
Qualitative Faults Diagnosis Algorithm: 
Process 

He-xuan Hu 1,2 
Agricultural and Animal Husbandry College of Tibet 

University 1 
Lin-zhi, Tibet, P.R. China 

College of Energy and Electrical Engineering 
Hohai University 2 

Nanjing, Jiangsu Province, P.R. China 
e-mail: hexuan_hu@hhu.edu.cn 

Shi-ping  Huang 
College of Energy and Electrical Engineering 

Hohai University 
Nanjing, Jiangsu Province, P.R. China 

e-mail: sph2014@126.com 
 
 
 

Hao-hua  Li 
College of Energy and Electrical Engineering 

Hohai University 
Nanjing, Jiangsu Province, P.R. China 

e-mail: haohuali@163.com 

Ye Zhang 
College of Computer and Information Engineering 

Hohai University 
Nanjing, Jiangsu Province, P.R. China 

e-mail: silve_fox@hotmail.com

 
 

Abstract—This paper presents the process of qualitative 
multi-faults diagnosis. We propose a new diagnostic process 
for continuous and dynamic system and its corresponding 
consistency-checking module. The STRIPS language is used 
to generate the system model since it integrates the cause-
effect information required to process the diagnosis. With 
the STRIPS language, actions are described in terms of their 
preconditions and effects and states are formulated as 
conjunctions of positive literals. A diagnosis is established 
when assuming particular components to be faulty and 
others to be normally functioning restore consistency. It 
reasons about multiple faults or causes for an abnormality 
by testing an assumption if it leads to an inconsistency. The 
main contribution is to realize the qualitative multi-faults 
diagnosis without requiring detail and precise knowledge 
about faulty components and without the impossible 
diagnoses. 
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I.  INTRODUCTION 
In this paper, we continue to present the part of 

isolation of qualitative multi-fault diagnosis. For the 
qualitative diagnosis, there are fundamentally two 
different approaches to search in fault diagnosis [1]: 
topographic search and symptomatic search. Topographic 
searches perform malfunction analysis using a template of 
normal operation, whereas, symptomatic searches look for 
symptoms to direct the search to the fault location. The 
Reiter‟s theory [6] belongs to symptomatic search. It is 
called consistency-based approach. Basically, 
consistency-based diagnosis amounts to finding faulty 
device components that account for a discrepancy 
between predicted normal behavior of a device and 
actually observed behavior. The discrepancy is formalized 
as logical inconsistency; a diagnosis is established when 

assuming particular components to be faulty and others to 
be normally functioning restore consistency. It reasons 
about multiple faults or causes for an abnormality by 
testing an assumption if it leads to an inconsistency. From 
the definition 3 of companion paper: theory and detection, 
the key step in the diagnosis process is to test the 
consistency of the formula, 

    COMPccABccABOBSSD )()( , (1) 
in which COMP is the diagnosis for system (SD, 
COMP, OBS where: SD, the system description, is a set of 
first-order sentence; COMP, the system components, is a 
finite set of constants; OBS, the observations of a system, 
is a finite set of first-order sentences and AB is a predicate 
indicating that a component is abnormal. 

As we adopt a different model form with the one 
adopted by Reiter, we should develop a different 
consistency-checking module for the formula (1). 
Moreover we should develop a new diagnostic process for 
dynamic and continuous system, with respect to the one 
used by Reiter for digital circuits. 

The basic idea consistency-checking module is shown 
in Fig .1 The consistency-checking module firstly receives 
the observations and hypothesis Δ (assuming particular 
components to be faulty and others to be normally 
functioning) from the principle diagnostic process. The 
fault models are built by using the same means for 
building normal model. The difference is that the fault 
models use the fault and normal STRIPS (STanford 
Research Institute Problem Solver, [7]) actions, but the 
normal model only uses the normal STRIPS actions. Then 
the fault models produce the predictions. Finally, these 
predictions will be compared with the observations. If 
they match each other, the hypothesis Δ makes the 
formula (1) consistent, otherwise inconsistent. It should be 
noted that the fault models are used in our diagnostic 
process, but Reiter‟s approach does not use any fault 
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model. Why? Because there exits the impossible 
diagnoses. A famous example is that the light of a bulb is 
on although no voltage is present [2]. Reiter‟s approach 
provides an elegant and general framework for multi-fault 
diagnosis. However, it is lacking an important part of 
diagnostic reasoning: knowledge about how components 
may behave when they are faulty. Thus it loses the ability 
of generating explanations and confirming diagnosis by 
analyzing whether the malfunctioning of a (set of) 
component(s) is consistent with the observations. 

 
Figure 1.  The basic idea consistency-checking module. 

The rest of this paper is organized as follows. The 
fault models are introduced in section II. The new 
diagnostic process for dynamic and continuous system is 
presented in section III. The consistency-checking module 
corresponding to our system model is described in section 
IV. Section V summarizes the work done and discusses 
directions for future research. 

II. THE FAULT MODELS 
As the difference with the Reiter‟s approach, fault 

models are used in our diagnostic process. Reiter‟s 
approach provides an elegant and general framework for 
multi-fault diagnosis. However, it is lacking an important 
part of diagnostic reasoning: knowledge about how 
components may behave when they are faulty. Thus it 
loses the ability of generating explanations and 
confirming diagnosis by analyzing whether the 
malfunctioning of a (set of) component(s) is consistent 
with the observations. It may produce the impossible 
diagnoses as that the light of a bulb is on although no 
voltage is present [2]. 

A faulty component has more than one faulty 
behaviors, for example, a valve may be blocked in the 
„on‟ position (i.e., cannot be closed) or be blocked in the 
„off‟ position (i.e., cannot be opened). These different 
behaviors cannot be described by an unique single fault 
model. That is the reason why the notion of fault mode is 
introduced in our framework. Fault modes and effects 
analysis is a tool originally developed by reliability 
engineers. It analyses potential effects caused by simple or 
aggregated components ceasing to behave as intended, i.e. 
they stop providing the service designated to the 
component. A fault modes and effects analysis procedure 
starts with listing, for each component, in which ways can 
this component fail. This is referred to as “fault modes”. 
In this paper, a fault mode describes a same kind of faults 
and is used to predict effects of a fault as a fault model 
does. 

The fault modes can be defined as a specific set of 
STRIPS actions. In our modeling, the system‟s behavior is 
described as an automaton which is generated by the 
STRIPS actions. Therefore, the system‟s faulty behavior 

is also generated by the faulty STRIPS actions. The faulty 
STRIPS actions are those unobservable events which 
cause the faults, such as “valve stuck-closed” and “sensor 
short-circuited”, etc. In discrete event systems [3] and [4], 
a kind of fault in a component has been pre-described in 
the way of automaton, in which an unconditional 
transition represents an unobservable fault event and the 
destination state of this transition represents the effects of 
this fault. The system‟s faulty behavior is generated by the 
synchronous composition of these components‟ automata. 
In the similar way, a faulty action is defined as an 
unconditional STRIPS action without preconditions in 
which the effects of fault have been described. The 
difference with respect to discrete event systems is that 
the system‟s faulty behavior is progressively generated 
and is not necessary to generate the whole system‟s faulty 
behavior.  

Definition 1: (Fault model): Let L = {P1, P2, … Pn} 
be a finite set of logical atoms. With this set, a fault model 
can be represented as a faulty STRIPS action. AF = {a1, 
a2…} is a finite or recursively enumerable set of faulty 
STRIPS actions. Each faulty STRIPS action aFAF is a 
multiple of subsets of L, which can be expressed as aF = 
(preconditions, determin-effects, nondetermin-effects).  

As the limitation of paper space, the example is 
omitted. 

III. THE PRINCIPLE DIAGNOSTIC PROCESS 
Once a fault symptom is detected, the fault isolation 

will be realized by our diagnostic process which is based 
on the Reiter‟s HS-Dag graph presented in section 2 of the 
companion paper: theory and detection. The principle 
diagnostic process is an incremental procedure to 
continuously compute a diagnosis for a system description 
(SD, COMP, OBS) and its successive new observations 
{New-OBS}. The entire process is illustrated in Fig .2 and 
the corresponding algorithm is the algorithm 1. 

 
Algorithm 1: The principle diagnostic process 
Input: the current state si, 
           the previous state si-1,  
 
If HS-DAG does not exist 
    Then { build the root node n0 of HS-DAG with COMPONENTS; 

    build the child nodes of n0; 
        create the set NL as the unchecked leaf nodes of the child nodes of n0;} 

     Else    create the set NL as all the unchecked leaf nodes of HS-DAG; 
End If; 
 
While (NL≠Ø) Do 
    Choose nl of NL; 
    NL ← NL − nl; 
    If (some pruning rules are available) 
            Then { update the HS-DAG as Reiter‟s algorithm; 
                         add the new leaf nodes to NL;}; 
            Else {   call the consistency-checking module (si, nl); 
                         If (some pruning rules are available)  
              Then { update the HS-DAG as Reiter‟s algorithm; 
       add the new leaf nodes to NL;}; 
              End If}; 
            End If; 
End While; 
Return the Diagnose of this state = all the paths whose leaf node is labeled by “√”; 
Clean the related marks of all normal scenario subsets (in algorithm 2); 
 

Observations Hypothesis 

Predictions 

Matching 

Producing 
Fault Models 

Model building 
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Figure 2.  The principle diagnostic process. 

The algorithm 1 is called each time when the current 
state si does not belong to the possible successive states 
Snp(i-1) determined at last time. 
(1) In the initialization, (SD, COMPONENTS, OBS) is the 

system description and the initial state is noted as s0. 
The successive states will be produced as the system 
receives new observations and they are noted as s1, 
s2… sk … (explicated in step (1) of algorithm of 
detection in the companion paper). When the system 
detects that a fault has occurred (the result returned by 
algorithm of detection), the complete set of system 
components is considered as one of the conflict sets 
because according to the definition of conflict set, the 
assumption that all the system components are normal 
is not consistent with the actual observations. This 
complete set of system components is used as the root 
node of the graph HS-DAG and the initial HS-DAG 
has only this root node.  

(2) For each of the successive states s1,…, si, the current 
HS-DAG is generated based on the last graph HS-
DAG. 

(3) Open all the leaf nodes in the last HS-DAG (mark 
them as yet to be explored). 

(4) For each of the leaf nodes nl in the order of increasing 
depths, check whether there are some pruning rules 
applied on this leaf node to avoid doing the 
consistency checking. 

(5) If there is no available pruning rule, make a call to the 
consistency-checking module but use si as the New-
OBS. Wait until receive the result of the consistency-
checking module and update the HS-DAG as in 
Reiter‟s algorithm. It is noted that some new nodes 
may be generated in this updating. 

(6) If there are some available pruning rules, update the 
HS-DAG as in Reiter‟s algorithm. For the new HS-
DAG, all the new leaf nodes are marked as 
“unchecked”.  

(7) Check whether there are any un-checked nodes. If 
there is no un-checked node, the diagnoses are all the 
paths whose leaf nodes are labeled by “√” in the final 
HS-DAG for this state. The system waits for next new 
observation and go to step 2 to begin a new cycle. If 
there are un-checked nodes, go to step 4 to continue 
constructing HS-DAG for this state. 

(8) The process will wait for new observations and will 
clean the “conflict” and “non-conflict” marks of all 
normal scenario subsets (explicated in algorithm 2: 
The consistency-checking module). 

IV. THE CONSISTENCY-CHECKING MODULE 
In Reiter‟s theory, a theorem prover serves as a 

consistency checker, but in this paper, the normal and 
faulty STRIPS actions can be used as the consistency 
checker. They seek to maintain a model whose state and 
faults (if any) reflect the current state of the physical 
system. Before presenting the algorithm of consistency-
checking module, we first introduce two notions. 

“Normal scenario subset, chi”: As the name suggests 
that the components in normal scenario subset are treated 
as the normal components and the rest components in 
system are assumed to be faulty or normal. A normal 
scenario subset is a subsets of complementary set of H(nl), 
the set of edge labels of node nl, and record it in the set 
CH(nl). CH(nl) is a set of sets, for example, chi is an 
element of CH(nl) and itself is a set, a normal scenario 
subset. 

“The un-checked fault mode combination set”: As a 
component has several different fault modes and it can not 
be in two or more fault modes at the same time, thus each 
fault component takes one of their fault modes one time. 
For example, there are three components. The first one 
has two fault modes (1-1, 1-2) and its normal mode (1-N), 
the second one has only one fault mode (2-1) and its 
normal mode (2-N), and the third one has one fault modes 
(3-1) and its normal mode (3-N). Then there will be totally 
twelve fault mode combinations for these three 
components. Finally, we mark these combinations as un-
checked and record them in the set FMC. We call a fault 
combination as “a fault scenario”. The entire consistency-
checking module is illustrated in Fig .3 and the 
corresponding algorithm is the algorithm 2. 

The explanations of steps of the algorithm 2 are the 
following:  
(0) Clean the set CH(nl) (explicated in step 2). 
(1) Select a leaf node in a breadth first order and obtain 

the set of edge labels, H(nl). 
(2) List all “normal scenario subset” of node nl in the 

order of increasing cardinal numbers except for the 
null set, mark them as un-checked and record them in 
the set CH(nl). 

Given system description (SD, COMP, OBS),  
The initial state noted as s0 

After receiving new observations {New-OBS}, The successive 
states noted as s1,… si …,  

Constructing current HS-DAG for each state 

Traversing all the leaf nodes in the last HS-DAG 

Can we apply any 
pruning rules? 

For each of the leaf nodes 

Yes 

No 

Have new or un-
checked nodes? 

Yes 

No 

Update the HS-DAG and Re-
label the nodes related 

Wait for new observations and Clean the 
“conflict” and “non-conflict” marks of all normal 

scenario subsets 

Receiving new observations 

The complete set of system components is one of the conflict sets 
and is treated as the root node of HS-DAG 

Initialization 

C
all the consistency-checking 
m

odule for each leaf node 

End, If the system stops 
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Figure 3.  The consistency-checking module 

Algorithm 2: The consistency-checking module 
Input: the current state sc, 

   the previous state si-1, 
   the current node nl; 

 
A = false; B = false; 

 /*two logic variables to control the conditions of the iteration*/ 
Clean the set CH(nl) 
Calculate the normal scenario set CH(nl) of nl in the order of increasing cardinal 
numbers; 
While (CH(nl)≠Ø) and (A = false) Do 

Clean the set FMC; 
Choose an element chi of CH(nl) in order; 
CH(nl) ←CH(nl) − chi; 
Determine the set FMC(chi);  

/* the un-checked fault mode combination set for chi */ 
  

While (FMC(chi)≠Ø) and (B = false) Do 
    Choose an element fmcj of FMC(chi); 
    FMC(chi) ←FMC(chi) − fmcj; 
    If (SDOBS {¬AB(ck)│ck chi} is in-consistency) 
           Then { If (FMC(chi)=Ø)  
                             Then { chi ← Conflict;  

            The components in chi are returned as 
         a conflict set for nl; 

                      A = True;};  
          Else   j = j+1; 
   End If; 
           Else { chi ← non-conflict;  
   B = True; 
   If (CH(nl)=Ø) Then Return a null sign “√” for nl; 
   End If}; 
    End If; 

End While; 
i = i+1; 

End While 
 
 (3) Choose a normal scenario subset chi. An additional 

operation is to clean the set FMC (the un-checked 
fault mode combination set, explicated in step 4). 

(4) List all the fault mode combinations of a set of 
components in chi.  

(5) With the normal component set {c1,…,ck} in chi 
chosen in step 3 and the corresponding fault mode 
combination chosen in step 4, test the consistency of 
SD  OBS  {¬AB(ck)│ck  chi} from the fault 
predicted observations computed by the actions 
issued and the fault events in the fault mode 
combination. If a parameter value takes on two 
distinct qualitative magnitudes or directions in the 

fault predictive observations and the observed 
observations, an inconsistency is detected, otherwise 
a sigh of consistency is returned. Finally this fault 
mode combination chosen fmcj is marked as 
“checked”. 

(6) If an inconsistency is detected, then check whether 
there are any un-checked fault mode combinations. If 
there is no un-checked fault mode combination, then 
return the chosen normal component set (normal 
scenario subset) chi as a conflict set and mark this leaf 
node by this conflict set. It means that all the fault 
mode combinations can not explicate the conflict 
results between the actual observations and the 
assumption of this normal component set. Moreover, 
a mark of “conflict” is recorded for this normal 
scenario subset temporarily. If there are un-checked 
fault mode combinations, then go to step 4. 

(7) If a consistency is returned, then a mark of “non-
conflict” is recorded for this normal scenario subset 
temporarily and the process will check whether there 
is any un-checked normal scenario subset in CH(nl). 
If there is no un-checked subset, then return a null 
sign “√” and mark this leaf node by it. It means that 
there is no conflict set under this leaf node and the 
assumption that the components in H(nl) are faulty 
can explicate the existing situation. If there are un-
checked subsets in CH(nl), then go to step 3. 

As the limitations of the space, we ignore the example 
of application and some details. 

V. CONCLUSION 
This paper continues to present the framework of 

multi-faults diagnosis from the preceding paper. There are 
two main contributions in this part. One is aimed at 
developing a new diagnostic process for continuous and 
dynamic system and its corresponding consistency-
checking module. This diagnostic process and its 
consistency-checking module are all based on the models 
defined by STRIPS actions. The other is that the fault 
models are introduced into the consistency-checking 
module for preventing the impossible diagnoses. The 
STRIPS can qualitatively define the fault models without 
requiring detail and precise knowledge about faulty 
components.Although we have proposed several skills to 
improve the efficiency of our algorithm, there are still a 
lot of works to do in the future. The model and its 
building method that we used here are also used in the 
reconfiguration [5, 8-10]. We hope that this multi-faults 
framework and the reconfiguration can be well integrated 
into a supervisory control system. 
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