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Abstract—The forecasting method of future values of a time 
series from current and past values is of considerable 
practical interest and in important areas of application. In 
addition to calculating the best forecasts, it is also necessary 
to specify their accuracy, so that the risks associated with 
decisions based upon the forecasts may be calculated. Many 
empirical time series behave as though they had no fixed 
mean. They exhibit homogeneity in the sense that apart from 
local level, or perhaps local level and trend, one part of the 
series behaves much like any other part. Models that 
describe such homogeneous nonstationary behavior can be 
obtained by supposing some suitable difference of the 
process to be stationary. There has been much recent 
interest in the representation of ARIMA models in the state-
space form, for purposes of forecasting, as well as for model 
specification and maximum likelihood estimation of 
parameters. In this paper we briefly consider the state-space 
form of an ARIMA model in this section and discuss its uses 
in exact finite sample forecasting. 
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I. INTRODUCTION  
Many sets of data appear as time series. A time series 

is a sequence of observations taken sequentially in time. 
The forecasting method of future values of a time 

series from current and past values is of considerable 
practical interest and in important areas of application. 

The use at time t of available observations from a time 
series to forecast its value at some future time t + l can 
provide a basis for  

(1) Economic and business planning 
(2) Production planning 
(3) Inventory and production control 
(4) Control and optimization of industrial processes.  
Forecasts are usually needed over a period known as 

the lead time, which varies with each problem. 
Forecasting is the process of making statements about 

events whose actual outcomes (typically) have not yet 
been observed. A commonplace example might be 

estimation of some variable of interest at some specified 
future date. Prediction is a similar, but more general term. 
Both might refer to formal statistical methods 
employing time series, cross-sectional or longitudinal data, 
or alternatively to less formal judgmental methods. Usage 
can differ between areas of application: for example, 
in hydrology, the terms "forecast" and "forecasting" are 
sometimes reserved for estimates of values at certain 
specific future times, while the term "prediction" is used 
for more general estimates, such as the number of times 
floods will occur over a long period. 

Risk and uncertainty are central to forecasting and 
prediction; it is generally considered good practice to 
indicate the degree of uncertainty attaching to forecasts. In 
any case, the data must be up to date in order for the 
forecast to be as accurate as possible. 

In addition to calculating the best forecasts, it is also 
necessary to specify their accuracy, so that the risks 
associated with decisions based upon the forecasts may be 
calculated. The accuracy of the forecasts may be expressed 
by calculating probability limits on either side of each 
forecast. These limits may be calculated for any 
convenient set of probabilities. To illustrate, Fig .1. shows 
a time series forecast culminating at time t . 

Methods for obtaining forecasts and estimating 
probability limits developed based on the assumption that 
the time series zt follows a stochastic model  named 
autoregressive integrated moving average (ARIMA) 
models. 
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Figure 1.  Time series with 50% probability limits forecast 

Time t is the forecast function at origin t. The objective 
is to obtain a forecast function such that the mean square 
of the deviations between the actual and forecasted values 
is as small as possible for each lead time t. 

In control engineering, a state space representation is a 
mathematical model of a physical system as a set of input, 
output and state variables related by first-order differential 
equations. To abstract from the number of inputs, outputs 
and states, the variables are expressed as vectors. 
Additionally, if the dynamical system is linear and time 
invariant, the differential and algebraic equations may be 
written in matrix form. The state space representation (also 
known as the "time-domain approach") provides a 
convenient and compact way to model and analyze 
systems with multiple inputs and outputs. 

II. ARIMA MODELS IN THE STATE-SPACE FORM 
In statistics and econometrics, and in particular in time 

series analysis, an autoregressive integrated moving 
average (ARIMA) model is a generalization of 
an autoregressive moving average (ARMA) model. These 
models are fitted to time series data either to better 
understand the data or to predict future points in the series 
(forecasting). They are applied in some cases where data 
show evidence of non-stationarity, where an initial 
differencing step (corresponding to the "integrated" part of 
the model) can be applied to remove the non-stationarity. 

The model is generally referred to as an ARIMA(p,d,q) 
model where parameters p, d, and q are non-negative 
integers that refer to the order of the autoregressive, 
integrated, and moving average parts of the model 
respectively. ARIMA models form an important part of 
the Box-Jenkins approach to time-series modelling. 

In control engineering, a state space representation is a 
mathematical model of a physical system as a set of input, 
output and state variables related by first-order differential 
equations. To abstract from the number of inputs, outputs 
and states, the variables are expressed as vectors. 
Additionally, if the dynamical system is linear and time 
invariant, the differential and algebraic equations may be 
written in matrix form. The state space representation (also 
known as the "time-domain approach") provides a 
convenient and compact way to model and analyze 
systems with multiple inputs and outputs. With p inputs 
and q outputs, we would otherwise have to write 
down p  q  Laplace transforms to encode all the 
information about a system. Unlike the frequency domain 

approach, the use of the state space representation is not 
limited to systems with linear components and zero initial 
conditions. "State space" refers to the space whose axes are 
the state variables. The state of the system can be 
represented as a vector within that space. 

There has been much recent interest in the 
representation of ARIMA models in the state-space form, 
for purposes of forecasting, as well as for model 
specification and maximum likelihood estimation of 
parameters. This paper briefly consider the state-space 
form of an ARIMA model and discuss its uses in exact 
finite sample forecasting. 

Explicit forms for the general ARIMA model 
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Define the “state” vector at time t, Yt, with r 
components as  
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Then from the relations above we find that the vector Yt 
satisfies the first-order system of equations:  
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Where        if i >p + d. So we have 

                                      ( ) 

With the observation equation 

         [       ]                ( ) 

the additional noise Nt would be present only if the 
process zt is observed subject to additional white noise; 
otherwise, we simply have zt = HYt. The two Equations 
above constitute what is a state-space representation of the 
model, which consists of a state or transition equation (3) 
and an observation equation (4), and Yt is the state vector. 
We note that there are many other constructions of the 
state vector Yt that will give rise to state-space equations 
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of the general form of  the state-space form of an ARIMA 
model is not unique. The two equations of the form above, 
in general, represent a state-space model, with 
unobservable state vector Yt and observations Zt , and can 
arise in time series settings more general than the context 
of ARIMA models. 

Consider a state-space model of a slightly more general 
form, with state equation 

                                      ( ) 

                                        ( ) 

Where it is assumed that at and Nt are independent 
white noise processes, at is a vector white noise process 
with covariance matrix ∑ , and Nt has variance    . In this 
model, the (unobservable) state vector Yt summarizes the 
state of the dynamic system through time t , and the state 
equation (5) describes the evolution of the dynamic system 
in time, while the measurement equation (6) indicates that 
the observations Zt consist of linear combinations of the 
state variables corrupted by additive white noise. The 
matrix   in (5) is an r × r transition matrix and    in (6) 
is a 1 × r vector, which are allowed to vary with time t. 
Often, in applications these are constant matrices,    
 and Ht ≡ H for all t , that do not depend on t , as in the 
state-space form (3) and (4) of the ARIMA model. In this 
case the system or model is said to be time invariant. The 
minimal dimension r of the state vector Yt in a state-space 
model needs to be sufficiently large so that the dynamics 
of the system can be represented by the simple Markovian 
(first-order) structure. 

III. FORM OF STATE-SPACE MODEL AND STEADY 
STATE FOR TIME-INVARIANT MODELS 

One particular alternate form of the general state 
variable model, referred to as the innovations or prediction 
error representation, is worth noting. Exact Forecasting in 
ARIMA Models  

Suppose that the transfer function model 
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We get  

    
        

          
        

     
       

      
    

    

Which is also of the general form of a state-space 
model but with the same white noise process      (the one-
step-ahead prediction errors) involved in both the 
transition and observation equations. 

In the “stationary case” (i.e., time-invariant and stable 
case) of the state-space model, where     and Ht ≡ H 
are constant matrices and  has all eigenvalues less than 
one in absolute value, we can obtain the steady-state form 
of the innovations representation by setting     =E[Yt |Zt−

1,Zt−2, . . . ], the projection of Yt based on the infinite past 
of {Zt }. 

These steady- state results for the time-invariant model 
case also hold under slightly weaker conditions than 
stability of the transition matrix such as in the 
nonstationary random walk plus noise model .Hence in the 
time-invariant situation, the state variable model can be 
expressed in the steady-state innovations or prediction 
error form as 

    
     

          
     

  

      
                                                    ( )   

In particular, for the ARIMA process  ( )   
 ( )  with no additional observation error so that Zt = zt , 
a prediction error form the state-space model can be given 
with state vector  

    
  ( ̂  ( )    ̂  ( 

 ))  

   (        )  

    ̂   ( )          

And observation equation  
At the dimension is r∗ =max (p + d, q) 

IV. EXACT FORECASTING IN ARIMA MODELS 
For ARIMA models, with state space representation (3) 
and (4)  
And  

Zt = zt = HYt 

With 
H = [ 1,0, …, 0 ], 

The procedure constitutes an alternate method to obtain 
exact finite sample forecasts, based on data zt , zt−1, . . . , z1, 
for future values in the ARIMA process, subject to 
specification of appropriate initial conditions. For 
stationary zero-mean processes zt , the appropriate initial 
values are a vector of zeros 

 ̂      

And  
        [  ]     

The covariance matrix of Y0, which can easily be 
determined under stationarity through the definition of Yt . 
Specifically, since the state vector Yt follows the stationary 
vector AR(1) model  

             

 Its covariance matrix V∗ = cov[Yt ] satisfies 
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 Which can be readily solved for V∗. For nonstationary 
ARIMA processes, additional assumptions need to be 
specified. 

The forecasts of the ARIMA process zt are obtained 
recursively as indicated, with l-step-ahead forecast of the 
first element of the vector 

 ̂        ̂      

 Where 

 ̂    ̂        

With forecast error variance 

                 
  

The “steady-state” values of the  l-step-ahead forecasts 
 ̂      and their forecast error variances        , which are 
rapidly approached as t increases, will be identical to the 
expressions given in  

 ( )    
 (  ∑  

 

   

   

 

In particular, for the ARIMA process in state-space 
form, we can obtain the exact (finite sample) one-step-
ahead forecasts: 

 ̂     [            ]    ̂      

And their error variances 

           
  

This can be particularly useful for evaluation of the 
likelihood function, based on n observations z1, …, zn from 
the ARIMA process, applied to the problem of maximum 
likelihood estimation of model parameters. 
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