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Abstract—The automatic interpretation of SAR images is 
often extremely difficult due to speckle, a signal dependent 
noise, which is inherent of all active coherent imaging 
systems. Thus, despeckling has become a crucially important 
issue in SAR image processing. Wavelet theory provides a 
powerful tool for detecting image feature at different scales. 
Wavelet-based algorithms have been widely used to reduce 
speckle noise. In this paper, an adaptive despeckling method 
for synthetic aperture radar (SAR) images is proposed based 
on wavelet shrinkage. It follows the framework of the linear 
minimum mean square error (LMMSE) filter in the wavelet 
domain proposed for speckle suppression, but improves the 
parameter estimation method by taking into account the 
distribution property of wavelet coefficients based on the 
bilateral kernel regression. An improved adaptive shrinkage 
function is obtained and each coefficient is decided 
separately. Simulation results for the simulated SAR images 
demonstrate the proposed modified method outperforms 
some representative SAR despeckling methods when the 
noise is not serious.  
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I.  INTRODUCTION 
Synthetic aperture radar (SAR) has the capability of the 

all-day, all-weather acquisition. Therefore, SAR images 
provide useful information for many applications, such as 
reconnaissance, surveillance, and targeting. However, the 
automatic interpretation of SAR images is often extremely 
difficult due to speckle, a signal dependent noise, which is 
inherent of all active coherent imaging systems. Thus, 
despeckling has become a crucially important issue in 
SAR image processing. 

The increasing number of algorithms has been 
developed to suppress speckle noise. Usually, the speckle 
is partially suppressed already during the image formation 
process by multilook processing. But multilook averaging 
reduces the standard deviation of speckle but it also 
deteriorates the spatial resolution. Other traditional 
approaches are spatial filtering, for example the Fuan filter 
[1], and their variations such as the enhanced Fuan filter. 
The performance of these filters depends heavily on the 
choice of the local window, and exhibit limitations in 
preserving the detail in weakly textured areas. 

To overcome these disadvantages, wavelet-based 
algorithms [2] have been widely used to reduce speckle 
noise. Wavelet theory provides a powerful tool for 
detecting image feature at different scales. Due to this 
property, the despeckling approaches based on wavelet 
transform can well preserve details of the original image. 
Speckle in SAR images is multiplicative, whereas most 
existing wavelet denoising algorithms are developed for 
additive noise. To take advantage of the available 
algorithms based on wavelet transform, the log-transform 
is applied to SAR image to convert the multiplicative noise 
to additive noise before performing wavelet denoising [3, 
4]. After wavelet denoising on log-transformed image, an 
exponential operation is employed to convert the image 
back to a non-logarithmic format. The major disadvantage 
of such approaches is that the backscatter mean is not 
preserved in homogeneous areas when the image is 
converted back to a non-logarithmic format after denoising. 
Furthermore, signal variations are damped by the 
logarithm, resulting in an unlikely “flatness” after 
despeckling. 

To eliminate the impact of log-transform to denoising 
performance, some algorithms without performing the 
logarithmic transform have been proposed. Xie et al. 
propose a low-complexity wavelet denoising process based 
on the minimum mean square error (MMSE) estimation 
[5]. But the discrete wavelet transform (DWT) is applied 
during image denoising. The DWT is critically sub-
sampled and time variant, which affects the performance 
of the despeckling. Alternative approaches have been 
proposed that are based on the stationary wavelet 
transform (SWT), which is a time-invariant transform. 
Foucher et al. propose a SWT despeckling algorithm using 
the maximum a posteriori (MAP) criterion [6], in which 
the Pearson distribution is used to model the probability 
density function (pdf) of wavelet coefficients. Although 
this algorithm has good performance, the high 
computational complexity of the Pearson distribution 
makes this approach rarely used in practice. To simplify 
calculations, Argenti et al. introduce a local linear MMSE 
(LMMSE) filter [7]. Dai et al. present a despeckling 
method based on the mixture-Gaussian distribution model 
of SWT wavelet coefficients [8]. Cui et al.  proposes a low 
complexity SWT despeckling method based on LMMSE 
Wavelet Shrinkage[9]. 
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Recently, the data-adapted kernel regression methods 
are widely used for restoration [10], which relies on not 
only the sample location and density, but also on the 
radiometric properties of these samples. Inspired by the 
basic idea of the data-adapted kernel regression methods, 
this paper modifies the parameter estimation method in [9] 
by the bilateral kernel regression to improve this 
despeckling method based on LMMSE Wavelet Shrinkage. 

II. SPECKLE MODEL 
Speckle noise in SAR images arises as a consequence 

of the coherent illumination used by radar. Within each 
ground resolution cell a large number of elementary 
reflectors reflects the radar wave towards the sensor. For a 
surface that is rough on the scale of the radar wavelength, 
the number of elementary reflectors is large enough to 
ensure the statistical independence in phase and amplitude 
of the elementary backscattered waves. For this type of 
areas, the speckle is fully developed. In this paper, the 
speckle is assumed to be fully developed, which is valid 
for homogeneous targets and weakly textured areas, but is 
only an approximation for point targets and extremely 
heterogeneous areas. 

For a SAR image in which the speckle is fully 
developed, a multiplicative noise model is often employed, 
which can be expressed as 

 fzv  

where v is the observed noisy signal, f is the noise-free 
signal and z is the normalized speckle random variable 
independent of f with unit mean, respectively. The 
intensity image is considered in this paper, which is 
usually used one of SAR images formats. In the intensity 
format, z follows the Gamma distribution. The 
multiplicative noise model in (1) can easily be 
decomposed into an additive model in the following form 

 bfzffzfffzv  )1( 

where z is a random variable independent of f with zero 
mean, and b is the additive noise depending on the 
underlying unknown signal f. 

III. LMMSE DESPECKLING IN THE STATIONARY 
WAVELET DOMAIN 

In signal processing, the representation of signal plays 
a fundamental role. Wavelet transform is a powerful tool 
to facilitate the representation and analysis of transient 
signals. In order to preserve the translation invariance 
property, the stationary wavelet transform is introduced in 
this paper. It enables a better despeckling quality. A 
common despeckling procedure with wavelets is: 1) 
Compute the wavelet transform; 2) Remove speckle noise 
from the wavelet coefficients and 3) Reconstruct the 
despeckled image. The scaling coefficients are usually 
kept unchanged. During this procedure, the second step is 
the most important. In this paper, LMMSE technique is 
used to estimate the desired noise-free wavelet coefficient 
in the second step just H. Xie, L.E. Pierce, F.T. Ulaby, as  
[9]. 

Due to linearity of the wavelet transform, the additive 
model (2) remains additive in the transform domain as well 

 nyw  

where w is the observed wavelet coefficient, y is the noise-
free coefficient, n is the additive noise. The LMMSE 
estimate of y is derived as 

 wy ˆ 

where 
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According to (4) and (5), it is necessary to estimate 
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where HL, LH and HH stand for the orientation subbands 
corresponding to the horizontal, vertical and diagonal 
directions respectively. 2

z is the variance of z and 

Lz 12   in L-look image. )(lh
eq
j and )(kg eq

j are the 

coefficients of  the equivalent filters at the scale j2 . 

 )()()()( 10121 mhmhmhlh jjjj
eq
j  
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where jmmml  21 , jnnnk  21 , 
)(1 jj mh  is the coefficient of  the lowpass filter at the 

scale j2 , and )(1 jj ng  is the coefficient of  the highpass 

filter at the scale j2 . 
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If the observed noisy signals are assumed to be 
identically distributed within the neighborhood system of 
pixel ),( ba , its mean at pixel ),( ba can be estimated by 

   



),(),(
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klv
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



where ),( ba denotes the neighborhood system of pixel 
),( ba and KK   is corresponding dimension.  

In [9],  2wE , which is the second-order moment of 
the wavelet coefficient at pixel ),( ba , is estimated using 
neighboring coefficients in the following form by assumed 
that theirs distribution is identical in the neighborhood 
system of pixel ),( ba  

   2
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where ),( ba denotes the neighborhood system of pixel 
),( ba and MM   is corresponding dimension. However, 

the wavelet coefficients belong to one of three subbands, 
corresponding to three orientations in the image, and the 
coefficients carry horizontal, vertical, or diagonal 
information. Thus, significant coefficients form clusters 
with predominantly the horizontal, vertical, or diagonal 
direction, depending on the orientation subband. Therefore, 
the assumption that wavelet coefficient distribution is 
identical in the neighborhood system of pixel ),( ba  is not 
well adaptive to the prior knowledge about the spatial 
clustering of the wavelet coefficients. To overcome this 
shortcoming, the estimation method of the second-order 
moment of the wavelet coefficient is modified by 
incorporating the structure information into the estimation 
proccess using the bilateral kernel regression. 

For the wavelet coefficient at pixel ),( ba , we use the 
similar neighboring pixels to estimate its variance: 
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The weights can be calculated by 
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where wh  is the smoothing scalar. The similarity of 
neighboring pixels is measured by the Gaussian kernel, 

which is the decreasing function of the difference between 
the adjacent coefficients. By the weight function, the 
similar wavelet coefficients with the reference are selected 
to estimate the variance in (13). 

Once  wnE  and  2wE  are calculated according to (6), 
(7), (8) and (13), y  can be estimated in (4). 

IV. EXPERIMENTAL RESULTS 
Performance assessment for SAR image despeckling is 

a difficult task for lack of original noiseless image. 
Therefore, experiments in this paper are carried out on 
simulated SAR images, which are optical images corrupted 
by simulated specke in intensity format. The performance 
of the proposed despecking algorithm for simulated SAR 
images will be illustrated with a quantitative and a 
qualitative performance measure. The signal-to-noise 
(SNR) is used as the quantitative measure. The qualitative 
measure is the visual quality of the resulting image.  

The performance will be illustrated on the 256×256 
test images: Lena and Peppers. The input image is 
decomposed over three levels with stationary wavelet 
transform. The variation on the CDF-(spline)-filters is used. 
Primal and dual wavelets have four vanishing moments. 
These wavelets are rather popular in image processing. 

 For comparison, the improvements in terms of SNR of 
the modified method, the low complexity SWT 
despeckling method based on LMMSE Wavelet 
Shrinkage(LCLMMSE) [9] and the two related state-of-
the-art methods: GMMMSE[8] and Kuan filter[1] are 
summarized in Table I, Table II respectively. All 
despeckling methods obviously achieve a higher gain in 
SNR when the input image is noisier. When input SNR is 
low, LCLMMSE performs better than the other methods. 
But with the improvement of input SNR, the proposed 
modified method achieves higher output SNR. This is 
mainly because with the reduction of the noise, the 
modified method can better select similar wavelet 
coefficients to estimate the parameter  2wE . When the 

precision of the parameter  2wE  is improved, the 
performance of denoising method is also improved. 

Fig .1 presents the original Lena image and the same 
image with artificial speckle noise (L=200). The result of 
the proposed modified method and the other related 
methods for noisy Lena are shown in Fig .2. Fig .3 
presents the original Peppers image and the same image 
with artificial speckle noise (L=100). The result of the 
proposed modified method and the other related methods 
for noisy Peppers are shown in Fig .4. They are consistent 
with quantitative results. The proposed method and 
LCLMMSE achieve the better noise reduction 
performances in homogeneous areas. Compared with the 
LCLMMSE, the proposed modified method provides 
better texture preservation performances. 

TABLE I.  COMPARISON OF QUANTITATIVE RESULT FOR LENA 
IMAGE IN SNR (DB) 

Looks 40 100 150 200 300 500 
Noise 9.30 13.30 15.07 16.30 18.05 20.28 
This Study 16.18 19.03 20.48 21.38 22.54 24.13 
LCLMMSE[9] 16.74 19.22 20.42 21.25 22.41 23.92 
GMMMSE[8] 15.13 17.84 19.1223 20.02 21.22 22.87 
Kuan[1] 14.40 17.21 18.54 19.47 20.82 22.56 
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TABLE II.  COMPARISON OF QUANTITATIVE RESULT FOR PEPPERS 
IMAGE IN SNR (DB) 

Looks 20 40 100 200 300 500 
Noise 4.92 7.89 11.89 14.88 16.65 18.84 
This Study 13.79 15.71 18.35 20.37 21.50 22.94 
LCLMMSE[9] 14.11 15.89 18.28 20.21 21.29 22.71 
GMMMSE[8] 12.19 14.06 16.73 18.93 20.27 21.84 
Kuan[1] 11.66 13.54 16.25 18.41 19.68 21.33 

 

     
Figure 1.  Original Lena image (left) and the same image with artificial 

speckle noise (L=200, right). 

 

    
(a) The proposed method                      (b) LCLMMSE 

    
(c) GMMMSE                               (d) Kuan 

Figure 2.  Comparison of dfferent despeckling methods for noisy Lena 
image of Fig .1 

 

     
Figure 3.  Original Peppers image (left) and the same image with 

artificial speckle noise (L=100, right). 

 

    
 (a) The proposed method                      (b) LCLMMSE 

    
(c) GMMMSE                               (d) Kuan 

Figure 4.  Comparison of dfferent despeckling methods for noisy 
Peppers image of Fig .3 

V. CONCLUSION 
To improve the despeckling performance, an adaptive 

method based on LMMSE Wavelet Shrinkage is proposed 
in this paper. This method is an modification of 
LCLMMSE filter in [9]. Based on the distribution property 
of wavelet coefficients, the parameter of LMMSE wavelet 
shrinkage is estimated by taking advantage of bilateral 
kernel regression. Experiment results demonstrate this 
method improves the despeckling performance 
quantitatively and qualitatively when the noise is not 
serious. 
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