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Abstract—According to the exact three-dimensional (3D) 
thermal theory, the steady temperature distribution in a 
laminated rectangular plate with zero temperature 
conditions on four lateral surfaces was studied. An analytical 
method was developed to solve the temperature field in the 
plate. Firstly, the general solution of the temperature field in 
a single-layer rectangular plate, which exactly satisfies the 
governing thermal differential equation, was derived out. 
Then, the temperature and heat flux relationships between 
the upper surface and the lower surface of the single-layer 
plate were obtained. Based on the continuity of the 
temperature and the heat flux on the interface of two 
adjacent layers, the temperature and the heat flux between 
the lowest layer and the top layer of the laminated plate were 
recursively obtained by using the transfer matrix method. 
The unknown coefficients in the solutions for every layer 
were uniquely determined by the use of the temperature 
conditions at the upper and lower surfaces of the plate. The 
temperature distribution in the laminated plate was given by 
substituting the unknown coefficients obtained back to the 
recurrent formulae and the solutions. The convergence of 
the solutions has been checked based on the number of series 
term. Comparing the results with those obtained from the 
finite element method, the accuracy and correctness of the 
present method were demonstrated. Finally, the effects of 
surface temperatures, thickness, layer number and material 
properties of the plate on the temperature distribution were 
discussed in detail.  

Keywords-Three-dimensional temperature field;Laminated 

plate; Exact solution; Displacement and stress; Transfer 

matrix method  

I.  INTRODUCTION  
In recent years, laminated plates, especially subjected 

to thermal loads, have received a considerable attention. 
The stresses and non-uniform deformations appear in the 
laminated plate even for a complete free laminated plate 
because of the inhomogeneous thermal expansion 
coefficients in the plate. Therefore, the study on 

temperature distribution in laminated plates has particular 
importance for the structural safety analysis. 

Some analytical solutions were reported. Delouei et al. 
[1] presented an exact analytical solution for transient heat 
conduction in cylindrical multilayered composites. 
Kayhani et al. [2] presented a steady analytical solution 
for heat conduction in a cylindrical multilayered laminate 
with different fiber directions among layers. The Sturm-
Liouville theorem was used to derive the appropriate 
Fourier transformation. Beck et al. [3] proved that in some 
cases, by means of the Kayhani’ approach the poorly-
convergent or non-convergent series can be replaced by 
the closed-form algebraic solutions. Ma and Chang [4] 
analyzed the steady-state temperature field and heat flux 
field in a multi-layered media with anisotropic properties 
subjected to surface temperature. Savoia and Reddy [5] 
considered the polynomial and exponential temperature 
distributions through the thickness and presented the 
temperature analysis for multilayered plates subjected to 
thermal loads. Hsieh and Ma [6] provided the analytical 
solution for heat conduction in an anisotropic thin-layer 
media with embedded heat sources. Haji-Sheikh et al. [7] 
presented the mathematical formulation of the steady-state 
temperature field in multi-dimensional and multi-layer 
bodies.Norouzi et al. [8] presented an exact analytical 
solution for steady conductive heat transfer in multilayer 
spherical fiber reinforced composite laminates. Kayhani et 
al. [9] gave a steady analytical solution for heat 
conduction in a cylindrical multilayer composite laminate 
where the fiber direction may vary between layers. 

In this paper, we use the exact three dimensional (3D) 
thermal theory to study the steady temperature distribution 
in a laminated rectangular plate with zero temperature 
conditions on four lateral surfaces. Firstly, the general 
solutions of the temperature distribution in a single-layer 
rectangular plate are derived out. Then, the formulae of 
temperature and heat flux between two adjacent layers are 
obtained based on the continuity of the temperature and 
the heat flux on the interface of two adjacent layers, which 
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can be provided recursively from the lower surface to the 
upper surface of the laminated plate by using the transfer 
matrix method. Finally, the unknown coefficients are 
determined by using the upper surface and lower surface 
conditions of the laminated plate. Excellent convergence 
has been achieved and the numerical results agree well 
with the finite element solutions. 

II. BASIC EQUATIONS AND SOLUTION OF SINGLE LAYER 
Consider a laminated rectangular plate with length a, 

width b and thickness h (
1

p

i

i

h h


 ), as shown in Fig .1. 
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Figure 1.  Cartesian coordinates of the laminated plate 

The plate is composed of p layers. For the ith layer, its 
thickness is hi and thermal conductivity is Ki. We consider 
the plate having a constant temperature value on four 
lateral surfaces and take this value as the datum mark of 
temperature field in the plate. Without losing the 
generality, we can further think the temperatures on four 
lateral surfaces to be zero. The upper surface and lower 
surface of the plate are subjected to steady temperatures 
load t2(x) and t1(x), respectively. 

In the local Cartesian coordinate system xyzi, the heat 
conduction equation [10] in the layer i is: 

2 2 2

2 2 2

( , , ) ( , , ) ( , , ) 0i i i i i i

i

T x y z T x y z T x y z

x y z

  
  

  
            (1)                                    

where Ti(x,y,zi) is the temperature distribution in the 
ith layer under the local coordinates x-y-zi with origin 
at the lower right corner of the layer. The temperatures 
on four lateral surfaces are: 

(0, , ) ( , , ) 0, ( ,0, ) ( , , ) 0;i i i i i iT y z T a y z T x z T x b z        (2) 

The relationships of the temperature and the heat 
flux on the interface of two adjacent layers are (i=1, 
2, … , p): 
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             (3) 

The solution of Equation (1) can be given in the 
double sinusoidal series form of 

1 1
( , , ) ( )sin sini

i i mn i

m n

m x n y
T x y z t z

a b

  

 

           (4) 

It is obvious that Equation (4) satisfies Equation (2) 
exactly. 

Substituting Equation (4) into Equation (1), we 
obtain a series of ordinary differential equations of 

second order with constant coefficients about the 
coordinate zi (i=1, 2,…,p). Finally, Ti(x,y,zi) can be 
worked out: 

1 1
( , , ) ( )sin sinmn i mn iz zi i

i i mn mn

m n

m x n y
T x y z e E e F

a b

    


 

 
            (5) 

2 2 2 2

2 2mn
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a b
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where, Emn

i
 and Fmn

i are the unknown coefficients 
which can be determined by the temperature conditions 
on the upper and lower surfaces of the ith layer plate. 

 

III. RECURSIVE FORMULAE FOR TEMPERATURE AND 
HEAT FLUX 

From the above analysis, the temperature and heat 
flux in the plate can be described in the compact form, 
i.e. 

1 1

( , , )
( )sin sin( , , )

i

i

mn ii
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where ( )i

mn iz  is the unknown functions expressed in 
the column form about the local coordinate

iz . 
According to Equation (4), ( )i

mn iz  can be described as 

     ( ) ( )i i i

mn i mn i mnz z                                             (7) 
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From Equation (7), the relationship between the 
upper surface and the lower surface in the ith layer can 
be obtained as follows: 

1( ) ( ) (0) (0)i i i i

mn i mn i mn mnh h                               (8) 

Based on the continuity of temperature and heat 
flux at the interface of two adjacent layers from 
Equation (3), one has 

1( ) (0)i i

mn i mnh                                                          (9) 

Thus, the temperature and the heat flux 
relationships between the lowest layer and the layer q 
(q=2, 3…p) are recursively obtained: 

11
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q
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      (10) 

 

IV. UNKNOWN COEFFICIENTS FOR TEMPERATURE FIELD 
Consider that the upper and lower surfaces of the 

laminated plate is subjected to the steady state 
temperature loads t2(x, y) and t1(x, y) respectively, i.e. 
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1 1 2( , ,0) ( , ), ( , , ) ( , )p pT x y t x y T x y h t x y                (11) 

We multiply Equation (11) by sin sini x j y

a b

   and 

integrate over x and y respectively: 
1 10 0 0 0
( , ,0)sin sin ( , )sin sin ,

a b a bi x j y i x j y
T x y dydx t x y dydx

a b a b

   
   

 

20 0 0 0
( , , )sin sin ( , )sin sin

a b a b

p p

i x j y i x j y
T x y h dydx t x y dydx

a b a b

   
   

(12) 

Substituting Equation (5) into Equation (12) gives 
1 1 1 2, mn p mn ph hp p

mn mn mn mn mn mnE F e E e F
 

 


             (13) 

where 1
mn and 2

mn  can be expressed by: 

1
10 0

4 ( , )sin sin
a b

mn

m x n y
t x y dxdy

ab a b

 
    , 

2
20 0

4 ( , )sin sin
a b
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m x n y
t x y dxdy
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 
                 (14) 

 Simultaneously solving Equation (10) (taking 
q=p) and Equation (13), 1

mnE , 1
mnF , p

mnE  and p

mnF  can be 
uniquely determined. Taking 1

mnE  and 1
mnF  back to 

Equation (10), q

mnE  and q

mnF   (q=2, 3…p-1) for each 
layer can be solved. Finally, substituting the 
coefficients back into Equation (5) yields the 
temperature field within the laminated plate. 

V. CONVERGENCE AND COMPARISON STUDIES 
In order to verify the accuracy and correctness of 

the present method, some numerical calculations for 
temperature field are carried out. In the following 
numerical studies, all the computations were performed 
in double precision. We take the three-layered plates as 
example, which are widely used in various engineering. 
The top and lowest layers of the plate are made up of 
steel while the core layer is made up of concrete. The 
length is a=10m, the width is b=10m and the layer 
thicknesses are h1=0.1m, h2=0.8m, h3=0.1m, 
respectively. The thermal conductivities for every layer 
are k1=75.4 W/(m·oC), k2=2.33 W/(m·oC), k3=75.4 
W/(m·oC). The upper and lower surfaces of the plate 
are subjected to different uniform steady-state 
temperature loads: t2(x, y) = 100oC and t1(x, y) = 20oC. 

Six different terms N=5, 10, 15, 20, 25, 30 have 
been checked. Table 1 gives the solutions of 
temperature at x=2.7m, y=4.3m, z=0.05m; z=0.1m; 
z=0.3m; z=0.7m; z=0.9m; z=0.95m, respectively. It can 
be seen from Table 1 that the numerical results 
converge quickly with the increase of the series terms. 
The results for N=30 are the same as those for N=25 
with three significance digits. This indicates an 
excellent convergence of the proposed method. 
Therefore, the number of terms of the Fourier series is 
fixed at N=25 in the following numerical computations. 

 

Table 1 Convergence studies of temperature field

 

N

 

z=0.05

 

z=0.1

 

z=0.3

 

z=0.7

 

z=0.9

 

z=0.95

 

5

 

10.5

 

13.2

 

25.2

 

74.4

 

94.2

 

95.4

 

10

 

18.7

 

16.2

 

36.7

 

74.7

 

98.9

 

97.6

 

15

 

19.5

 

18.9

 

39.5

 

74.9

 

99.5

 

99.7

 

20

 

20.1

 

19.7

 

40.1

 

78.9

 

99.4

 

99.6

 

25

 

20.2

 

20.3

 

40.2

 

79.8

 

99.7

 

99.8

 

30

 

20.2

 

20.3

 

40.2

 

79.8

 

99.7

 

99.8

 

Meanwhile, a finite element (FE) simulation

 

using 
ANSYS has been carried out to verify the accuracy of 
the proposed method. Table 2 shows the comparison 
studies of the temperature at the points along the 

thickness: z=0.05m; z=0.1m; z=0.3m; z=0.7m; z=0.9m; 
z=0.95m with x=2.7, y= 4.3; x=1, y=2.5; x=1, y=0.7, 
respectively. It can be seen from Table 2 that the 
present solutions agree closely with the FE solutions. 
This validates the correctness of the proposed method. 

 
Table 2 Comparison studies of the temperature field 

from present solutions with FE solutions 
 Method z=0.05  z=0.1 z=0.3 z=0.7 z=0.9 z=0.95 

x= 2.7, y= 4.3 
  Present 20.2 20.3 40.2 79.8 99.7 99.8 
ANSYS 20.1 20.5 39.9 80.1 99.7 99.8 

x= 1, y= 2.5 
  Present 20.1 20.3 38.9 78.6 99.7 99.8 
 ANSYS 20.1 20.4 38.7 78.8 99.7 99.8 

x= 1, y= 0.7 
  Present 20.1 20.2 35.6 74.9 99.7 99.8 
 ANSYS 20.1 20.3 35.4 75.1 99.7 99.8 

VI.  NUMERICAL EXAMPLES 
In this section, three numerical examples are 

presented to show the applicability of the proposed 
method. 

The first example is still the three-layered 
rectangular plate considered above. The upper surface 
of the plate is subjected to different uniform steady-
state temperatures: t2(x, y) =30oC, 100oC, 200oC, 
respectively. The lower surface of the plate is subjected 
to the fixed temperature: t1(x, y) = 20oC. Fig .2 shows 
the temperature distribution along the y direction at 
x=2.3, z=0.3. It can be seen from Fig .2 that the 
temperature of the plate increases with the increase of 
the temperature on the upper surface except for the 
temperature at the edges. In Fig .3, the distribution of 
temperature along the thickness at x=2.7, y=4.3 is given. 
We can find that the slopes of the temperature change 
within the top and bottom layers of the plate are lower 
than that within the core layer. The reason is that the 
thermal conductivity in the top and bottom layers of the 
plate is larger than that in the core layer. 
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Figure 2. The temperature distribution along the y direction at x=2.3, 
z=0.3 for different boundary temperatures 
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Figure 3.  The temperature distribution along the thickness at x=2.7, 

y=4.3 for different boundary temperatures 

The second example is the laminated rectangular plate 
of three layers with a=b=10m. The thickness is h 
and 1 3 21/10 , 4 / 5h h h h h    . Three different plate 
thicknesses are considered: h=1m, 2m, 4m, i.e. h/a=0.1, 
0.2, 0.4, respectively. The upper surface of the plate is 
subjected to the uniform steady-state temperature: t2(x, y) 
= 100oC. The lower surface of the plate is subjected to the 
temperature: t1(x, y) = 20oC. Fig .4 shows the temperature 
distribution along the thickness at x=2.7, y=4.3. It can be 
seen from Fig .4 that for the thin plates with h/a=0.1 and 
h/a=0.2 the temperature variation along the plate 
thickness within the core are almost the same. However, 
for the thick plates such as h/a=0.4 the temperature 
variation within the core is obviously different from the 
thin plates. In Fig .5, the distribution of temperature along 
the y direction at x=2.3, z/h=0.3 is studied. It is seen that 
the temperature distribution is symmetrical in the y 
direction. We can find from Fig .5 that the temperature 
variation near to the edges is more remarkable that that 
within the interior of the plate especially for the thin 
plates. 

The third example is for the comparison of the 
temperature distribution along the thickness and the length 
for an isotropic plate and two laminated rectangular plates. 
They are made up of three kinds of materials: the wood 
with k1=0.1 W/(m·oC); the steel with k2=50 W/(m·oC); 
the concrete with k3=2 W/(m·oC). All the plates have the 
same length and width a=b=10m and the same thickness 
h=3m. The first plate is a single-layer rectangular plate 
made up of steel with the thickness h=3m. The second 
plate is a two-layer plate with h1= h2=1.5m. The upper 
layer of the plate is made up of steel and the lower layer 
of the plate is made up of wood. The third plate is a three-
layer plate with h1= h2= h3=1m. The top layer of the plate 
is made up of steel. The bottom layer of the plate is made 
up of wood. The core layer of the plate is made up of 
concrete. The upper and lower surfaces of the plate are 
subjected to different uniform steady-state temperatures: 
t2(x, y) = 100oC and t1(x, y) = 20oC. The temperature 
distribution at x=2.7, y=4.3 are given in Fig .6. It can be 
seen from Fig .6 that for different laminated materials, the 
temperature distributions are different even the plate has 
the same sizes. For the single-layer plate, the variation of 
the temperature along the plate thickness is almost linear. 

However for the laminated plates, the slopes of 
temperature variation in the different layers are different 
and the temperature variation in a layer can be nonlinear. 
In Fig .7, the temperature distribution along the y direction 
at x=2.3, z=2 is studied. It can be found from Fig .7 that 
the material properties of the plate have important effect 
on the temperature variation. The temperature in the plate 
made up of steel is the lowest while the temperature in the 
plate made up of three kinds of materials is the highest. 
The reason is that the thermal conductivity of the steel is 
larger than the wood and the concrete. 
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Figure 4.  The temperature distribution along the thickness at x=2.7, 

y=4.3 for different thickness-width ratios h/a  
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Figure 5.  The temperature distribution along the y direction at x=2.3, 

z/h= 0.3 for different thickness-width ratios h/a 

 

0.0 0.2 0.4 0.6 0.8 1.0
20

40

60

80

100

T
/ 

0 C

z/h

 single-layer plate

 two-layer plate

 three-layer plate

 
Figure 6.  The temperature distribution along the thickness direction at 

x=2.7, y=4.3 for the plate made up of different materials 
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Figure 7.  The temperature distribution along the y direction at x=2.3, 

z=2 for the plate made up of different materials 

VII.  CONCLUSIONS 
The three-dimensional temperature field within a 

simply supported laminated plate has been investigated 
based on the exact three dimensional (3D) thermal theory. 
An analytical method is shown to get the temperature field 
in the plate. Firstly, the general solutions of a single-layer 
simply supported rectangular plate, which satisfies the 
governing differential equations and the thermal boundary 
conditions at the lateral edges of the plate, is derived. 
Then, the temperature and heat flux relationships between 
the upper surface and the lower surface in the single-layer 
plate are obtained. According to the continuity of the 
temperature and the heat flux on the interface of two 
adjacent layers, the recursive formulae of the temperature 
and the heat flux between the lowest layer and the top 
layer of laminated plate are derived out by using the 
transfer matrix method. Finally, the unknown coefficients 
in the solutions are determined by the use of the upper and 
lower surface conditions of the laminated plate. The 
distribution of temperatures in the plate is gained by 
substituting the unknown coefficients back to the 
recurrent formulae and the solutions. The solution 
obtained shows excellent convergence properties. The 
present method shows a good convergence. Comparing 
the numerical results with those gained from the finite 
element method, the accuracy and correctness of the 
present method are demonstrated. Finally, the effects of 
temperatures, thickness, layer number and material 
properties on the temperature distribution are discussed in 
detail. It is shown from the numerical results that the 
temperature solution increases with the increase of the 
temperature. The thickness, layer number and material 

properties have a significant effect on the temperature 
distribution in the laminated plates. 
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