
Journal of Nonlinear Mathematical Physics Volume 14, Number 4 (2007), 527–533 Article

New solutions of a higher order wave equation of

the KdV type

Vangelis MARINAKIS

Department of Civil Engineering

Technological & Educational Institute of Patras

1 M. Alexandrou Street, Koukouli

263 34 Patras, Hellas

E-mail: vangelismarinakis@hotmail.com

Abstract

In this paper we use the Painlevé analysis and study a special case of a water wave
equation of the KdV type. More specifically, we use the Pickering algorithm [9] and
obtain a new kind of solutions, which constitute of both algebraic and trigonometric
(or hyperbolic) functions.

1 Introduction

As it is well known, the KdV equation represents a first order approximation in the study
of long wavelength, small amplitude waves of inviscid and incompressible fluids. If one
allows the appearance of higher order terms, more complicated wave equations can be
obtained. Such an equation, including second order terms, was proposed in [1] and has
the form

ut + ux + αuux + βuxxx + α2ρ1u
2ux + αβ(ρ2uuxxx + ρ3uxuxx) = 0. (1.1)

The above equation was examined analytically and numerically in [6, 7, 10, 11] and it
was found that, although it is non–integrable in general, it still possesses solitary wave
solutions, which, for small values of the parameters α and β, behave like solitons. The
equation was further examined in [3, 4, 5] were new wave and periodic solutions were
found.

The study of nonlinear integrable and non–integrable partial differential equations
(PDEs) regarding the finding of special solutions has been extensive during the last
decades. As a result, many new methods have appeared in the bibliography, which have
revealed an enormous amount of new solutions for a large class of nonlinear PDEs. One
of these methods is the Painlevé analysis for PDEs, introduced by Weiss, Tabor and
Carnevale [12] (thus called WTC algorithm), improved by Conte and Musette [8] and
further improved by Pickering [9]. It is precisely this analysis that was used in [7, 10] and
revealed new solutions for equation (1.1).

In this paper we use the algorithm proposed by Pickering and find new solutions for
equation (1.1) for the special case ρ1 = 0 and ρ3 = −2ρ2. These solutions constitute of both
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algebraic and trigonometric (or hyperbolic) functions. For simplicity we set α = β = 1 in
(1.1), which is equivalent with applying the transformation

u(x, t) =
1

α
w(X,T ) =

1

α
w

(

1√
β
x,

1√
β
t

)

.

Thus (in the above special case) we obtain the equation

ut + ux + uux + uxxx + ρ2(uuxxx − 2uxuxx) = 0. (1.2)

2 The approach of the Pickering algorithm

Let us consider an n–th order PDE, say ut = K[u], where u = u(x, t). If the equation
passes the Painlevé test, as stated in [12], then the solution admits at least one expansion
of the form

u =

∞
∑

k=−p

uk+pϕ
k, (2.1)

where k ∈ Z, ϕ = ϕ(x, t) is an arbitrary function, and precisely n − 1 of the functions
uk+p = uk+p(x, t) are also arbitrary. According to the WTC algorithm [12], we can then
use the truncated expansion

u =
0

∑

k=−p

uk+pϕ
k,

and substitute in the equation, in order to find the Lax pair.

The Conte–Musette algorithm [8], as well as the Pickering algorithm [9], constitute
improvements of the WTC algorithm, in the sense that one can reveal the Lax Pair and/or
some special solutions of the equation in a more systematic way.

According to Pickering approach we consider instead the truncated expansion

u =

p
∑

k=−p

uk+pz
k, (2.2)

where function z = z(x, t) satisfies the equations

zx = 1 −Az −Bz2, (2.3a)

zt = −C + (AC + Cx)z − (D −BC)z2, (2.3b)

while functions A, B, C and D satisfy the cross–derivative conditions

At + (AC)x + Cxx − 2D = 0, (2.4a)

Bt −Dx + 2BCx +BxC +AD = 0. (2.4b)



New solutions of a higher order wave equation of the KdV type 529

Consequently, we substitute relation (2.2) in the equation, using relations (2.3), and,
equating to zero the coefficients of zk, and using cross–derivative conditions (2.4), we
calculate A, B, C, D and uk+p. Then, the Lax pair is given by the system

ψxx = Aψx +Bψ,

ψt = −Cψx +

(
∫

Ddx

)

ψ.

In order to look for special solutions we assume that A, B and C are constants and
D = 0. Then system (2.3) implies

z(x, t) =
−A+

√
A2 + 4B tanh

[√
A2 + 4B(x− Ct− c0)/2

]

2B
, (2.5)

where c0 is an integration constant, while conditions (2.4) are identically satisfied. Con-
sequently, we again substitute relation (2.2) in the equation and, equating to zero the
coefficients of zk, we calculate uk+p.

We should finally mention that the above procedure can lead to special solutions even
when the solution of the equation does not admit an expansion of the form (2.1) with the
necessary amount of arbitrary functions, i.e. when the equation does not pass the Painlevé
test.

3 The new solutions

In [6] it was shown that, although equation (1.1) does not pass the Painlevé test, it always
admits an expansion of the form (2.1), where p = 2. In the special ρ1 = 0 and ρ3 = −2ρ2,
u0 remains arbitrary. Thus, in order to find special solutions for the equation, we can
substitute expansion

u =
u0

z2
+
u1

z
+ u2 + u3z + u4z

2 (3.1)

in (1.2) and evaluate un, as was done in [10]. However, in contrast with the procedure
followed in [10], un are now considered as functions of x and t, and not constants. Because
of the fact that u0 remains arbitrary, this will lead, at some stage, to a highly nonlinear
equation, which seems impossible to be solved. In order to avoid this, we consider the
truncated expansion

u =
u0

z2
+
u1

z
+ u2, (3.2)

instead of (3.1). Consequently, we substitute this expansion in (1.2), (using relations
(2.3)), and equate to zero the coefficients An of zn, n = −6, . . . , 0.

Relation A−6 = 0 yields

u1 = −Au0 − u0,x,

while relation A−5 = 0 yields

u2 =
1

12ρ2

[(

ρ2A
2 − 8ρ2B − 1

)

u0 + 6ρ2 (Au0,x + u0,xx) − 12
]

.



530 V Marinakis

Then, relation A−4 = 0 implies

3u0

[

(ρ2A
2 + 4ρ2B + 1)u0,x − 2ρ2u0,xxx

]

= 0. (3.3)

Thus, we have two different case:

(I) ρ2A
2 + 4ρ2B + 1 6= 0.

In this case relation (3.3) implies

u0 = f1(t) exp

[

−x

√

ρ2A2 + 4ρ2B + 1

2ρ2

]

+ f2(t) + f3(t) exp

[

x

√

ρ2A2 + 4ρ2B + 1

2ρ2

]

,

while relation A−3 = 0 yields

3(ρ2
2(A2 + 4B)2 − 1)f3(t) exp

[

x

√

2(ρ2A2 + 4ρ2B + 1)

ρ2

]

−2
[

(ρ2
2(A2 + 4B)2 − 1)f2(t) − 12(ρ2(C − 1) + 1)

]

exp

[

x

√

ρ2A2 + 4ρ2B + 1

2ρ2

]

+3(ρ2
2(A2 + 4B)2 − 1)f1(t) = 0,

which implies

B =
1 − ρ2A

2

4ρ2

, C =
ρ2 − 1

ρ2

.

Then relation A−2 = 0 implies

exp

[

− x
√
ρ2

]

[

(1 − ρ2)f1(t) + ρ2
3/2f ′1(t)

]

+ ρ2
3/2f ′2(t)

+ exp

[

x
√
ρ2

]

[

(ρ2 − 1)f3(t) + ρ2
3/2f ′3(t)

]

= 0.

Thus

f1(t) = c1 exp

[

(ρ2 − 1)t

ρ2
3/2

]

, f2(t) = c2, f3(t) = c3 exp

[

(1 − ρ2)t

ρ2
3/2

]

,

where ci, i = 1, 2, 3 are integration constants. Finally, A−1 ≡ A0 ≡ 0.
Thus, relation (3.2), together with (2.5) and all the above results, yields the following

solution:

u =
1

4ρ2

(A1 −A2 +A3) , (3.4)

where

A1 = c1(A
√
ρ2 − 1)2e−ξ + c2(ρ2A

2 − 1) − 4 + c3(A
√
ρ2 + 1)2eξ,

A2 =
2(ρ2A

2 − 1)(c1(A
√
ρ2 − 1)e−ξ + c2A

√
ρ2 + c3(A

√
ρ2 + 1)eξ)

A
√
ρ2 − tanh

[

1

2
(ξ + 4c0

√
ρ2)

] ,

A3 =
(ρ2A

2 − 1)2(c1e
−ξ + c2 + c3e

ξ)
(

A
√
ρ2 − tanh

[

1

2
(ξ + 4c0

√
ρ2)

])2
,
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ξ =
1

ρ2
3/2

(ρ2x+ (1 − ρ2)t),

and ρ2, A, c0, c1, c2, c3, remain arbitrary.

(II) ρ2A
2 + 4ρ2B + 1 = 0.

In this case

B = −ρ2A
2 + 1

4ρ2

,

and relation (3.3) implies

u0 = f1(t) + f2(t)x+ f3(t)x
2.

Then, relation A−3 = 0 implies

f3(t) =
3(ρ2(C − 1) + 1)

5ρ2

, (3.5)

while relation A−2 = 0 yields

25ρ2
2
[

(6ρ2C − f1(t))f2(t) + 6ρ2f
′

1(t)
]

+5ρ2

[

6(ρ2(1 − C) − 1)f1(t) + ρ2(36C(ρ2(C − 1) + 1) − 5f2(t)
2 + 30ρ2f

′

2(t))
]

x

−45ρ2(ρ2(C − 1) + 1)f2(t)x
2 − 18(ρ2(C − 1) + 1)2x3 = 0.

Equating to 0 the coefficients of xk, k = 3, 2, 1, 0, we find

C =
ρ2 − 1

ρ2

,

(thus, relation (3.5) implies f3(t) = 0) and

f2(t) = − 6ρ2

t+ 6ρ2c2
, f1(t) =

6(ρ2 − 1)t+ c1
t+ 6ρ2c2

,

where c1, c2 are integration constants. Finally, A−1 ≡ A0 ≡ 0.

Thus, relation (3.2), together with (2.5) and all the above results, yields the following
solutions: For ρ2 > 0,

u = − A1 +A2 +A3

12ρ2(t+ 6ρ2c2)
(

A
√
ρ2 cos ξ

2
+ sin ξ

2

)2
, (3.6)

where

A1 = 2(ρ2A
2 + 1)(6ρ2(x− t+ 3c2) + 9t− c1),

A2 =
[

6ρ2

(

ρ2A(A(t− x) − 6) + x− t+ 6c2(ρ2A
2 − 1)

)

+ c1(ρ2A
2 − 1)

]

cos ξ,

A3 = 2
√
ρ2 [A (3ρ2(2(t− x) + 3ρ2A+ 12c2)) − 9ρ2] sin ξ,
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ξ =
1

ρ2
3/2

(ρ2x+ (1 − ρ2)t+ 4ρ2
2c0),

and ρ2, A, c0, c1, c2, remain arbitrary. On the other hand, for ρ2 < 0,

u =
A1 +A2 −A3

12ρ2(t+ 6ρ2c2)
(

A
√−ρ2 cosh ξ

2
+ sinh ξ

2

)2
, (3.7)

where

A1 = 2(ρ2A
2 + 1)(6ρ2(x− t+ 3c2) + 9t− c1),

A2 =
[

6ρ2

(

ρ2A(A(t− x) − 6) + x− t+ 6c2(ρ2A
2 − 1)

)

+ c1(ρ2A
2 − 1)

]

cosh ξ,

A3 = 2
√
−ρ2 [A (3ρ2(2(t − x) + 3ρ2A+ 12c2)) − 9ρ2] sinh ξ,

ξ =
1

(−ρ2)3/2
(ρ2x+ (1 − ρ2)t+ 4ρ2

2c0),

and ρ2, A, c0, c1, c2, remain again arbitrary.

4 Concluding remarks

In this paper we have used the Pickering algorithm and have obtained special solutions
for a water wave equation of the KdV type. Solution (3.4) will not be considered as new,
since (as can be easily verified) it embeds in the general form

u =
b0 + b1e

ξ + b2e
2ξ

(a0 + a1eξ)2
,

where ξ has the form b(x − ct). Thus, it could be obtained by applying the reduction
u = f(ξ) in equation (1.2), or by using a method which assumes a priori a specific wave
form for the solution, as for example the exp–function method (see [2]).

On the other hand, solutions (3.6) and (3.7) appear to be new, since they constitute
of both algebraic and trigonometric (or hyperbolic) functions. As far as we know, all the
solutions that have been found for equation (1.1) are pure wave, periodic, or algebraic.
Moreover, note that solutions (3.6) and (3.7) have a quite complicated form and cannot
be obtained simply by applying the reduction u = f(ξ) in equation (1.2).

Finally, we should mention the following: As is explained in [9], expansion (3.2) can
be rewritten as a standard truncated WTC expansion, since it does not contain positive
powers of z. However, we believe that it is still better to use the Pickering algorithm, since
it simplifies considerably the calculations.

Obviously, the Pickering algorithm, as applied in this paper, has lead to new solutions,
due to the arbitrariness of function u0. We do not know yet if this situation is more
general, i.e. if such arbitrariness can lead to new solutions for other PDEs as well. Results
in this direction will be presented elsewhere.
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