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Abstract—For a saturated soil, a saturated poro-elastic 
model is more realistic than the linear elastic or the visco-
elastic one. Based on the Fourier transform method in the 
frequency wave number domain, the expression of the 
equivalent stiffness of the saturated poro-elastic half space 
interacting with an infinite beam to harmonic moving loads 
is obtained. The time domain solutions for the beam and the 
saturated poro-elastic half space are derived by means of the 
inverse Fourier transform method. Also, the influences of the 
load speed, frequency and material parameters of the poro-
elastic half space on the responses of the beam are 
investigated. Numerical results show that the frequency 
corresponding to the maximum deflection and bending 
moment increases with increasing load speed. Also, the 
values of the maximum bending moment increases up to the 
critical speed. The load frequency corresponding to the 
maximum bending moment depends on the value of the load 
speed. With increasing load speed, spacing between 
frequencies  increases. 

Keywords- moving loads, saturated poro-elastic half space, 
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I. INTRODUCTION 
Dynamic response of an infinite beam resting on a 

half space under moving loads has been a topic for 
engineering society for a long time, as the model can be 
used to simulate the railway subjected to moving train 
loads or various pavements subjected to moving vehicle 
loads. Majority of the papers addressing the dynamic 
response of an infinite beam on a half space to moving 
loads treat the half space as an elastic or a visco-elastic 
medium. For example, the steady-state vibration of a 
beam supported on an elastic half-space under a moving 
load has been studied in [1-5]. The dynamic response of 
beams on the generalized Pasternak visco-elastic 
foundations subjected to an arbitrary distributed harmonic 
moving load was analyzed in [6]. The response of an 

elastic beam on a visco-elastic layer to a uniformly 
moving constant load is investigated in [7, 8]. 

Recently some researchers have realized that high 
speeds trains will generate larger response for the rail and 
the ground especially for saturated soils, which may 
further cause noticeable structure-borne noise and 
vibration in the nearby buildings [9-11]. It is well known 
that the saturated soil is a two-phase material consisting of 
the soil skeleton and the pore water. Consequently, for a 
saturated soil, a saturated poro-elastic model is more 
realistic than the linear elastic or the visco-elastic one. Biot 
[12-14] pioneered the development of the theory for the 
saturated porous medium. Biot’s theory has been widely 
applied in geomechanics to analyze consolidation effects 
due to quasi-static loads and wave propagation problems 
for dynamic loads. 

II. BIOT’S THEORY AND THE GENERAL SOLUTION 
The constitutive relations for the porous medium 

have the form [14] 
2ij ij ij ij p       ,                         

p M Me    , ,i ie w  , ,i iu                 (1) 
where ui and wi (i=1, 2, 3) are the displacement of solid 
skeleton and the infiltration displacement of the pore fluid, 
respectively; ζ ij is the stress of the bulk material; p is the 
pore pressure; εij and θ are the strain tensor and the 
dilatation of the solid skeleton, respectively; e  is the 
volume of fluid injected into a unit volume bulk material; 
δij is the Kronecher delta; λ and μ are Lame constants; α 
and Μ are Biot’s parameters accounting for 
compressibility of the porous medium.  

The equations of motion for the bulk porous medium 
and the pore fluid have the form 

2
, , ,  f( )i jj j ji j ji i iu M u Mw u w           && &&  (2a) 

, , f K( ) *j ji j ji i i p iMu Mw u mw b t w    && && &       (2b) 
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where   and f are mass densities of the bulk material 

and the pore fluid, (1 ) s ff f     . s  is the density of 
the solid skeleton and f is the porosity of the porous 
medium; fm a f  and a  is tortuosity; bp accounts for 
the viscosity of the pore fluid and the permeability of the 
porous medium, respectively and K(t) is a time-dependent 
viscosity correction factor which describes the transition 
behavior from viscosity dominated flow in the low 
frequency range towards inertia dominated flow at high-
frequency rang [15]; the dot over a variable denotes the 
time derivative and the star (*) between the two variables 
denotes the time convolution. 

In order to solve Biot’s governing equations, two 
kinds of Fourier transform are involved: the Fourier 
transform with respect to time and frequency and the 
Fourier transform with respect to horizontal coordinates 
and horizontal wave numbers. In this paper, the Fourier 
transform for time and the two horizontal coordinates are 
defined as follows 

i i1ˆ ˆ( ) ( ) ,    ( ) ( )
2

t tf f t e dt f t f e d   


 
 

    

i i1( ) ( ) ,   ( ) ( )
2

x xf f x e dx f x f e d   


 
 

       (3) 

i i1( ) ( ) ,   ( ) ( )
2

y yf f y e dy f y f e d   


 
 

  % %  

where the superimposed symbols ^ － ~ above a variable 
denote the Fourier transform with respect to time t, x and 
y coordinate, respectively. 

Performing the Fourier transform with respect to 
time t and Performing the double Fourier transform with 
respect to the two horizontal coordinates x, y the dilatation 
of the solid, ˆ

xu% , stresses ˆ
zz% is obtained as follows 
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 

 
              (4) 
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ˆ ( ) (z z z
zz Ae Be Ce    
  %                                    

3 32
3) 2 ( )z zzDe Ee Fe   

                             (5) 

where 2 ( 2 )i j j ja      , (j=1, 2) 

III. THE MODEL FOR A BEAM RESTING ON A SATURATED 
PORO-ELASTIC HALF SPACE SUBJECTED TO A HARMONIC 

MOVING LOAD 
Fig .1 illustrates an infinite Euler-Bernoulli beam 

resting on a saturated poro-elastic half space and 
subjected to a harmonic line moving load with a constant 
velocity. For simplicity, the following assumptions are 
made for the beam and the load: (a) the beam is treated as 
an infinite Euler-Bernoulli elastic beam with a width 2a; 
(b) the deformation of the beam is infinitesimal; (c) the 
shear deformation and the rotary inertia of the beam are 
negligible; (d) both the moving load and the normal 
stresses between the beam and the half space are 
uniformly distributed over the width of the beam; (e) the 
contact between the beam and the half space is smooth. 

According to the elastic beam theory, the equation of 
motion for the beam is as follows 

4 2

4 2

( ,  ) ( ,  )
( ,  ) ( ,  )b b

z b z

w x t w x tEI m F x t q x t
x t

 
  

 
 (6) 

where ( ,  )bw x t  is the deflection of the beam, E Young’s 
modulus of beam material, zI  the second moment of area 
of the beam cross section about its neutral axis (Fig .1), 

( ,  )zq x t  is the interaction force between the beam and the 
half space, ( ,  )F x t  is the applied moving load which is 
uniformly distributed over the width. The moving load 

( ,  )F x t  is a line load moving with a constant velocity c  
and given by the following expression   

i 0
z( , , ) ( ) tF x y t F x ct e                                    (7) 

where 0 , zF  is the original frequency, the magnitude of 
the moving load, respectively, ( )   is the Dirac delta 
function.  

 

 
Figure 1. Model of an infinite beam overlying a layered poro-elastic half 

space subjected to moving loads 
 
According to the assumptions concerning the beam, 

the stress boundary conditions for the surface of the 
saturated half space are as follows  

2 ( , ,0, ) ( ,  ) ( ) ( )zz za x y t q x t H a y H a y            
( ,  ,  0,  ) 0xz x y t  ,  ( ,  ,  0,  ) 0yz x y t           (8) 

where ( )H   is the unit step function. Moreover, the 
following ‘‘open pore’’ boundary conditions is assumed 
for the surface of the poro-elastic half space [16] 

( ,  ,  0,  ) 0p x y t                                    (9) 
Applying the two-dimensional inverse Fourier 

transformation for x   and t  , the expressions for 
the bending moment and the shear force of the beam have 
the following form  
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  (10) 

IV. NUMERICAL RESULTS  
In this section, the half space consists of a saturated 

poro-elastic foundation with depth h, and the bottom 

x 

z 

half space 
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foundation is a rigid and impermeable bedrock. The line 
load moves along the positive x-axis with a constant 
velocity c and the load is normal to the beam. In 
calculation, the parameters for the beam and the saturated 
foundation are as follows: 9 21.3 10  N mzEI    , 

1770 kg/mbm  , 1.3 ma  , 7 23.8 10  N/m   , 
7 23.8 10  N/m   , 8 22.4 10  N/mM   , 

3 32.0 10  kg/ms   , 3 31.0 10  kg/mf   , 0.35f  , 

0.97  , 6 31.94 10  kg/m spb   , 31990 kg/mm  , 

0 0  . The reference shear wave velocity is defined 

as SH sv   . In this section, the equivalent stiffness 
of the system is calculated at first. Then, the influences of 
the depth of the saturated poro-elastic foundation on the 
vertical vibration and the internal forces of the beam are 
discussed.  

In this section, the vertical displacement, the bending 
moment, the shear force of the beam and the foundation 
depth h  are normalized as follows: * /R b zu w F , 

2* /( )x z RM M F a , 2* /( )x z RQ Q F a , * / Rh h a . The 
reference shear modulus and the reference length 
are: 7 23.8 10  N/mR   , Ra a , respectively.  

The maximum vertical deflection of the beam *u  
versus the moving load velocity c is shown in Fig .2 for 
different depth *h . Fig .2 indicates that at first the 
maximum deflection of the beam increases as the depth of 
the saturated foundation increases. However, when the 
depth reaches * 20.0h  , the increment is difficult to 
perceive.  
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-0.5
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-0.1

 

 h*=1.0   
 h*=10.0 
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 h*=30.0 

c/v
SH
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Figure 2. Maximum vertical deflection of the beam versus moving load 

velocity for different depths of the overlying layer  
 
Fig .3 (a) and 5 (b) illustrates the bending moment 

and the shear force for the infinite beam at the observation 
point P (0.0 m,   0.0m,   0.0m)  versus time t for two 
depths of the saturated foundation: * 1.0h   and 

* 20.0h  . The velocity of the moving load is SH0.7 c v . 
Time 0.0 st   corresponds to the instant at which the 
applied load is passing through the origin. Fig .5 shows 
that the increasing depth of the layer enhances the bending 
moment and the shear force of the beam. 
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Figure 3.  Internal force for the infinite beam subjected to moving load 

with a constant velocity SH0.7 c v  at the observation point 
P  (0.0 m,   0.0m)  versus time t for two depths of the overlying 

layer, * 1.0h   and * 20.0h  : (a) the bending moment versus time 
t; (b) the shear force versus time t 

 
The effect of load frequency and speed on the 

maximum deflection is illustrated in Fig. 4. It follows 
from Fig .6 for speeds less than critical speed ( SHc v ), 
the maximum deflection increases with increasing load 
frequency and after reaching a maximum value it 
decreases with increasing frequency. The frequency 
corresponding to the maximum deflection depends on the 
load speed. For the case with a load speed equal to the 
critical speed, the maximum deflection decreases with the 
increasing load frequency. For the cases with speeds 
larger than the critical speed, the maximum deflection 
increases first and then it decreases. 

The effect of load frequency and speed on the 
maximum bending moment is illustrated in Fig .5. For 
speeds less than critical speed ( SHc v ), the maximum 
bending moment increases with increasing load frequency; 
however, after reaching to a maximum value it decreases. 
Also, the values of the maximum bending moment 
increases up to the critical speed. The load frequency 
corresponding to the maximum bending moment ( p ) 
depends on the value of the load speed. With increasing 
load speed, spacing between frequencies ( p  ) increases. 
For the case with the load speed equal to the critical value, 
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ONCLUSION 

the maximum bending moment decreases within the 
calculation range. For the cases ( SHc v ), the maximum 
bending moment increases first (up to SH2.5 c v ) and 
then decreases. 
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Figure 4. Velocity and frequency of moving load effect on the maximum 

of deflection of the beam *u   
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Figure 5. Velocity and frequency of moving load effect on the maximum 

of bending moment of the beam *M  

V. C  
Dynamic response of an infinite beam resting on a 

saturated poro-elastic half space subjected to harmonic 
moving loads is addressed in this study. The equivalent 
stiffness of the saturated porous half space is derived by 
means of the Fourier transform method. Based on the 
proposed methodology, the deflection, the bending 
moment and the shear force of the beam are obtained. 
Response of the half space due to the moving load is also 
calculated. The influences of the load speed, frequency 
and parameters of the poro-elastic half space on the beam 
responses are investigated. It follows from the numerical 
results that the frequency corresponding to the maximum 
deflection and bending moment increases with increasing 
load speed. 
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