
The Study and Application of Hadoop across
Multiple Clusters

Shengtao Sun
School of Information Science and Engineering

Yanshan University
Qinhuangdao, P. R. China
e-mail: ysusst@163.com

Aizhi Wu
College of Vehicles and Energy

Yanshan University
Qinhuangdao, P. R. China
e-mail: ysuwaz@163.com

Xiaoyang Liu
Data Industry Research Institute Limited Company

Data Valley
Qinhuangdao, P. R. China
e-mail: xyliu@163.com

Abstract—Hadoop is a widely applied tool for large-scale
data-intensive computing in big data, but it can only be
implemented on single cluster environment. In this paper, we
focus on the application of Hadoop across multiple clusters
and dedicate to solve the key problems of data sharing and
task scheduling among clusters. A hierarchical distributed
computing architecture of Hadoop across multiple clusters is
designed. The virtual HDFS and job adapter are proposed to
provide global data view and task allocation across multiple
data centers. The job submitted by user to this platform is
decomposed automatically into several sub-jobs and then
allocated to corresponding cluster by location-aware manner.
A prototype based on this architecture is presented and
currently applied in the distributed spatial information
processing across spatial data centers.

Keywords-multiple clusters; Apache Hadoop; hierarchical

distributed computing; virtual HDFS; job adapter

I. INTRODUCTION
The MapReduce paradigm has emerged as a highly

successful programming model for large-scale data-
intensive computing applications [1]. However, current
Hadoop implementations cannot be applied to distributed
data processing across data centers. Nowadays, data-
intensive computing typically uses modern data center
architectures and massive data processing paradigms [2].
The requirements for data-intensive analysis of scientific
data across distributed clusters or data centers have grown
observably in recent years. This research is devoted to a
study on the distributed data processing model across
multiple data centers.

In this paper, we try to improve the capability and
flexibility of Hadoop. A new hierarchical distributed
computing architecture of Hadoop across multiple data
centers is proposed. Java Socket is used to transfer these
tasks to the corresponding cluster and data center, where
the data processing in supposed to be run without data
moving. Virtual HDFS (Hadoop Distributed File System)

is presented to provide the catalog service of these data
centers, which can record the meta-data and access path of
all data. The design and application of this architecture are
illustrated in this paper and we hope this study may
enlighten the attention of Hadoop global implementation.

The rest of this paper is organized as follows: Section 2
discusses related works of our research, Section 3 presents
the design of a hierarchical distributed computing
architecture of Hadoop, and a prototype system based on
this architecture is shown in Section 3. Finally, Section 4
concludes the paper and points out the future work.

II. RELATED WORKS
Cloud computing is a set of network enabled services

to allow the centralized data storage and online access to
computer services or resources [3]. It provides scalable,
quality guaranteed, normally personalized, convenient
computing infrastructure on demand. The MapReduce
paradigm and its open sourced implementation—Hadoop
have been recognized as a representative enabling
technique for Cloud computing [4].

In distributed computing frameworks based on Hadoop,
one job committed to master node (name node) may be
divided into several same tasks and then run on several
slave nodes (data nodes). The data of this job is stored in
HDFS (Hadoop Distributed File System) which is
distributed to data nodes of the same cluster. In the
situation of distributed computing crossing clusters, the
data copying from multiple sites to the computing center is
the traditional method.

But the copy process is tedious and inefficient between
global distributed data centers through wide-area network,
especially in era of big data. Moving the computation
instead of moving the data is the proper way to tackle this
problem [5]. By using data parallel processing paradigms
on multiple clusters, simulations can be run on multiple
computing centers concurrently without the need of
copying the data. In G-Hadoop [6], Gfarm and Torque
were adopted to manage data files and resources for
clusters. In P2P-MapReduce [7], the adaptive MapReduce

International Conference on Mechatronics, Electronic, Industrial and Control Engineering (MEIC 2014)

© 2014. The authors - Published by Atlantis Press 1565

framework provided a more reliable MapReduce
middleware in dynamic Cloud infrastructures. A Federated
MapReduce [8] provided a transparent way to run original
MapReduce jobs across multiple clusters without any extra
programming burden.

The Apache Hadoop MapReduce implementation may
be upgraded for a multi-cluster environment with a
decision algorithm that would prefer local computers to the
remote [9]. The research on Hadoop across data centers or
clusters is rare, but we believe this issue is worthwhile. In
our works, we try to employ Hadoop in the application of
distributed spatial data processing with high performance.

III. THE DESIGN OF HIERARCHICAL DISTRIBUTED
COMPUTING ARCHITECTURE OF HADOOP

With the rapid development of manufacture technology
and observation technique, human can obtain massive
spatial data of variant types from multiple sources.
Researchers have devoted to collecting variant spatial data
and providing spatial information service. Many spatial
data centers have been set up all over the world for
different purposes and diverse services. The processing
and managing of spatial data must face the status of
multiple data centers.

In the design and implementation of distributed
computing architecture of Hadoop across multiple spatial
data centers, there are mainly three problems need to be
discussed and tackled. (1) How to obtain the view of all
data in multiple data centers, which may decide the
allocation of computing task to proper data center, (2)
How to decompose the job into tasks and dispense them to
corresponding clusters, which can synergistically control
each Hadoop execution engine in multiple clusters, (3)
How to deliver tasks transparently across different
administrative domains, which need efficient and general
way to keep communication among different clusters. In
this paper, we try to employ the hierarchical methodology
[10] and propose a hierarchical distributed computing
architecture based on Hadoop across multiple clusters
(named HDC-Hadoop). The overview of this architecture
is shown as Fig .1.

Figure 1. Architecture overview of HDC-Hadoop

The HDC-Hadoop architecture represents a
master/slave communication model. The master node is
the central entity in this architecture and it is responsible
for accepting jobs submitted by user, splitting the jobs into
smaller sub-jobs and distributing these sub-jobs to the
certain slave nodes where required data are located. The
master node is also in charge of managing the metadata of
all files available in every data nodes (virtual HDFS view
of multiple HDFS). The slave node is installed on each
participating cluster and enables it to run sub-jobs
allocated by Sub-Job Adapter in the master node (we can
also call it global name node).

The virtual HDFS provides a global view of all data
files in HDFSs of every cluster. In HDC-Hadoop data must
be managed in a location-aware manner in order to provide
the required location information for the sub-job adapter
on master node. The virtual HDFS just records meta-data
of all HDFS files obtained from name nodes, such as data
size, file format, access path and so on. When new file is
input or existing file is modified, related name node
(records the meta-data of HDFS in one cluster) must send
the updating meta-data to the virtual HDFS. The
relationship of virtual HDFS and HDFSs is shown in Fig .2.

Figure 2. The architecture of virtual HDFS

Submitting a job to HDC-Hadoop is not different from
the traditional Hadoop. Users write the MapReduce
program for the desired job based on the data files of
virtual HDFS. After compiling and decomposing, the file
names in Map or Reduction function may be transfer to
some locations of files in HDFS. Then the program is
allocated and executed on one or several slave nodes
where the required data files stored. If all the files in
MapReduce program are located in one cluster (data
center), the Map and Reduce programs may be transferred
to corresponding cluster (slave node). Otherwise, when the
files in program are located in several clusters, the program
may be recompiled to Map-Map-Reduce program or Map-
Reduce-Map- Reduce program, and the program may be

Socket API

Name Node

Data
Node

Data
Node

Data
Node

Cluster A

Slave Node

Socket API

Name Node

Data
Node

Data
Node

Data
Node

Cluster B

Slave Node

Socket API

Name Node

Data
Node

Data
Node

Data
Node

Cluster C

Slave Node

Socket API

Sub-Job Adapter

Master Node
(Global Name Node)

Virtual HDFS

Job Scheduler

Name Node

Virtual HDFS

Meta-data
Database

Master Node
(Global Name Node)

Meta-data DB
manager

User

HDFS

Data Node

Cluster A

Slave Node

local file
system

Data Node

local file
system

Cluster B

Slave Node

Name Node

HDFS

Data Node

local file
system

Data Node

local file
system

1566

executed step by step in different clusters (so as to say, the
program is organized into several sequential sub-jobs of
different clusters).

The whole workflow of a job execution in HDC-
Hadoop is composed of five steps:

Job submission: user submits a MapReduce program
and configuration (including parameters, input files and
additional resources) to master node of HDC-Hadoop. The
job scheduler may set a job ID for the new job and push it
in the queue of jobs.

Program compiling and decomposing: job in queue
may be split into small location-aware sub-jobs based on
required data. Based on meta-data in virtual HDFS, if all
files in the MapReduce program are located in one cluster
(data center), the program may be transferred directly to
corresponding cluster (slave node). Else if the files in the
MapReduce program are located in different clusters, the
program may be recompiled to Map-Map-Reduce or Map-
Reduce-Map-Reduce program and organized into several
sequential sub-jobs of different clusters. The file names in
Map and Reduce functions based on virtual HDFS are
translated into local file path of the HDFS in clusters.

Sub-job localization and assignment: based on
virtual HDFS, sub-job may be assigned properly to the
name node of related cluster in data-aware manner. This
allocation adopts socket communication method, which
can inter-transfer message, program and file based on TCP
(Transmission Control Protocol). And then a job execution
(the method runJob() of Hadoop is called) can be run on
the cluster based on local file system.

Task submission and Task execution: after the job is
localized on the cluster, the JobTracker in name node splits
into smaller tasks. When the TaskTraker in data node
receives a new task, it localizes the tasks executable and
resources in local file system. Then the job is executed by
spawning a new JVM (Java Virtual Machine) on the
computed node and running the corresponding task with
the configured parameters.

Result feedback: after all tasks of a sub-job are
completed in one cluster, the name node may return the
result files paths to the sub-job adapter in master node. The
adapter checks whether this sub-job is a simple job (all
required files located in one cluster, that is to say there is
only one sub-job corresponding to a user job). If it is a
simple job then register the new files in virtual HDFS and
return the file name list to the job scheduler. Else if this
sub-job has other subsequent or relevant sub-jobs, the
output of this sub-job may be used as the input of other
sub-jobs which may then be allocated and executed on
corresponding cluster. Till all the sub-jobs of one user job
are completed, the output files are registered in virtual
HDFS and the file name list is returned to job scheduler.
Finally, job scheduler returns the results to corresponding
user by job ID.

Based on the HDC-Hadoop architecture, distributed
computing job across multiple clusters or data centers can
be implemented.

IV. APPLICATION AND PROTOTYPE
This section discusses a prototype system of this HDC-

Hadoop architecture. In this prototype, two clusters are
built on two data centers separately based on Hadoop. The
schematic diagram of the deployment is shown in Fig .3.

Figure 3. Deployment diagram of the prototype system

In Figure 3, there are two distributed data centers (two
data centers for remote sensing raster data, one for MODIS
data service and another for ETM data service). On the
data storage servers, we installed virtual machines as data
nodes of Hadoop and set the disks sharing, which can
make the data accessible in Hadoop.

Moreover, in each data center, we added a server as
name node of Hadoop system, which takes charge of the
sub-job receiving from master node and task assigning to
data nodes. In the master node, Web portal provide the
interface for users to submit job and obtain results, job
center is responsible for the job scheduling and managing,
and MDDB (meta-data database) stores the meta-data of
virtual HDFS.

When user submits a new job, he firstly searches the
required data based on the data view of virtual HDFS,
which can make the details of multiple data centers
transparent, shown as Fig .4.

Figure 4. The query interface of spatial data

After selecting the required spatial data files, user
uploads the algorithm runtime environment of virtual

Data
Node

MODIS Data Center

Name
Node

SWITCH

Data
Node

Data
Node

Data
Node

ETM Data Center

SWITCH

Data
Node

Data
Node

Name
Node

NETWORK

Web
Portal MDDB

SWITCH

Job
Center

Master Node

1567

machine, which may be transferred to the cluster where the
required data is stored. In the job center, the execution of
each job can be monitored in Web portal. The workflow
overview of job execution is shown as Fig .5.

Figure 5. The monitor interface of job execution

The final execution results are expressed in form of
KML (Keyhole Markup Language) files, and the access
paths may be returned to the user interface in Web portal
server. Based on the HDC-Hadoop architecture, the
simulation system can realize data distributed computing
based on Hadoop across multiple clusters, but this
prototype is still a test bed currently and there are many
unresolved problems yet.

V. CONCLUSIONS
The requirements for data-intensive computing across

distributed clusters and multiple data centers have grown
significantly in recent years. However, original
MapReduce paradigm and Hadoop platform are developed
to operate on single cluster environments and cannot be
implemented in large-scale distributed data processing
across multiple cluster and data centers. The goal of this
research is to apply Hadoop framework in the large-scale
distributed computing across multiple clusters. In this
paper, a hierarchical distributed computing architecture is
designed and presented. This architecture is based on
master/slave communication model and virtual HDFS is
proposed to provide global view of data sets across
distributed clusters. The HDC-Hadoop architecture, virtual
HDFS structure and job execution flowchart are
illuminated, and also a prototype based on this architecture
is built up and presented. The implementation results show
that this design is feasible and has application prospect. To
make HDC-Hadoop fully functional and implementable,
next step we plan to enhance the distributed file system
across wide area networks and design the security
mechanism across multiple administrative domains for this
architecture.

ACKNOWLEDGMENT

The authors would like to thank all the team members
of Data Technology Department in CEODE

(Center of
Earth Observation and Digital Earth)

of CAS (Chinese
Academy of Sciences). This work is supported by the
Science and Technology Research and Development Plan
of Qinhuangdao (No. 201401A010) and the Doctoral
Foundation of Yanshan University (No. B718).

REFERENCES

[1]

Yadav Krishna R.

and

Purnima Singh.

MapReduce Programming
Paradigm Solving Big-Data Problems by Using Data-Clustering
Algorithm. International Journal of Advanced Research in
Computer Engineering & Technology, vol. 3, no. 1, pp. 77-80,
2014.

[2]

Lizhe Wang,

Jie Tao, Holger Marten, Achim Streit, Samee U.
Khan, Joanna Kolodziej and Dan Chen. MapReduce Across
Distributed Clusters for Data-intensive Applications. IEEE
International Parallel & Distributed Processing Symposium,
Shanghai, China,

pp. 2004-2011, May 2012.

[3]

Ling Qian, Zhiguo Luo, Yujian Du, Leitao Guo. Cloud Computing:
An Overview. Cloud Computing, Lecture Notes in Computer
Science, vol.5931, pp. 626-631, 2009.

[4]

Lu Huang, HaiShan Chen, TingTing Hu. Research on Hadoop
Cloud Computing Model and its Applications. The Third
International Conference on Networking and Distributed
Computing, Hangzhou, China, pp. 59-63, October 2012.

[5]

Lizhe Wang, Jie Tao, Yan Ma, Samee U. Khan, Joanna Kolodziej
and Dan Chen. Software Design and Implementation for
MapReduce across Distributed Data Centers. Applied Mathematics
& Information Sciences, vol. 7, no. 1, pp. 85-90, 2013.

[6]

Lizhe Wang, Jie Tao, Rajiv Ranjan, Holger Marten, Achim Streit,
Jingying Chen, Dan Chen. G-Hadoop: MapRecuce across
distributed data centers for data-intensive computing. Future
Generation Computer Systems, vol. 29, no. 3, pp. 739-750, 2013.

[7]

Fabrizio Marozzo, Domenico Taliaa

and

Paolo Trunfio. P2P-
MapReduce: Parallel data processing in dynamic Cloud
environments. Journal of Computer and System Sciences, vol. 78,
no. 5, pp. 1382-1402, 2012.

[8]

Chun-Yu Wang, Tzu-Li Tai, Jui-Shing Shu, Jyh-Biau Chang and
Ce-Kuen Shieh. Federated MapReduce to Transparently Run
Application on Multicluster Environment. The IEEE

3rd

International Congress on Big Data, Alaska,

USA, pp.

296-302,
June 2014.

[9]

I. Tomasic, A. Rashkovska and M. Depolli. Using Hadoop
MapReduce in a Multicluster Environment. The 36th International
Convention on Information & Communication Technology

Electronics & Microelectronics,

Opatija, Croatia,

pp. 345-350,
May 2013.

[10]

Cesar Andres, Carlos Molinero

and

Manuel Nunez. A Hierarchical
Methodology to Specify and Simulate Complex Computational
Systems. Computational Science (ICCS 2009), Lecture Notes in
Computer Science, vol. 5544, pp. 347-356, 2009.

1568

