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Abstract—A Rational curve r(t) can pass through 
interpolation points (m+1) by a polynomial of degree m or 
under some circumstances, and the same is true when 
rational curve is restricted or the function values  of r(t) are 
replaced by derivatives . The paper will show in these cases   
a rational curve r(t) of degree m tends to pass through 
interpolation points more than (m+1) geometric data. In a 
Hermite sense ,this paper studied using polynomial 
interpolation of rational curve to reduce polynomial degree 
and to increase interpolation points by showing that a large 
class  of rational parametric curves can be interpolated ,in 
some certain cases, by a polynomial of degree m matching 
2m-2k+4 data.  This paper constructs a simple polynomial p 
(t) and employs quadratic planar rational curve as 
interpolation curve to test practicability of the method. The 
result shows that in test taking symmetrical points can 
effectively reduce computing time, improve approximation 
data and visual experience.   

Keywords- Polynomial; Polynomial interpolation;Rational 

curve;Conic rational curve circle; Approximation   

I. INTRODUCTION  
The definition of polynomial interpolation shows that 

rational curve r(t) can be interpolated at (m+1)points  by 
polynomial of degree m[1]. That is be proven that rational 
curve r(t) tends to pass through interpolation points more 
than (m+1) when rational curve is restricted[2]. For instance, 
under certain circumstance when m is restricted as odd 
number, a segment of quadratic planar rational curve can 
be marked with points of 2m by polynomial of degree m[3]. 
The paper further studies the above case of polynomial 
interpolation and experiments on quadratic planar rational 
curve by using Hermite interpolation to find quadratic 
planar rational curve with degree m and fitting points 2m-
2k+4,of which, k is the sum of degree of planar rational 
curve. 

Let dRb][a,r : , 2d ,be the rational curve 
)(/)()( tgtt fr   

Where f and g are polynomials of degrees at M and N. 

      NMk   
For each sample of parameter values : 

bttta n  21 ,we construct a polynomial p  
satisfying: 

)()( ii trtp    nitut iii .....3,2,1,)(')(  rp  (1) 
We make two assumptions to find the polynomials[4]： 
(A1)  g has no zero point in  ba,  
(A2)  g has no multiple roots (real root or imaginary root) 

II. CONSTRUCT   INTERPOLATION  POLYNOMIALS  
In order to satisfy interpolation polynomial  P  of 

(1.1),the  approach  is  as  follows: 
Let )()()()()( trtwttrtp n   ， 
where )())(()( 21 nn tttttttw                           (2) 
when 0)( in tw ,then )()( ii trtp  ,to satisfy (A1), 

when )()(1 ini twt


  ,to satisfy(A2), 
then solving polynomial equals to solving polynomial 

)(t .when )(t is a specified polynomial; if a specified 
selection is made with in )(t ,a polynomial P general type 
is obtained.  

From      








f(t)/g(t)r(t)
)()()()()( trtwttrtp n  
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Put into (2.2)to get ： 
1)()()()()(  tytgtxtgt

n
w                                (4） 

Then )()()()()()( tft
n

wtxtftytp                  (5) 
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let )(tp satisfy(1.1),then )(tx and )(ty must satisfy(2.3). 
(2.3)can be simplified as: 

1)()(1)()(0  tytatxta , which )()()(0 tgt
n

wta  ，

)()(1 tgta                                                               (5) 

From algebra theory we know, if 0a and 1a are 
coprime ， Euclidean algorithm can be used to solve 
polynomials x and y ，and to make sure the degrees of 
x and y are at most 1)( 1 ad and 1)( 0 ad .So the 
preconditions of A(1) and A(2)must be considered to make 
sure 0a  and 1a are coprime[5-6]. 
Since )()())(()()()( 210 tgtttttttgtwta nn    

)(1 tga   
Then 1)( 0  Nnad ， 21)()( 0  Nnadyd  

Nad )( 1  ， 11)()( 1  Nadxd  
Since Mfd )( ， 1)(  Mfd . 
Then 22)()()()()()(  knMNnfdwdxdfdydpd n  

So polynomial P is set and it satisfies interpolation 
conditions nkkn 242)2(2  . 

Wherever Times is specified, Times Roman or Times 
New Roman may be used. If neither is available on your 
word processor, please use the font closest in appearance 
to Times. Avoid using bit-mapped fonts if possible. True-
Type 1 or Open Type fonts are preferred. Please embed 
symbol fonts, as well, for math, etc. 

III. SOLVING POLYNOMIALS x AND y  WITH 

EUCLIDEAN ALGORITHM  
In advanced algebra, Euclidean algorithm is used to get 

the greatest common factor for two arbitrary polynomials 
and it is also called division with remainder, which can be 
described as following[7]: 

Set )(xf , )(xg as two arbitrary polynomials, where 
0)( xg ,use )(xg to divide )(xf ,to get )(1 xq ,and  

remainder is )(1 xr ;if 0)(1 xr ,use )(1 xr to divide )(xg and 
then to get )(2 xq ,and the remainder is )(2 xr ;if 

0)(2 xr ,use )(2 xr to divide )(1 xr ,the result is )(3 xq ,and 
the remainder is )(3 xr ;continuous division gradually 
reduces the degree of result like the following: 

 ))(())(())(( 21 xrdxrdxgd  
Therefore after several divisions ,there must be an 

occasion where the remainder is zero[8-9] ,and then we get a 
series of equation: 
   )()()()( 11 xrxgxqxf  ， 
   )()()()( 212 xrxrxqxg  ， 
     …………… 
   )()()()( 12 xrxrxqxr iiii   , 
     ……………… 

)()()()( 12 xrxrxqxr ssss   , 
0)()()( 11   xrxqxr sss  

)(xrs and 0 share the greatest common factor )(xrs . 
According to the previous description , )(xrs is the 

common factor for )(xrs and )(1 xrs ; Similarly, )(xrs is the 
greatest common factor for )(xf  and )(xg . 

By processing the second equation from the bottom of 
the above equations, we get  )()()()( 12 xrxqxrxr ssss   . 

To put )()()()( 2131 xrxqxrxr ssss   into the above 
equation to eliminate )(1 xrs ,and to get   

)()()())()(1()( 321 xrxqxrxqxqxr ssssss   By the 
same procedure ,we eliminate )(,),( 12 xrxrs  one after 
another, and then combine similar terms to get 

)()()()()( xgxvxfxuxrs  . 
When 1)( xrs ,that is 1)()()()(  xgxvxfxu ,then 

the greatest common factor is 1 for )(xf  and )(xg .The 
following is the description on how to solve polynomials 
X  and Y by using Euclidean algorithm. 

Since 1n  then ）） 10 (( adad  ,for any k in 
,2,1,0k ,we can use 1ka  to divide ka  to find a 

remainder. Here Euclidean algorithm is illustrated by the 
following equations: 

21   kkkk aaqa                                            (6) 
Where )()()( 1 kkk adadqd ,and )()( 12   kk adad

,when 2ka is a constant, the procedure is finished, set 
kr  ， 21   rrrr aaqa ,constant 02 ra (if 

remainder 02 ra ,then 0a and 1a share a common factor 

1ra ,and they are not coprime; considering preconditions  
A(1)and A(2) in(1.1),we know the constant is 

02 ra ),we use(3.1)to reverse the procedure to get X 
and Y in (2.5).The reverse procedure is as following: 

When  rk  , 
1102   rrr ababa           

Where  10 b ， rqb 1  
When  1 rk , 

rrrrrrrrr ababaqababababa 21111101102 )(  

Where   1102 bqbb r  
Process in this way , 
When  0k , 

1102 ababa rrr                                 (7) 
Where  112   jjrjj bqbb ， 1,,3,2  rj    (3.3) 

Since 02 ra ,let 2ra  divide(3.2)to get: 

1
2

1
0

2
1 a

a

b
a

a

b

r

r

r

r







  

Combine  (2.5)  to get: 

2

1

2

)()()()(







r

r

r

r

a

tb
tY

a

tb
tX ，                      （8） 

Here we analyze the degree of x and y ,from (3.3)we 
know:

)()()(
)()()()()()()()(

)()()()(

111

113221

21

adadad

adadadadadadadad

qdqdqdbd

r

rrrr

rr













Combine (3.4)to get: )()()( 1adbdXd r   
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For the same reason )()()()( 0101 adadadbd rr    
Combine (3.4)to get: )()()( 01 adbdYd r    

The uniqueness of X and Y can be analyzed as 
following : Suppose the existence of YX

~,~ ,which satisfies 
(6),then     110  YaXa     1~~

10  YaXa  

And then )~()~( 10 YYaXXa  , Since 0a and 1a have no 
common factors, then 0a cannot fully divide 1a ,and then 

0a |  YY 
~ ,since )()~( 0adYYd  ,then 0~

YY .and 

then 0~
 XX . 

It can be inferred that(3.4)must be the only solution to 
the form(2.5)of X and Y ,and the greatest degrees are 
respectively 1)( 1 ad  and 1)( 0 ad 。 

The construction of interpolation polynomials p is 
finished. 

IV. APPROXIMATION OF CIR  
The paper takes its experiment on approximation of 

circle to prove the theoretical  hypothesis by showing the 
effect views and deviations. 

A. Parameter Equation of Circle 

As is knows, a regular circle with its center being the 
origin can be described as[10]:  





















2

2

2

1
2sin

1
1cos

t

t
y

t

t
x




 

Which  t Then, 
2

2

1
)2,1(

)(
)()(

t

tt

tg

tf
tr




            (9) 

Analysis shows that except the point (-1, 0 ) , all the 
other points of the curve are found on the circle with its 
center being the origin. To reduce the degree of numerator 
and denominator, a vector (1, 0) is added to (4, 1), then  

21
)22()(

t

t
tr




， . 

The center of the circle is (-1, 0) and all points are on 
the circle. Through transferring, it can be noticed that the 
degree of numerator for interpolation curve reduces by 
1.the preconditions of(A1)and(A2) are satisfied because 
two roots of g(t)are 1 and 1 ,and it has neither real root 
and nor multiple root in the region[a, b]. 

B. Interpolation Polynomial for Circle 

From (2.4), interpolation polynomial P for circle can be 
written as:  

)2,0)(()()2,2)(()( ttXttYtp n  
When solution to X and Y is known , the only 

polynomial P will be obtained .X and Y must satisfy: 
1)()( 10  tYatXa  

 which，  gttttttga nn  )())(( 210   
ga 1  

Then  1)()1()()(2 2  tYttXtt n                            (10) 
To infer: 1121)()( 1  adXd ，

nnadYd  111)()( 0  

Then 11)()()()(  nYddXdpd   
Now , Euclidean algorithm can be applied to solving X 

and Y .By using )1/()(2 2ttt n   to know that the 
completion of algorithm is determined by selecting 
interpolation point )1(, niti  .when a proper method 
is taken ,the procedure can be completed with efficiency . 
For instance ,when interpolation points are taken 
symmetrically around 0 , the interpolation points are 
restricted in odd number ,the outcome is satisfying . 
Euclidean algorithm is efficient in simplifying procedure 
and reducing degree of X ,Y and P by 1[11] .The outcome 
meets the requirement of getting more interpolation points 
by less degree of polynomials . The outcome can be 
concluded as following: 
Set 0,12  ssn ， 
Let    ),,0,,,(),( 11,1 ssn uuuutt   ， 
Which  suu  10  
Then npd )( ， and 

)1(
1)(

0 


A
tX   ,  

)1)(1(
)1()()( 2

0

0
2

0

tA

AtA
tY




  ， 

Which  )()(2)( 22
10 suuuuuuA    

The demonstration is omitted  . 

C. Relevant Experiments 

In the following experiments , red curve stands for real 
curve ,and blue curve stands for interpolation curve . star 
signal data point and )(tp  is interpolation curve . )(tr  is 
interpolated curve and u  is interval of interpolation . 
Experiment 1: n=3  u=0.0   

 
Figure 1.   Approximation of the interpolation curves in experiment one 
E= 0.0156 

TABLE I.  RESULT OF THE INTERPOLATION CURVES MATCHING IN FIG. 1 
u -0.4 -0.3 -0.2 -0.1 0 
R(t) 1.7241 1.8349 1.9231 1.9802 2.0000 

-0.6897 -0.5505 -0.3846 -0.1980 0 
P(t) 1.6800 1.8200 1.9200 1.9800 2.0000 

-0.7360 -0.5730 -0.3920 -0.1990 0 
u 0.4 0.3 0.2 0.1  
R(t) 1.7241 1.8349 1.9231 1.9802  

0.6897 0.5505 0.3846 0.1980  
P(t) 1.6800 1.8200 1.9200 1.9800  

0.7360 0.5730 0.3920 0.1990  

Experiment 2: n=3  u=0.5 
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Figure 2.  Approximation of the interpolation curves in experiment two 

E= 9.8316e-005   
TABLE II.  RESULT OF THE INTERPOLATION CURVES MATCHING IN FIG.2 

u -0.5 -0.3 -0.2 -0.1 0 
R(t) 1.6000 1.8349 1.9231 1.9802 2.0000 

-0.8000 -0.5505 -0.3846 -0.1980 0 
P(t) 1.6000 1.8613 1.9392 1.9850 2.0000 

-0.8000 -0.5200 -0.3542 -0.1793 0 
u 0.5 0.3 0.2 0.1  
R(t) 1.6000 1.8349 1.9231 1.9802  

0.8000 0.5505 0.3846 0.1980  
P(t) 1.6000 1.8613 1.9392 1.9850  

0.8000 0.5200 0.3542 0.1793  

Experiment 3: n=5  u=(0.0,0.0) 

 
Figure 3.  Approximation of the interpolation curves in experiment three 

E= 7.0496e-005   
TABLE III.  RESULT OF THE INTERPOLATION CURVES MATCHING IN FIG.3 

u -0.5 -0.3 -0.2 -0.1 0 
R(t) 1.6000 1.8349 1.9231 1.9802 2.0000 

-0.8000 -0.5505 -0.3846 -0.1980 0 
P(t) 1.6250 1.8362 1.9232 1.9802 2.0000 

-0.7813 -0.5484 -0.3843 -0.1980 0 
u 0.5 0.3 0.2 0.1  
R(t) 1.6000 1.8349 1.9231 1.9802  

0.8000 0.5505 0.3846 0.1980  
P(t) 1.6250 1.8362 1.9232 1.9802  

0.7813 0.5484 0.3843 0.1980  

Experiment 4: n=5  u=(0.5,0.5) 

 
Figure 4. Approximation of the interpolation curves in experiment four 

E= 3.2747e-005   
 

 
TABLE IV.  RESULT OF THE INTERPOLATION CURVES  MATCHING IN FIG.4 

u -0.5 -0.3 -0.2 -0.1 0 
R(t) 1.6000 1.8349 1.9231 1.9802 2.0000 

-0.8000 -0.5505 -0.3846 -0.1980 0 
P(t) 1.6000 1.8376 1.9252 1.9809 2.0000 

-0.8000 -0.5464 -0.3794 -0.1944 0 
u 0.5 0.3 0.2 0.1  
R(t) 1.6000 1.8349 1.9231 1.9802  

0.8000 0.5505 0.3846 0.1980  
P(t) 1.6000 1.8376 1.9252 1.9809  

0.8000 0.5464 0.3794 0.1944  

Experiment 5: n=5  u=(0.25,0.5) 

 
Figure  5.  Approximation of the interpolation curves in experiment five 

E= 7.1283e-006  
TABLE V.  RESULT OF THE INTERPOLATION CURVES MATCHING IN FIG.5 

u -0.5 -0.25 -0.2 -0.1 0 
R(t) 1.6000 1.8824 1.9231 1.9802 2.0000 

-0.8000 -0.4706 -0.3846 -0.1980 0 
P(t) 1.6000 1.8824 1.9234 1.9804 2.0000 

-0.8000 -0.4706 -0.3840 -0.1971 0 
u 0.5 0.25 0.2 0.1  
R(t) 1.6000 1.8824 1.9231 1.9802  

0.8000 0.4706 0.3846 0.1980  
P(t) 1.6000 1.8824 1.9234 1.9804  

0.8000 0.4706 0.3840 0.1971  

Experiment 6: n=9  u=(0.125,0.25,0.375,0.5) 

 
Figure 6.  Approximation of the interpolation curves in experiment six 

E= 5.6691e-010  
TABLE VI.  RESULT OF THE INTERPOLATION CURVES MATCHING IN FIG.6 

u -0.5 -0.375 -0.25 -0.125 0 
R(t) 1.6000 1.7534 1.8824 1.9692 2.0000 

-0.8000 -0.6575 -0.4706 -0.2462 0 
P(t) 1.6000 1.7534 1.8824 1.9692 2.0000 

-0.8000 -0.6575 -0.4706 -0.2462 0 
u 0.5 0.375 0.25 0.125  
R(t) 1.6000 1.7534 1.8824 1.9692  

0.8000 0.6575 0.4706 0.2462  
P(t) 1.6000 1.7534 1.8824 1.9692  

0.8000 0.6575 0.4706 0.2462  
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