graph belongs to half-arc 
transitive graph or not. In addition, we [6] proved that if 
tetravalent half-arc-transitive graphs of order 2pq exist, 
then p-1 is divisible by 2q.  In another paper[13], we  
showed that hexavalent half-arc-transitive graphs of 
order 4p exist if and only if  p-1 is divisible by 12. 
Therefore, we guess that hexavalent half-arc-transitive 
graphs of order  2pq exist if and only if  p-1 is  divisible 
by 3q, where q is a prime number no less than 5.  In next 
paper, we wish to determine whether the 42-point half-
arc-transitive graph exists or not.. In addition, we hope 
to classify the hexavalent half-arc-transitive graphs of  
order 2pq.   
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