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a Facultad de Ciencias, Universidad de Colima
Bernal Dı́az del Castillo 340, Villas San Sebastián
28045 Colima, México
E-mail: albertom@ucol.mx

b Instituto de F́ısica, Universidad Autónoma de San Luis Potośı
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Abstract

In this work we investigate a formal mapping between the dynamical properties of
the unidimensional relativistic oscillator and the asymmetrical rigid top at a clas-
sical level. We study the relativistic oscillator within Yamaleev’s interpretation of
Nambu mechanics. Such interpretation is based on the factorisation of the momenta,
and as a consequence of this factorisation we are led to a three dimensional phase
space. Solutions of the relativistic oscillator are given in terms of the Jacobian elliptic
functions and hence we establish a correspondence of these solutions in terms of well
known quantities from the rigid body theory. We also study some mechanical restric-
tions that appear in the mathematical development of the mapping. In particular,
we find a lower bound for the relativistic frequency in order to make the mapping
self-consistent and physically legitimate.

1 Introduction

Historically, Nambu three order phase space formalism of mechanics was developed as a
mathematical tool expected to solve some open questions related to the quark structure
and confinement. Nambu proposed a generalisation of Hamiltonian formalism of mechanics
based on the Liouville theorem of classical mechanics which is related to the invariance of
the phase space volume under canonical transformations [11]. However, first attempts to
understand the kind of mechanics involved within such formalism were not fruitful leaving
the question to the exploration of some similarities and interrelations between Hamiltonian
formalism and Newton mechanics. It is only by considering Yamaleev’s construction that
we obtain a complete realisation of Nambu formalism into real mechanics [16, 17, 18].
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The main characteristic of this interpretation is factorisation, which is well known to us
from spinor treatments or even from twistorial approaches [8], to mention some examples.
Experience shows us that spinor and twistorial treatments lead to unclear results that
are difficult to apply and interpret physically. However, Yamaleev’s dynamics framework
allows us to furnish factorisation with a physically meaningful interpretation.

Using the Yamaleev’s approach, it is straightforward to find out the kind of solutions
corresponding to the relativistic oscillator model. We even pursue to show the parallelism
between this system and the mechanical properties and well known behaviour of the asym-
metric top from the rigid body theory [9]. As is well known, the notion of a rigid body is
in contradiction with the statement of an upper bound for the velocities. In this work we
explore a plausible mapping between the dynamical solution of the relativistic oscillator,
obtained within the mentioned formalism, and the one related to Euler’s free rigid body.
Such mapping will be permissible due to the fact that both systems possess solutions in
terms of the Jacobian elliptic functions. As we will see, it is necessary to impose some
restrictions in order to avoid any contradiction with relativistic mechanics.

We are not pretending to present the complete formal extension of the Nambu formal-
ism, but the reader is referred to the literature for reviews on the topic. Some examples
of other real physical systems described by Nambu’s formalism (as well as proposals for
quantised versions of Nambu dynamics) can be found in [2, 3, 4, 6, 7, 10, 11, 12, 13, 14, 15].
We start by briefly reviewing the main ideas within Nambu formalism.

Let (x, y, z) =: ~r be a dynamical triplet of variables that generates a three dimensional
phase space. This space could be seen as a generalisation of the conventional two dimen-
sional phase space with coordinates (p, q). Let H and G be two functions of (x, y, z) that
will serve as a pair of Hamiltonian-like functions from which we want to obtain the dynam-
ical evolution of the points in the triplet phase space. Nambu equations are postulated as

dx

dt
=
∂(H,G)

∂(y, z)
, (1.1a)

dy

dt
=
∂(H,G)

∂(z, x)
, (1.1b)

dz

dt
=
∂(H,G)

∂(x, y)
, (1.1c)

or in vector notation,

d~r

dt
= ~∇H × ~∇G . (1.2)

Hence, for any function F = F (x, y, z) we will have

dF

dt
=
∂(F,H,G)

∂(x, y, z)
= ~∇F · (~∇H × ~∇G) . (1.3)

Next, we will define for arbitrary functions F1, F2, F3 a generalised Poisson bracket
{F1, F2, F3} by

{F1, F2, F3} = ~∇F1 · (~∇F2 × ~∇F3) . (1.4)
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This generalised Poisson bracket is antisymmetric under interchange of any pair of func-
tions. From (1.3) and the antisymmetric property of (1.4) follows that both H and G are
constants of motion.

In the same spirit, we can consider phase spaces of any finite dimension by introducing a
vector ~r with n-components and (n−1)-Hamiltonian-like functions Hk, k = 0, . . . , (n−1).
In analogy to equations (1.2) and (1.3), we generalise the Nambu equations of motion

dxi

dt
=

n
∑

j,k,··· ,l

ǫijk···l
∂H1

∂xj

∂H2

∂xk

· · · ∂Hn−1

∂xl

, (1.5a)

dF

dt
=
∂(F,H1,H2, . . . ,Hn−1)

∂(x1, x2, . . . , xn−1, xn)
, (1.5b)

where ǫijk···l is the totally antisymmetric Levi-Civita tensor. ¿From this last generalisation
it can be seen that the Hamiltonian formalism is contained in Nambu’s formalism as a
special case, namely, a two-dimensional phase space and a single Hamiltonian function.
For further relations between Nambu and Hamiltonian formalisms, the reader is referred
to [3, 7, 10].

The rest of the paper is as follows. In section 2 we review Yamaleev’s construction
and interpretation of Nambu formalism of mechanics, and within this general framework
we specialise to the relativistic harmonic oscillator case. In section 3 we recapitulate
Euler’s free asymmetric rigid body. The dynamical mapping between the solutions of
the asymmetric top and those obtained for the relativistic oscillator within Yamaleev’s
approach are studied in section 4. We also discuss in section 4 some mechanical restrictions
to the mapping that emerge in order to make it physically meaningful. Finally, in section 5
we present some concluding remarks.

2 Relativistic Yamaleev’s framework

In this section we will consider a simplified Nambu system based on a three dimensional
phase space coordinatised by the triplet {x, p, q} within the following physical interpreta-
tion [16, 17, 18]: we take the physical system as formed by a real (corporeal) particle of
mass m which is localised in a given point by the coordinates (x, P ) of two dimensional
phase space, hence the position of the real particle is given by the coordinate x while its
momentum is given by the coordinate P . This system will be considered as a composed
system, formed by two subparticles with momenta p and q, and masses mp and mq, respec-
tively; this situation is directly generalised to three dimensional triplet configuration space
(~x, ~p, ~q). For convenience, the light velocity constant c will be explicitly kept throughout
the equations.

Under these conditions we will have two Hamiltonians, one for each of the subparticles,
and we assume that they are given by the classical expresions

Hp :=
p2

2mp

+ V (x) , (2.1a)

Hq :=
q2

2mq

+ V (x) . (2.1b)
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From Nambu equations (1.1) we obtain the following set of equations that we will call
from now on Yamaleev equations of motion

dp

dτ
= −dV

dx

q

mq

, (2.2a)

dq

dτ
= −dV

dx

p

mp

, (2.2b)

dx

dτ
= +

p q

mpmq

. (2.2c)

Here τ is an evolution paremeter, but in agreement with the next equation, it will turn out
to be the evolution proper time of the system. We claim that the system of equations (2.2)
is equivalent to the relativistic equations of motion for the real particle in the (x, P )-phase
space. To show this, we will proceed as follows. First, we consider that the momentum P
and the velocity dx/dτ of the real particle are related in the usual way by the expression

dx

dτ
=
P

m
. (2.3)

This relation must contain the same information as equation (2.2c). By comparison then
we get that the momentum P is factorised as a product of the individual momenta of the
subparticles

P :=
p q

2
√
mpmq

, (2.4a)

m :=

√
mpmq

2
, (2.4b)

where c stands for the speed of light. It is easy to show that we have two constants of
motion given by Ep := Hp and Eq := Hq, since we have

d

dτ
Ep =

d

dτ

(

p2

2mp

+ V (x)

)

=
p

mp

dp

dτ
+
dV

dx

dx

dτ
= −dV

dx

(

p q

mpmq

− dx

dτ

)

= 0 , (2.5)

where we have used equations (2.2a, c) to obtain the last equality. An analogous proof
follows for Eq.

Next, we will define two useful quantities in terms of these constants of motion. The
total energy of the system E will be considered as the arithmetic average, that is,

E :=
1

2
(Ep + Eq) , (2.6a)

and we will identify the difference in energies as the rest mass of the system M as

Mc2 :=
1

2
(Eq − Ep) . (2.6b)

It is important to distinguish the quantity M (which is a constant of motion) from the
parameter m that appears in the dynamical equation (2.3). In terms of these two quantities
the constants of motion Ep and Eq read

Ep = E −Mc2 , (2.7a)

Eq = E + Mc2 . (2.7b)
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Note that a third constant of motion can be obtained if we multiply Ep and Eq

EpEq = (E −Mc2)(E + Mc2) = E2 − (Mc2)2 =

(

p2

2mp

+ V (x)

) (

q2

2mq

+ V (x)

)

= P 2c2 + 2(E − V )V + V 2 . (2.8)

From the third and last equality terms of (2.8) it follows that

(E − V )2 = P 2c2 + (Mc2)2 , (2.9)

which is equivalent to

E =
√

P 2c2 + (Mc2)2 + V (x) , (2.10)

which is the famous relation for the relativistic energy. Therefore, we reach Yamaleev’s
conclusion that two subparticles in Nambu’s formalism are equivalent to an inertial (corpo-
real) relativistic particle. Furthermore, Yamaleev’s approach allows to consider zero mass
particles, due to the emerging distinction between the rest mass M and the dynamical
parameter m. This is very important to point out because it is normally believed that
zero mass particles are totally from a quantum mechanical nature.

A remarkable feature of Nambu’s formalism is that the system of equations (2.2) satisfies
a set of canonical equations of motion. In order to show this we consider the derivative of
the product of the momenta of the two subparticles, that is,

d

dτ
(p q) = −2

dV

dx

(

p2

2mp

+
q2

2mq

)

= −2
d

dx
(2EV − V 2) . (2.11)

In terms of the corporeal particle momenta P this relation reads

d

dτ
P =

−1

2Mc2
d

dx
(2EV − V 2) = −dW (x)

dx
, (2.12)

where we have identified the rest mass M with the dynamical parameterm, and we defined
the potential function W (x) := [2EV (x)− V 2(x)]/2Mc2. Therefore, from equations (2.3)
and (2.12), we obtain the Hamiltonian equations of motion

dx

dτ
=
∂H
∂P

, (2.13a)

dP

dτ
= −∂H

∂x
, (2.13b)

where H := (P 2/2M) +W (x) is the Hamiltonian of the corporeal particle. Therefore, a
relativistic particle under the potential field V (x) is equivalent to a classical particle under
the potential field W (x).

In a similar fashion, the set of equations (2.2) can be expressed for three dimensional
space as

d~p

dτ
= −~∇V × ~q

mqc
, (2.14a)

d~q

dτ
= −~∇V × ~p

mpc
, (2.14b)

d~x

dτ
= +

~p× ~q

mpmq

. (2.14c)
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It is important to realize that the structure of Lorentz’s force law in space time d
dτ
Pµ =

F ν
µ Pν corresponds to an evolution equation; it is also interesting to find out that, in the

same way, the equations of motion above for the mechanical system of a relativistic particle
also correspond to the structure of an evolution equation.

2.1 Harmonic oscillator potential

Now, we specialise the above developments to the unidimensional harmonic oscillator case,
and hence, we will consider the potential V (x) = mω2x2/2. We will now see, how easy
it is to find, in the formalism, a solution to the harmonic relativistic oscillator. First, we
consider the momenta for the corporeal particle given in equation (2.3), and we factorise
this momenta as in equation (2.4a), P = p q/4mc2, where p and q can be written in terms
of the constants of motion Ep and Eq by means of the relations (2.1). This factorisation
leads us to the integral (see reference [3] for further details)

τ − τ0 =

∫ x(τ)

x(τ0)

mcdx
√

(E −Mc2 − V (x))(E + Mc2 − V (x))
(2.15)

which for the one-dimensional oscillator potential V (x) = mω2x2/2 reduces to the elliptic
integral

φ =

∫ y(φ)

y(φ0)

dy
√

(1 − y2)(1 − κy2)
, (2.16)

where we made the change of variable

y :=

√

mω2

2(E −Mc2)
x , (2.17a)

and we defined

φ := ω(τ − τ0)

√

(E + Mc2)

2m
, (2.17b)

κ :=
E −Mc2

E + Mc2
. (2.17c)

As 0 < κ < 1, solutions to integral (2.16) can be found by means of Jacobian elliptic
functions sn(φ, κ), cn(φ, κ) and dn(φ, κ) [1, 5]. Jacobian elliptic functions obey similar
algebraic identities to the trigonometric functions, namely

cn2(φ|κ) + sn2(φ|κ) = 1 , (2.18a)

dn2(φ|κ) + κ sn2(φ|κ) = 1 , (2.18b)

and besides, they satisfy the differential identities

d

dφ
cn(φ|κ) = −sn(φ|κ) dn(φ|κ) , (2.19a)

d

dφ
sn(φ|κ) = dn(φ|κ) cn(φ|κ) , (2.19b)

d

dφ
dn(φ|κ) = −κ sn(φ|κ) cn(φ|κ) . (2.19c)
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Furthermore, in the limit κ → 0 the Jacobian elliptic functions behave as sn(φ|κ) →
sin(φ), cn(φ|κ) → cos(φ), and dn(φ|κ) → 1, respectively.

Differential identities (2.19) are equivalent to the set of equations (2.2) when considering
the potential V = mω2x2/2 and by taking the correspondence

x :=

√

2(E −Mc2)

mω2
sn(φ|κ) , (2.20a)

p :=
√

2(E −Mc2)mp cn(φ|κ) , (2.20b)

q :=
√

2(E + Mc2)mq dn(φ|κ) , (2.20c)

or, in terms of the corporeal particle momenta,

x =

√

2(E −Mc2)

mω2
sn(φ | κ) , (2.21a)

P =

√

E2 − (Mc2)2

c
cn(φ | κ)dn(φ | κ) . (2.21b)

Solutions (2.21) reduce to the non-relativistic oscillator in the limits M = m and Enr ≪
mc2, where Enr is the non-relativistic energy given by the expression E = mc2 + Enr.
These limits correspond to taking the limit κ→ 0 in Jacobian elliptic functions, that are
reduced to the sine-cosine functions. Then, we obtain in such limit the solutions

x =

√

2Enr

mω2
sinφ ,

P =
√

2mEnr cosφ ,

φ = ω(τ − τ0) ,

which are identified with the non-relativistic harmonic oscillator solutions for the corporeal
point particle.

As we will see in next section, Euler’s rigid body can also be cast in terms of Jacobian
elliptic functions. This will give a point of comparison for the relativistic oscillator and
the rigid body.

3 Euler’s rigid body

In this section we briefly review free motion of the asymmetric rigid body in terms of
Jacobian elliptic functions described above [9]. Let ~Ω = (Ω1,Ω2,Ω3) be the angular
velocity of the rigid body, and (I1, I2, I3) the principal momenta of inertia. As we will
consider an asymmetrical rigid body, we take I3 6= I2 6= I1, and without loss of generality
we will work on the assumption that I3 > I2 > I1 > 0.
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Free motion of the asymmetric rigid body is then described by Euler equations

dΩ1

dt
+

(

I3 − I2
I1

)

Ω2Ω3 = 0 , (3.1a)

dΩ2

dt
+

(

I1 − I3
I2

)

Ω3Ω1 = 0 , (3.1b)

dΩ3

dt
+

(

I2 − I1
I3

)

Ω1Ω2 = 0 . (3.1c)

As is well known, the dynamics of the rigid body, described by these equations, possesses
two integrals of motion:

E :=
1

2
(I1Ω

2
1 + I2Ω

2
2 + I3Ω

2
3) , (3.2a)

J2 := I2
1Ω2

1 + I2
2Ω2

2 + I2
3Ω2

3 , (3.2b)

where E is the kinetic energy and J := || ~J || is the total angular momentum of the free rigid
body. As it was first realised by Nambu [11], Euler equations for a three dimensional rigid
body can be cast within the formalism of Nambu mechanics (1.1) if we identify ~r = (x, y, z)
with the components of the total angular momentum vector ~J , and we take the pair of
Hamiltonian-like functions, H1 and H2, as the total kinetic energy E (3.2a), and the total
angular momentum squared J2 (3.2b), respectively.

Following [6], we introduce the new variable

ψ :=

√

(I3 − I2)(J2 − 2EI1)
I1I2I3

t , (3.3a)

and the parameter k by

k :=
(I2 − I1)(2EI3 − J2)

(I3 − I2)(J2 − 2EI1)
. (3.3b)

Bearing on mind definitions (3.3) it is straightforward to show that the solutions of equa-
tions (3.1) can also be represented by Jacobian elliptic functions if we take

Ω1 =

√

2EI3 − J2

I1(I3 − I1)
cn(ψ|k) , (3.4a)

Ω2 =

√

2EI3 − J2

I2(I3 − I2)
sn(ψ|k) , (3.4b)

Ω3 =

√

J2 − 2EI1
I3(I3 − I1)

dn(ψ|k) . (3.4c)

Note that all the coefficients appearing in equations (3.3) and (3.4) are positive due to
our original convention I3 > I2 > I1 > 0. In particular, it follows that the parameter k
in (3.3b) is defined within the interval 0 < k < 1. Therefore, by direct substitution of (3.4)
into equations (3.1) we recover the system of equations satisfied by the Jacobian elliptic
functions (2.19).

Once we have realised that both systems possess their solutions in terms of the Jacobian
elliptic functions that we come to the idea to establish a correspondence between the
relativistic oscillator model and the free rigid body model.
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4 Dynamical mapping

In order to put in correspondence the solutions (2.20) and (3.4) we shall present the
variables in (2.20) as variables with the dimensionality of frequency. For that purpose we
shall use the auxiliary parameter ℓ with dimensionality of time which can be defined as
ℓ = ω−1. On making use of this parameters we rewrite (2.20) as follows

x

ℓ2
= ω

√

2Ep

m
sn(φ|κ) , (4.1a)

p

2mℓ
= ω

√

2Ep

mq

cn(φ|κ) , (4.1b)

q

2mℓ
= ω

√

2Eq

mp

dn(φ|κ) . (4.1c)

Thus, we have two systems which solutions are given by Jacobian elliptic functions: on
one side, the free rigid body equations depend on the momenta of inertia I1, I2, I3; on
the other side, the equations of the relativistic oscillator depend on the mass parameters
mq, mp. Furthermore, in both systems we have two constants of motion and a single
evolution parameter, and hence we have the sets of quantities (E , J2, t) in the former, and
(Ep, Eq, τ) in the latter. We want to explore a mapping between the two systems. As we
will see in subsection 4.1 below, some restrictions on the mapping necessarily emerge to
keep the mapping physically consistent.

First of all let us put in correspondence the parameter κ defined in (2.17c) with the
parameter k defined in (3.3b). Comparing these formulae we define

Ep :=
1

2

(

2EI3 − J2

I3 − I2

)

, (4.2a)

Eq :=
1

2

(

J2 − 2EI1
I2 − I1

)

. (4.2b)

Now, we proceed to compare the functions given by (4.1a) and (3.4b). These two functions
will be equal if we take

2Epω
2

m
=

2EI3 − J2

I2(I3 − I2)
. (4.3)

Taking into account mapping (4.2), hence we get the relation

m

ω2
= I2 . (4.4)

Analogously, we compare (4.1b) with (3.4a) and (4.1c) with (3.4c). These pairs of functions
will be correspondingly equal, if we take

2Epω
2

mq

=
2EI3 − J2

I1(I3 − I1)
, (4.5a)

2Eqω
2

mp

=
J2 − 2EI1
I3(I3 − I1)

, (4.5b)
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and again by using definitions (4.2), we find

mq

ω2
=
I1(I3 − I1)

I3 − I2
, (4.6a)

mp

ω2
=
I3(I3 − I1)

I2 − I1
. (4.6b)

¿From relations (4.6) we obtain the following important identities

ω2

(

I1
mq

+
I3
mp

)

= 1 , (4.7a)

ω2

(

1

mp

+
1

mq

)

=
I3 + I1 − I2

I1I3
, (4.7b)

which will serve (together with equations (4.6)) to obtain the further relation

I3 − I1 =
1

ω2

√

m(mp +mq) −mpmq =
Mpq

ω2
, (4.8)

where we have defined Mpq :=
√

m(mp +mq) −mpmq =
√
m

(
∣

∣

√
mp −√

mq

∣

∣

)

. We see
that Mpq must be grater than zero due to I3−I1 > 0 and hence we assume for definiteness
mp > mq from now on. Relation (4.8) together with the identity (4.7a) can be solved for
I1 and I3 in terms of the masses of the subparticles mp and mq by

I1 =
1

ω2(mp +mq)
(mpmq −mqMqp) , (4.9a)

I3 =
1

ω2(mp +mq)
(mpmq +mpMqp) . (4.9b)

Next, by direct algebraic calculations it can be shown that the constants of motion of the
rigid body, E and J2, can be written in terms of the relativistic oscillator parameters by

E =
(mp −Mpq)Ep − (mq +Mpq)Eq

mp +mq

, (4.10a)

J2 = [−(mq +Mpq)(mpmq −mpMpq − 2mqMpq)Eq + (mp −Mpq)
2mqEp

]

×
[

1

ω2(mp +mq)2

]

. (4.10b)

Finally, let us compare the two expressions for the evolution parameter φ and ψ, where the
former was defined in (2.17b) and the latter, in (3.3a). On equating these two definitions
we obtain

τ − τ0 = t

[(

(I3 − I2)(J
2 − 2EI1)

I1I2I3

)(

2m

Eqω2

)]

1

2

= t

[(

(I3 − I2)(I2 − I1)

I1I2I3

)(

4m

ω2

)]
1

2

= 2t

[

(I3 − I2)(I2 − I1)

I1I3

]
1

2

, (4.11)
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Table 1: Relativistic oscillator parameters in terms of Euler’s rigid body parameters

m

ω2
= I2

mp

ω2
=

I3(I3 − I1)

I2 − I1
mq

ω2
=

I1(I3 − I1)

I3 − I2

Ep =
1

2

(

2EI3 − J2

I3 − I2

)

Eq =
1

2

(

J2 − 2EI1
I2 − I1

)

τ − τ0 =
(I3 − I1)

I2
t

where we used relations (4.2) and (4.4) to obtain the second and third equalities, respec-
tively. This relation can be easily inversed to put the parameter t completely in terms of
relativistic oscillator parameters by means of relations (4.6) and (4.8)

t =
1

√
2

(

mp+mq
√

mpmq
− 2

)
1

2

(τ − τ0) =

√
m

∣

∣

√
mp −√

mq

∣

∣

(τ − τ0) . (4.12)

Thus, so far we have obtained a general algebraic well defined mapping between the two
systems. The maps from one system to the other are summarised in tables 1 and 2. The
only remaining question is to explore the restrictions that we have to consider in order to
obtain a physically meaningful mapping between the two systems.

4.1 Restrictions to the mapping

In this subsection we will describe the emerging restrictions that the mapping described
above should have in order to correspond to the physical systems studied. Such restrictions
are related to the definition of the corporeal particle mass m in terms of the masses of
the subparticles mp and mq, on one side; and to the conventions we considered for the
principal momenta of inertia, on the other. However, a more important restriction will
emerge in order to assure that the velocity of the corporeal particle remains upper bounded
in agreement with the principles of special relativity.

To start, we consider the definition (2.4b) of the corporeal mass m in terms of the
masses mp and mq. By equations (4.4) and (4.6), this definition will hence imply that the
principal momenta of inertia are not independent but forced to obey the algebraic relation

4I2
2 =

I1I3(I3 − I1)
2

(I3 − I2)(I2 − I1)
. (4.13)
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Table 2: Euler’s rigid body parameters in terms of the relativistic harmonic oscillator
parameters

I2 =
m

ω2

I1 =
mpmq −mqMpq

ω2(mp +mq)

I3 =
mpmq +mpMpq

ω2(mp +mq)

E =
(mp −Mpq)Ep − (mq +Mpq)Eq

mp +mq

J2 =

{

(mp −Mpq)
2mqEp − (mq +Mpq)(mpmq −mpMpq − 2mqMpq)Eq

}

ω2(mp +mq)2

t =
m

Mpq

(τ − τ0)

Therefore the relativistic oscillator imposes a restriction on the way we have to choose
the principal momenta of inertia. We can make use of this restriction to write the rela-
tions (4.11) and (4.12) between the evolution parameters in a simpler form, namely,

τ − τ0 =
I3 − I1
I2

t , (4.14a)

t =
m

Mpq

(τ − τ0) . (4.14b)

On the other side, we are working on the general convention that the principal momenta
of inertia of the rigid body obeys the chain of inequalities I3 > I2 > I1 > 0. Besides, as is
well known, from the definitions of these momenta [9] we have also to consider the further
inequalities Ii + Ij > Ik for i, j, k cyclic and where i, j, k take values in {1, 2, 3}. ¿From
equation (4.9a) we see that the inequality I1 > 0 will only be satisfied if we take mp > m.
Similarly, by equations (4.4) and (4.8), the inequality I1 +I2 > I3 will imply mq > m. It is
easy to show that the rest of the inequalities are automatically satisfied as a consequence
of mp > m and mq > m. Therefore the inequalities followed by the principal momenta
of inertia restricts the choice of the masses of the subparticles mp and mq. In particular,
we can take these masses as mp = αm and mq = βm where the constants α and β are
greater than one and αβ = 4, in agreement with the definition (2.4b), and hence α and β
are restricted to take values in the intervals 1 < α < 4 and 1 < β < 4.

Finally, we have to consider that the velocities of the corporeal particle with mass m
has an upper bound as required by the theory of special relativity. This implies that the
velocity (2.3) is restricted to be less or equal to the speed of light, c, in absolute value.
With this on mind, we substitute (2.21b) in the velocity (2.3), and since |cn(φ|κ)| ≤ 1 and
|dn(φ|κ)| ≤ 1 [1, 5], we thus need to take mc2 ≥

√

EpEq which in turn implies a condition
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Table 3: Restrictions to the mapping between the two systems

mp > mq > m > 0 ⇐⇒
{

I3 > I2 > I1 > 0
Ii + Ij > Ik (i, j, k cyclic)

m =

√
mpmq

2
⇐⇒ 4I2

2 =
I1I3(I3 − I1)

2

(I3 − I2)(I2 − I1)

mc2 ≥
√

EpEq ⇐⇒ ω4 ≥ (2EI3 − J2)(J2 − 2EI1)
I1I3(I3 − I1)2

on the frequency ω of the harmonic oscillator given by

ω4 ≥ 1

4

(2EI3 − J2)(J2 − 2EI1)
I2
2 (I3 − I2)(I2 − I1)

=
(2EI3 − J2)(J2 − 2EI1)

I1I3(I3 − I1)2
, (4.15)

where we used the restriction (4.13) to obtain the last inequality.
We claim that all these restrictions in the parameters of both the relativistic oscillator

and the rigid body are physically well defined and consistent. The restrictions considered
on this subsection are summarised in table 3.

5 Concluding remarks

The purpose of the present work has been to show in an easy way, how Yamaleev’s approach
provides the bridge between the classical formalism of mechanics and the corresponding
extension to the relativistic domain. In spite of the historical developments, it turns out
not to be a quite extreme difficult task to provide solutions for the relativistic harmonic
oscillator when we apply Yamaleev’s formalism. The factorisation technique enable us to
describe this relativistic system by means of its internal degrees of freedom. Furthermore,
we have been able to discuss the remarkable parallelism between both solutions of the
relativistic oscillator system and the corresponding mechanical properties of the Euler’s
free asymmetric rigid body. This turns out to be not just a mere formal mathematical
curiosity, but this demonstrates that physically a relativistic oscillator like the asymmetric
top is really a three dimensional system.

We also expect that a similar map for both systems can be expected at a quantum
level, and we hope that our approach pave the way to a consistent quantum analysis of
either system. This will be worked elsewhere.
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