
Qualitative Faults Diagnosis Algorithm:
Process

He-xuan Hu 1,2
Agricultural and Animal Husbandry College of Tibet

University 1
Lin-zhi, Tibet, P.R. China

College of Energy and Electrical Engineering
Hohai University 2

Nanjing, Jiangsu Province, P.R. China
e-mail: hexuan_hu@hhu.edu.cn

Shi-ping Huang
College of Energy and Electrical Engineering

Hohai University
Nanjing, Jiangsu Province, P.R. China

e-mail: sph2014@126.com

Hao-hua Li
College of Energy and Electrical Engineering

Hohai University
Nanjing, Jiangsu Province, P.R. China

e-mail: haohuali@163.com

Ye Zhang
College of Computer and Information Engineering

Hohai University
Nanjing, Jiangsu Province, P.R. China

e-mail: silve_fox@hotmail.com

Abstract—This paper presents the process of qualitative
multi-faults diagnosis. We propose a new diagnostic process
for continuous and dynamic system and its corresponding
consistency-checking module. The STRIPS language is used
to generate the system model since it integrates the cause-
effect information required to process the diagnosis. With
the STRIPS language, actions are described in terms of their
preconditions and effects and states are formulated as
conjunctions of positive literals. A diagnosis is established
when assuming particular components to be faulty and
others to be normally functioning restore consistency. It
reasons about multiple faults or causes for an abnormality
by testing an assumption if it leads to an inconsistency. The
main contribution is to realize the qualitative multi-faults
diagnosis without requiring detail and precise knowledge
about faulty components and without the impossible
diagnoses.

Keywords-qualitative; multi-faults; diagnosis; cause-effect;

reasoning ability

I. INTRODUCTION
In this paper, we continue to present the part of

isolation of qualitative multi-fault diagnosis. For the
qualitative diagnosis, there are fundamentally two
different approaches to search in fault diagnosis [1]:
topographic search and symptomatic search. Topographic
searches perform malfunction analysis using a template of
normal operation, whereas, symptomatic searches look for
symptoms to direct the search to the fault location. The
Reiter‟s theory [6] belongs to symptomatic search. It is
called consistency-based approach. Basically,
consistency-based diagnosis amounts to finding faulty
device components that account for a discrepancy
between predicted normal behavior of a device and
actually observed behavior. The discrepancy is formalized
as logical inconsistency; a diagnosis is established when

assuming particular components to be faulty and others to
be normally functioning restore consistency. It reasons
about multiple faults or causes for an abnormality by
testing an assumption if it leads to an inconsistency. From
the definition 3 of companion paper: theory and detection,
the key step in the diagnosis process is to test the
consistency of the formula,

    COMPccABccABOBSSD)()(, (1)
in which COMP is the diagnosis for system (SD,
COMP, OBS where: SD, the system description, is a set of
first-order sentence; COMP, the system components, is a
finite set of constants; OBS, the observations of a system,
is a finite set of first-order sentences and AB is a predicate
indicating that a component is abnormal.

As we adopt a different model form with the one
adopted by Reiter, we should develop a different
consistency-checking module for the formula (1).
Moreover we should develop a new diagnostic process for
dynamic and continuous system, with respect to the one
used by Reiter for digital circuits.

The basic idea consistency-checking module is shown
in Fig .1 The consistency-checking module firstly receives
the observations and hypothesis Δ (assuming particular
components to be faulty and others to be normally
functioning) from the principle diagnostic process. The
fault models are built by using the same means for
building normal model. The difference is that the fault
models use the fault and normal STRIPS (STanford
Research Institute Problem Solver, [7]) actions, but the
normal model only uses the normal STRIPS actions. Then
the fault models produce the predictions. Finally, these
predictions will be compared with the observations. If
they match each other, the hypothesis Δ makes the
formula (1) consistent, otherwise inconsistent. It should be
noted that the fault models are used in our diagnostic
process, but Reiter‟s approach does not use any fault

International Conference on Mechatronics, Electronic, Industrial and Control Engineering (MEIC 2014)

© 2014. The authors - Published by Atlantis Press 1154

model. Why? Because there exits the impossible
diagnoses. A famous example is that the light of a bulb is
on although no voltage is present [2]. Reiter‟s approach
provides an elegant and general framework for multi-fault
diagnosis. However, it is lacking an important part of
diagnostic reasoning: knowledge about how components
may behave when they are faulty. Thus it loses the ability
of generating explanations and confirming diagnosis by
analyzing whether the malfunctioning of a (set of)
component(s) is consistent with the observations.

Figure 1. The basic idea consistency-checking module.

The rest of this paper is organized as follows. The
fault models are introduced in section II. The new
diagnostic process for dynamic and continuous system is
presented in section III. The consistency-checking module
corresponding to our system model is described in section
IV. Section V summarizes the work done and discusses
directions for future research.

II. THE FAULT MODELS
As the difference with the Reiter‟s approach, fault

models are used in our diagnostic process. Reiter‟s
approach provides an elegant and general framework for
multi-fault diagnosis. However, it is lacking an important
part of diagnostic reasoning: knowledge about how
components may behave when they are faulty. Thus it
loses the ability of generating explanations and
confirming diagnosis by analyzing whether the
malfunctioning of a (set of) component(s) is consistent
with the observations. It may produce the impossible
diagnoses as that the light of a bulb is on although no
voltage is present [2].

A faulty component has more than one faulty
behaviors, for example, a valve may be blocked in the
„on‟ position (i.e., cannot be closed) or be blocked in the
„off‟ position (i.e., cannot be opened). These different
behaviors cannot be described by an unique single fault
model. That is the reason why the notion of fault mode is
introduced in our framework. Fault modes and effects
analysis is a tool originally developed by reliability
engineers. It analyses potential effects caused by simple or
aggregated components ceasing to behave as intended, i.e.
they stop providing the service designated to the
component. A fault modes and effects analysis procedure
starts with listing, for each component, in which ways can
this component fail. This is referred to as “fault modes”.
In this paper, a fault mode describes a same kind of faults
and is used to predict effects of a fault as a fault model
does.

The fault modes can be defined as a specific set of
STRIPS actions. In our modeling, the system‟s behavior is
described as an automaton which is generated by the
STRIPS actions. Therefore, the system‟s faulty behavior

is also generated by the faulty STRIPS actions. The faulty
STRIPS actions are those unobservable events which
cause the faults, such as “valve stuck-closed” and “sensor
short-circuited”, etc. In discrete event systems [3] and [4],
a kind of fault in a component has been pre-described in
the way of automaton, in which an unconditional
transition represents an unobservable fault event and the
destination state of this transition represents the effects of
this fault. The system‟s faulty behavior is generated by the
synchronous composition of these components‟ automata.
In the similar way, a faulty action is defined as an
unconditional STRIPS action without preconditions in
which the effects of fault have been described. The
difference with respect to discrete event systems is that
the system‟s faulty behavior is progressively generated
and is not necessary to generate the whole system‟s faulty
behavior.

Definition 1: (Fault model): Let L = {P1, P2, … Pn}
be a finite set of logical atoms. With this set, a fault model
can be represented as a faulty STRIPS action. AF = {a1,
a2…} is a finite or recursively enumerable set of faulty
STRIPS actions. Each faulty STRIPS action aFAF is a
multiple of subsets of L, which can be expressed as aF =
(preconditions, determin-effects, nondetermin-effects).

As the limitation of paper space, the example is
omitted.

III. THE PRINCIPLE DIAGNOSTIC PROCESS
Once a fault symptom is detected, the fault isolation

will be realized by our diagnostic process which is based
on the Reiter‟s HS-Dag graph presented in section 2 of the
companion paper: theory and detection. The principle
diagnostic process is an incremental procedure to
continuously compute a diagnosis for a system description
(SD, COMP, OBS) and its successive new observations
{New-OBS}. The entire process is illustrated in Fig .2 and
the corresponding algorithm is the algorithm 1.

Algorithm 1: The principle diagnostic process
Input: the current state si,
 the previous state si-1,

If HS-DAG does not exist
 Then { build the root node n0 of HS-DAG with COMPONENTS;

 build the child nodes of n0;
 create the set NL as the unchecked leaf nodes of the child nodes of n0;}

 Else create the set NL as all the unchecked leaf nodes of HS-DAG;
End If;

While (NL≠Ø) Do
 Choose nl of NL;
 NL ← NL − nl;
 If (some pruning rules are available)
 Then { update the HS-DAG as Reiter‟s algorithm;
 add the new leaf nodes to NL;};
 Else { call the consistency-checking module (si, nl);
 If (some pruning rules are available)
 Then { update the HS-DAG as Reiter‟s algorithm;
 add the new leaf nodes to NL;};
 End If};
 End If;
End While;
Return the Diagnose of this state = all the paths whose leaf node is labeled by “√”;
Clean the related marks of all normal scenario subsets (in algorithm 2);

Observations Hypothesis

Predictions

Matching

Producing
Fault Models

Model building

1155

Figure 2. The principle diagnostic process.

The algorithm 1 is called each time when the current
state si does not belong to the possible successive states
Snp(i-1) determined at last time.
(1) In the initialization, (SD, COMPONENTS, OBS) is the

system description and the initial state is noted as s0.
The successive states will be produced as the system
receives new observations and they are noted as s1,
s2… sk … (explicated in step (1) of algorithm of
detection in the companion paper). When the system
detects that a fault has occurred (the result returned by
algorithm of detection), the complete set of system
components is considered as one of the conflict sets
because according to the definition of conflict set, the
assumption that all the system components are normal
is not consistent with the actual observations. This
complete set of system components is used as the root
node of the graph HS-DAG and the initial HS-DAG
has only this root node.

(2) For each of the successive states s1,…, si, the current
HS-DAG is generated based on the last graph HS-
DAG.

(3) Open all the leaf nodes in the last HS-DAG (mark
them as yet to be explored).

(4) For each of the leaf nodes nl in the order of increasing
depths, check whether there are some pruning rules
applied on this leaf node to avoid doing the
consistency checking.

(5) If there is no available pruning rule, make a call to the
consistency-checking module but use si as the New-
OBS. Wait until receive the result of the consistency-
checking module and update the HS-DAG as in
Reiter‟s algorithm. It is noted that some new nodes
may be generated in this updating.

(6) If there are some available pruning rules, update the
HS-DAG as in Reiter‟s algorithm. For the new HS-
DAG, all the new leaf nodes are marked as
“unchecked”.

(7) Check whether there are any un-checked nodes. If
there is no un-checked node, the diagnoses are all the
paths whose leaf nodes are labeled by “√” in the final
HS-DAG for this state. The system waits for next new
observation and go to step 2 to begin a new cycle. If
there are un-checked nodes, go to step 4 to continue
constructing HS-DAG for this state.

(8) The process will wait for new observations and will
clean the “conflict” and “non-conflict” marks of all
normal scenario subsets (explicated in algorithm 2:
The consistency-checking module).

IV. THE CONSISTENCY-CHECKING MODULE
In Reiter‟s theory, a theorem prover serves as a

consistency checker, but in this paper, the normal and
faulty STRIPS actions can be used as the consistency
checker. They seek to maintain a model whose state and
faults (if any) reflect the current state of the physical
system. Before presenting the algorithm of consistency-
checking module, we first introduce two notions.

“Normal scenario subset, chi”: As the name suggests
that the components in normal scenario subset are treated
as the normal components and the rest components in
system are assumed to be faulty or normal. A normal
scenario subset is a subsets of complementary set of H(nl),
the set of edge labels of node nl, and record it in the set
CH(nl). CH(nl) is a set of sets, for example, chi is an
element of CH(nl) and itself is a set, a normal scenario
subset.

“The un-checked fault mode combination set”: As a
component has several different fault modes and it can not
be in two or more fault modes at the same time, thus each
fault component takes one of their fault modes one time.
For example, there are three components. The first one
has two fault modes (1-1, 1-2) and its normal mode (1-N),
the second one has only one fault mode (2-1) and its
normal mode (2-N), and the third one has one fault modes
(3-1) and its normal mode (3-N). Then there will be totally
twelve fault mode combinations for these three
components. Finally, we mark these combinations as un-
checked and record them in the set FMC. We call a fault
combination as “a fault scenario”. The entire consistency-
checking module is illustrated in Fig .3 and the
corresponding algorithm is the algorithm 2.

The explanations of steps of the algorithm 2 are the
following:
(0) Clean the set CH(nl) (explicated in step 2).
(1) Select a leaf node in a breadth first order and obtain

the set of edge labels, H(nl).
(2) List all “normal scenario subset” of node nl in the

order of increasing cardinal numbers except for the
null set, mark them as un-checked and record them in
the set CH(nl).

Given system description (SD, COMP, OBS),
The initial state noted as s0

After receiving new observations {New-OBS}, The successive
states noted as s1,… si …,

Constructing current HS-DAG for each state

Traversing all the leaf nodes in the last HS-DAG

Can we apply any
pruning rules?

For each of the leaf nodes

Yes

No

Have new or un-
checked nodes?

Yes

No

Update the HS-DAG and Re-
label the nodes related

Wait for new observations and Clean the
“conflict” and “non-conflict” marks of all normal

scenario subsets

Receiving new observations

The complete set of system components is one of the conflict sets
and is treated as the root node of HS-DAG

Initialization

C
all the consistency-checking
m

odule for each leaf node

End, If the system stops

1156

Figure 3. The consistency-checking module

Algorithm 2: The consistency-checking module
Input: the current state sc,

 the previous state si-1,
 the current node nl;

A = false; B = false;

 /*two logic variables to control the conditions of the iteration*/
Clean the set CH(nl)
Calculate the normal scenario set CH(nl) of nl in the order of increasing cardinal
numbers;
While (CH(nl)≠Ø) and (A = false) Do

Clean the set FMC;
Choose an element chi of CH(nl) in order;
CH(nl) ←CH(nl) − chi;
Determine the set FMC(chi);

/* the un-checked fault mode combination set for chi */

While (FMC(chi)≠Ø) and (B = false) Do
 Choose an element fmcj of FMC(chi);
 FMC(chi) ←FMC(chi) − fmcj;
 If (SDOBS {¬AB(ck)│ck chi} is in-consistency)
 Then { If (FMC(chi)=Ø)
 Then { chi ← Conflict;

 The components in chi are returned as
 a conflict set for nl;

 A = True;};
 Else j = j+1;
 End If;
 Else { chi ← non-conflict;
 B = True;
 If (CH(nl)=Ø) Then Return a null sign “√” for nl;
 End If};
 End If;

End While;
i = i+1;

End While

 (3) Choose a normal scenario subset chi. An additional

operation is to clean the set FMC (the un-checked
fault mode combination set, explicated in step 4).

(4) List all the fault mode combinations of a set of
components in chi.

(5) With the normal component set {c1,…,ck} in chi
chosen in step 3 and the corresponding fault mode
combination chosen in step 4, test the consistency of
SD  OBS  {¬AB(ck)│ck  chi} from the fault
predicted observations computed by the actions
issued and the fault events in the fault mode
combination. If a parameter value takes on two
distinct qualitative magnitudes or directions in the

fault predictive observations and the observed
observations, an inconsistency is detected, otherwise
a sigh of consistency is returned. Finally this fault
mode combination chosen fmcj is marked as
“checked”.

(6) If an inconsistency is detected, then check whether
there are any un-checked fault mode combinations. If
there is no un-checked fault mode combination, then
return the chosen normal component set (normal
scenario subset) chi as a conflict set and mark this leaf
node by this conflict set. It means that all the fault
mode combinations can not explicate the conflict
results between the actual observations and the
assumption of this normal component set. Moreover,
a mark of “conflict” is recorded for this normal
scenario subset temporarily. If there are un-checked
fault mode combinations, then go to step 4.

(7) If a consistency is returned, then a mark of “non-
conflict” is recorded for this normal scenario subset
temporarily and the process will check whether there
is any un-checked normal scenario subset in CH(nl).
If there is no un-checked subset, then return a null
sign “√” and mark this leaf node by it. It means that
there is no conflict set under this leaf node and the
assumption that the components in H(nl) are faulty
can explicate the existing situation. If there are un-
checked subsets in CH(nl), then go to step 3.

As the limitations of the space, we ignore the example
of application and some details.

V. CONCLUSION
This paper continues to present the framework of

multi-faults diagnosis from the preceding paper. There are
two main contributions in this part. One is aimed at
developing a new diagnostic process for continuous and
dynamic system and its corresponding consistency-
checking module. This diagnostic process and its
consistency-checking module are all based on the models
defined by STRIPS actions. The other is that the fault
models are introduced into the consistency-checking
module for preventing the impossible diagnoses. The
STRIPS can qualitatively define the fault models without
requiring detail and precise knowledge about faulty
components.Although we have proposed several skills to
improve the efficiency of our algorithm, there are still a
lot of works to do in the future. The model and its
building method that we used here are also used in the
reconfiguration [5, 8-10]. We hope that this multi-faults
framework and the reconfiguration can be well integrated
into a supervisory control system.

ACKNOWLEDGMENT
This work is supported by “The Nature Science

Foundation of Tibet”, “A Project Funded by the Priority
Academic Program Development of Jiangsu Higher
Education Institutions (Coastal Development
Conservancy)”, “Technology Foundation for Selected
Overseas Chinese Scholar, Ministry of Personnel of
China”,“the Fundamental Research Funds for the Central
Universities”, and “he Scientific Research Foundation for
the Returned Overseas Chinese Scholars, State Education
Ministry”.

Call the consistency-checking module for each leaf node

Return a conflict set

For each of normal scenario subsets

Using the related STRIPS actions to verify the consistency

Consistency? Yes No

Have un-checked
combinations of

fault modes?
Yes

No

Return a null sign “√”

Mark this leaf node

For each of the combinations of fault modes

Have un-checked
sub-sets? No

Yes

Th
e

Pr
in

ci
pl

e
D

ia
gn

os
tic

 P
ro

ce
ss

Record “non-conflict” for this
normal scenario subset

Record “conflict” for this
normal scenario subset

1157

REFERENCES
[1] J. Rasmussen, Information processing and human-machine

interaction, North Holland, New York, 1986.
[2] P. Struss and O. Dressler, “Physical negation: integrating fault

models into the general diagnostic engine,” In: Readings in Model-
based Diagnosis. Morgan Kaufmann Publishers, San Mateo, CA,
1992.

[3] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen and D.
Teneketzis, “Diagnosability of discrete-event systems,” IEEE
Trans. Automatic Control, Vol. 40, No. 9, pp. 1555–1575, 1995.

[4] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event
Systems (Second Version), Kluwer Academic Publishers, 2007.

[5] H. X. Hu, A. L. Gehin, and M. Bayart, “A Formal Framework of
Reconfigurable Control Based on Model Checking,” in American
Control Conference, Seattle, Washington, USA, 2008.

[6] R. Reiter, “A theory of diagnosis from first principles,” Artificial
Intelligence, Vol.32, No. 1, pp. 57-95, 1987.

[7] R. E. Fikes and N. J. Nilsson, “STRIPS: a new approach to the
application of theorem proving to problem solving,” Artificial
Intelligence, Vol. 2, Issues 3-4, pp. 189-208, 1971.

[8] H. X. Hu, A. L. Gehin, and M. Bayart, “An extended qualitative
multi-faults diagnosis from first principles I: theory and modelling”,
in 48th IEEE Conference on Decision and Control, China, 2009.

[9] H. X. Hu, A. L. Gehin, and M. Bayart, “An extended qualitative
multi-faults diagnosis from first principles II: algorithm and case
study,” in 48th IEEE Conference on Decision and Control, China,
2009.

[10] A. L. Gehin, H. X. Hu, and M. Bayart, “A self-updating model for
analysing system reconfigurability”, Engineering Applications of
Artificial Intelligence, Vol.25, Issue 1, pp.20-30, 2012.

1158

