Second-order recursion operators of third-order evolution equations with fourth-order integrating factors

Marianna EULER and Norbert EULER
Department of Mathematics, Luleå University of Technology SE-971 87 Luleå, Sweden

Received March 21, 2007; Accepted in Revised Form April 26, 2007

Abstract

We report the recursion operators for a class of symmetry integrable evolution equations of third order which admit a fourth-order integrating factor. Under some assumptions we obtain the complete list of equations, one of which is a special case of the Schwarzian Korteweg-de Vries equation.

We consider the third-order evolution equation

$$
\begin{equation*}
u_{t}=u_{3 x}+F\left(u, u_{x}, u_{x x}\right) \tag{1}
\end{equation*}
$$

and require that (1) admits a recursion operator of the form

$$
\begin{equation*}
R[u]=D_{x}^{2}+G_{1} D_{x}+G_{0}+I_{1} D_{x}^{-1} \circ J_{1}+I_{2} D_{x}^{-1} \circ J_{2} \tag{2}
\end{equation*}
$$

where $G_{j}=G_{j}\left(u, u_{x}, u_{x x}, \ldots\right), I_{i}$ are Lie point symmetries and J_{i} integrating factors for (1), with

$$
\begin{equation*}
\frac{\partial J_{i}}{\partial u_{4 x}} \neq 0 \tag{3}
\end{equation*}
$$

for J_{1} and/or J_{2} such that

$$
J_{i}=\hat{E}_{u} \Phi_{i}^{t} .
$$

Here \hat{E}_{u} is the Euler operator

$$
\hat{E}_{u}=\frac{\partial}{\partial u}-D_{x} \circ \frac{\partial}{\partial u_{x}}+D_{x}^{2} \circ \frac{\partial}{\partial u_{2 x}}-\cdots
$$

and Φ^{t} a conserved density for the evolution equation. We recall that if (1) admits a recursion operator and an infinite hierarchy of higher order conservation laws in involution,

$$
D_{t} \Phi_{i}^{t}+D_{x} \Phi_{i}^{x}=0,
$$

then (1) is said to be symmetry integrable [2].
As usual subscripts denote partial derivatives, so that

$$
u_{x}=\frac{\partial u}{\partial x}, \quad u_{x x}=\frac{\partial^{2} u}{\partial x^{2}}, \quad u_{3 x}=\frac{\partial^{3} u}{\partial x^{3}}, \quad \ldots
$$

Proposition: Equations of the form (1) which admit recursion operators of the form (2) under condition (3) are exhausted by the following three cases (all λ 's are arbitrary constants and c is an arbitrary but nonzero constant):

1. The equation

$$
\begin{equation*}
u_{t}=u_{3 x}-\frac{3}{2} u_{x}^{-1} u_{x x}^{2}+\lambda_{1} u_{x}^{-1}+\lambda_{2} u_{x}^{3}+\lambda_{3} u_{x}+\lambda_{0} \tag{4}
\end{equation*}
$$

admits the recursion operator

$$
\begin{align*}
R[u] & =D_{x}^{2}-2\left(\frac{u_{x x}}{u_{x}}\right) D_{x}+\frac{u_{3 x}}{u_{x}}-\frac{u_{x x}^{2}}{u_{x}^{2}}-\frac{2 \lambda_{1}}{3 u_{x}^{2}}+2 \lambda_{2} u_{x}^{2}+k_{0} \\
& -u_{x} D_{x}^{-1} \circ\left(\frac{u_{4 x}}{u_{x}^{2}}-4 \frac{u_{x x} u_{3 x}}{u_{x}^{3}}+3 \frac{u_{x x}^{3}}{u_{x}^{4}}+2 \lambda_{2} u_{x x}-2 \lambda_{1} \frac{u_{x x}}{u_{x}^{4}}\right) \\
& -\frac{8}{3} \lambda_{1} D_{x}^{-1} \circ\left(\frac{u_{x x}}{u_{x}^{3}}\right) . \tag{5}
\end{align*}
$$

2. The equation

$$
\begin{equation*}
u_{t}=u_{3 x}-\frac{3}{2}\left(\frac{u_{x}}{u_{x}^{2}-c}\right) u_{x x}^{2}+\lambda_{1}\left(u_{x}^{2}-c\right)^{3 / 2}+\lambda_{2} u_{x}^{3}+\lambda_{3} u_{x}+\lambda_{0} \tag{6}
\end{equation*}
$$

with $c \neq 0$ admits the recursion operator

$$
\begin{align*}
R[u] & =D_{x}^{2}-2\left(\frac{u_{x} u_{x x}}{u_{x}^{2}-c}\right) D_{x}+\frac{u_{x} u_{3 x}}{u_{x}^{2}-c}-\frac{u_{x}^{2} u_{x x}^{2}}{\left(u_{x}^{2}-c\right)^{2}}+2 \lambda_{1} u_{x}\left(u_{x}^{2}-c\right)^{1 / 2} \\
& +2 \lambda_{2} u_{x}^{2}+\frac{2}{3} \lambda_{3}+k_{0}-\lambda_{1} c^{2} D_{x}^{-1} \circ\left(\frac{u_{x x}}{\left(u_{x}^{2}-c\right)^{3 / 2}}\right) \\
& -u_{x} D_{x}^{-1} \circ\left(\frac{u_{4 x}}{u_{x}^{2}-c}-\frac{4 u_{x} u_{x x} u_{3 x}}{\left(u_{x}^{2}-c\right)^{2}}+\frac{\left(3 u_{x}^{2}+c\right) u_{x x}^{3}}{\left(u_{x}^{2}-c\right)^{3}}\right. \\
& \left.+\lambda_{1} \frac{\left(2 u_{x}^{2}-3 c\right) u_{x} u_{x x}}{\left(u_{x}^{2}-c\right)^{3 / 2}}+2 \lambda_{2} u_{x x}\right) . \tag{7}
\end{align*}
$$

3. The equation

$$
\begin{equation*}
u_{t}=u_{3 x}-\frac{3}{4} u_{x}^{-1} u_{x x}^{2}+\lambda_{1} u_{x}^{3 / 2}+\lambda_{2} u_{x}^{2}+\lambda_{3} u_{x}+\lambda_{0} \tag{8}
\end{equation*}
$$

admits the recursion operator

$$
\begin{align*}
R[u] & =D_{x}^{2}-\left(\frac{u_{x x}}{u_{x}}\right) D_{x}+\frac{1}{2} \frac{u_{3 x}}{u_{x}}-\frac{1}{4} \frac{u_{x x}^{2}}{u_{x}^{2}}+\lambda_{1} u_{x}^{1 / 2}+\frac{4 \lambda_{2}}{3} u_{x}+k_{0} \\
& -\frac{1}{2} D_{x}^{-1} \circ\left(\frac{u_{4 x}}{u_{x}}-2 \frac{u_{x x} u_{3 x}}{u_{x}^{2}}+\frac{u_{x x}^{3}}{u_{x}^{3}}+\frac{3 \lambda_{1}}{4} \frac{u_{x x}}{u_{x}^{1 / 2}}+\frac{4 \lambda_{2}}{3} u_{x x}\right) \\
& +\frac{\lambda_{1}}{8} u_{x} D_{x}^{-1} \circ\left(\frac{u_{x x}}{u_{x}^{3 / 2}}\right) . \tag{9}
\end{align*}
$$

Some remarks are in order:

Equation (4) is listed in [3] as eq. (4.1.16). The recursion operator for the case $\lambda_{1}=\lambda_{2}=$ $\lambda_{3}=0$ is given in [1]. With all λ 's zero (4) is known as the Schwazian KdV equation. Equation (6) with $c=-1$ is listed in [3] as eq. (4.1.14). For (6) with $\lambda_{1}=\lambda_{2}=\lambda_{3}=\lambda_{0}=0$ and $c= \pm 1$ the recursion operator is given in [4]. Equation (8) is listed in [3] as eq. (4.1.13).

References

[1] Dorfman I, Dirac Structure and Integrability of Nonlinear Evolution Equations, John Wiley \& Sons, Chichester 1993.
[2] Fokas A S, Symmetries and Integrability, Stud. Appl. Math. 77 (1987), 253-299.
[3] Mikhailov A V, Shabat A B and Sokolov V V, The symmetry approach to classification of integrable equations, in What is Integrability?, Editor Zhakarov E V, Springer 1991, 115-184.
[4] Sanders J A and Wang J P, On the integrability of nonpolynomial scalar evolution equations, J Differential Equations 166 (2000), 447-459.

