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Abstract

Deformations of the 3-differential of 3-differential graded algebras are controlled by
the (3, N) Maurer-Cartan equation. We find explicit formulae for the coefficients
appearing in that equation, introduce new geometric examples of N -differential graded
algebras, and use these results to study N Lie algebroids.

1 Introduction

In this work we study deformations of the N -differential of a N -differential graded algebra.
According to Kapranov [18] and Mayer [24, 25] a N -complex over a field k is a Z-graded
k-vector space V =

⊕
n∈Z

Vn together with a degree one linear map d : V −→ V such that
dN = 0. Remarkably, there are at least two generalizations of the notion of differential
graded algebras to the context of N -complexes. A choice, introduced first by Kerner in
[20, 21] and further studied by Dubois-Violette [13, 14] and Kapranov [18], is to fix a
primitive N -th root of unity q and define a q-differential graded algebra A to be a Z-
graded associative algebra together with a linear operator d : A −→ A of degree one such
that d(ab) = d(a)b + qāad(b) and dN = 0. There are several interesting examples and
constructions of q-differential graded algebras [1, 2, 6, 8, 9, 15, 16, 19, 21].

We work within the framework of N -differential graded algebras (N -dga) introduced
in [4]. This notion does not depend on the choice of a N -th primitive root of unity, and
thus it is better adapted for differential geometric applications. A N -differential graded
algebra A consist of a Z-graded associative algebra A =

⊕
n∈Z

An together with a degree
one linear map d : A −→ A such that dN = 0 and d(ab) = d(a)b + (−1)āad(b) for a, b ∈ A.
The main question regarding this definition is whether there are interesting examples of
N -differential graded algebras. Much work still needs to be done, but already a variety of
examples has been constructed in [4, 5]. These examples may be classified as follows:
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• Deformations of 2-dga into N -dga. This is the simplest and most direct way to
construct N -differential graded algebras. Take a differential graded algebra A with
differential d and consider the deformed derivation d + e where e : A −→ A is a
degree one derivation. It is possible to write down explicitly the equations that
determine under which conditions d + e is a N -differential, and thus turns A into
a N -differential graded algebra. In other words one can explicitly write down the
condition (d + e)N = 0.

• N flat connections. Let E be a vector bundle over a manifold M provided with a flat
connection ∂E . Differential forms on M with values in End(E) form a differential
graded algebra. An End(E)-valued one form T determines a deformation of this
algebra into a N -differential graded algebra with differential of the form ∂E + [T, ]
if and only if T is a N -flat connection, i.e., the curvature of T is N -nilpotent.

• Differential forms of depth N ≥ 3. Attached to each affine manifold M there is a
(dim(M)(N − 1)+ 1)-differential graded algebra ΩN (M), called the algebra of diffe-
rential forms of depth N on M , constructed as the usual differential forms allowing
higher order differentials, i.e., for affine coordinates xi on M , there are higher order
differentials djxi for 1 ≤ j ≤ N − 1.

• Deformations of N -differential graded algebras into M -differential graded algebras.
If we are given a N -differential graded algebra A with differential d, one can study
under which condition a deformed derivation d+e, where e is a degree one derivation
of A, turns A into a M -differential graded algebra, i.e., one can determine conditions
ensuring that (d + e)M = 0. In [4] we showed that e must satisfy a system of non-
linear equations, which we called the (N,M) Maurer-Cartan equation.

• Algebras AN
∞. These are not so much examples of N -differential graded algebras but

rather a homotopy generalization of such notion. AN
∞ algebras are studied in [7].

This paper has three main goals. The first one is to introduce new geometric examples of
N -differential graded algebras. We first review the constructions of N -differential graded
algebras outlined above and then proceed to consider the new examples:

• Differential forms on finitely generated simplicial sets. We construct a contravariant
functor ΩN : set∆

op

−→ N ildga from the category of simplicial sets generated in
finite dimensions to N ildga, the category of nilpotent differential graded algebras,
i.e., N -differential graded algebras for some N ≥ 1. For a simplicial set s we let ΩN (s)
be the algebra of algebraic differential forms of depth N on the algebro-geometric
realization of s. For each integer K we define functor Sing≤K : Top −→ set∆

op

, thus
we obtain contravariant functors ΩN ◦ Sing≤K : Top −→ N ildga assigning to each
topological space X a nil-differential graded algebra.

• Difference forms on finitely generated simplicial sets. We construct a contravariant
functor DN defined on set∆

op
with values in a category whose objects are graded

algebras which are also N -complexes for some N , with the N -differential satisfying a
twisted Leibnitz rule. For a simplicial set s we let DN (s) be the algebra of difference
forms of depth N on the integral lattice in the algebro-geometric realization of s.
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Again, for each integer K ≥ 0 we obtain a functor DN ◦ Sing≤K defined on Top
assigning to each topological space X a twisted nil-differential graded algebra.

Our second goal is to study the construction of N -differential graded algebras as defor-
mations of 3-differential graded algebras. Although in [4] a general theory solving this sort
of problem was proposed, our aim here is to provided a solution as explicit as possible.
We consider exact and infinitesimal deformations of 3-differentials in Section 3.

Our final goal in this work is to find applications of N -differential graded algebras
to Lie algebroids. In Section 4 we review the concept of Lie algebroids introduced by
Pradines [27], which generalizes both Lie algebras and tangent bundles of manifolds. A
Lie algebroid E may be defined as a vector bundle together with a degree one differential
d on Γ(

∧
E∗). We generalize this notion to the world of N -complexes, that is we introduce

the concept of N Lie algebroids and construct several examples of such objects.

2 Examples of N-differential graded algebras

In this section we give a brief summary of the known examples of N -dgas and introduce
new examples of N -dgas of geometric nature.

Definition 1. Let N ≥ 1 be an integer. A N -complex is a pair (A, d), where A is a
Z-graded vector space and d : A −→ A is a degree one linear map such that dN = 0.

Clearly a N -complex is also a M -complex for M ≥ N . N -complexes are also referred
to as N -differential graded vector spaces. A N -complex (A, d) such that dN−1 6= 0 is said
to be a proper N -complex. Let (A, d) be a N -complex and (B, d) be a M -complex, a
morphism f : (A, d) −→ (B, d) is a linear map f : A −→ B such that df = fd. One of the
most interesting features of N -complexes is that they carry cohomological information.
Let (A, d) be a N -complex, a ∈ Ai is p-closed if dp(a) = 0, and is p-exact if there exists
b ∈ Ai−N+p such that dN−p(b) = a, for 1 ≤ p < N . The cohomology groups of (A, d) are
the spaces

pH
i(A) = Ker{dp : Ai −→ Ai+p}/Im{dN−p : Ai−N+p −→ Ai},

for i ∈ Z and p = 1, 2, ..., N−1.

Definition 2. A N -differential graded algebra (N -dga) over a field k, is a triple (A,m, d)
where m : A ⊗ A −→ A and d : A −→ A are linear maps such that:

1. dN = 0, i.e., (A, d) is a N -complex.

2. (A,m) is a graded associative algebra.

3. d satisfies the graded Leibnitz rule d(ab) = d(a)b + (−1)āad(b).

The simplest way to obtain N -differential graded algebras is deforming differential
graded algebras. Let Der(A) be the Lie algebra of derivations on a graded algebra A.
Recall that a degree one derivation d on A, induces a degree one derivation, also denoted
by d, on End(A). Let A be a 2-dga and e ∈ Der(A). It is shown in [4] that e defines
a deformation of A into a N -differential graded algebra if and only if (d + e)N = 0, or
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equivalently, if and only if the curvature Fe = d(e) + e2 of e satisfies (Fe)
N
2 = 0 if N is

even, or (Fe)
N−1

2 (d + e) = 0 if N is odd. For example, consider the trivial bundle M ×R
n

over M . A connection on M × R
n is a gl(n)-valued one form a on M , and its curvature

is Fa = da + 1
2 [a, a]. Let Ω(M,gl(n)) be the graded algebra of gl(n)-valued forms on M .

Thus the pair (Ω(M,gl(n)), d + [a, ]) defines a N -dga if and only if (Fa)
N
2 = 0 for N

even, or (Fa)
N−1

2 (d + a) = 0 for N odd.

Differential forms of depth N on simplicial sets

Fix an integer N ≥ 3. We are going to construct the (n(N − 1) + 1)-differential graded
algebra ΩN (Rn) of algebraic differential forms of depth N on R

n. Let x1, ..., xn be coor-
dinates on R

n, and for 0 ≤ i ≤ n and 0 ≤ j < N, let djxi be a variable of degree j. We
identify d0xi with xi.

Definition 3. The (n(N − 1) + 1)-differential graded algebra ΩN (Rn) is given by

• ΩN (Rn) = R[djxi]/
〈
djxid

kxi | j, k ≥ 1
〉

as a graded algebras.

• The (n(N −1)+1)-differential d : ΩN (Rn) −→ ΩN (Rn) is given by d(djxi) = dj+1xi,
for 0 ≤ j ≤ N − 2, and d(dN−1xi) = 0.

One can show that d is (n(N − 1) + 1)-differential as follows:

1. It is easy to check that ΩN (R) is a N -dga.

2. If A is a N -dga and B is a P -dga, then A ⊗ B is a (N + P − 1)-dga.

3. ΩN (Rn) = ΩN (R)⊗n

We often write ΩN (x1, ..., xn) instead of ΩN (Rn) to indicate that a choice of affine
coordinates (x1, ..., xn) on R

n has been made.
Let ∆ be the category such that its objects are non-negative integers; morphisms in

∆(n,m) are order preserving maps f : {0, ..., n} −→ {0, ...,m}. The category of simplicial
sets Set∆

op

is the category of contravariant functors ∆ −→ Set. Explicitly, a simplicial set
s : ∆op −→ Set is a functorial correspondence assigning:

• A set sn for each integer n ≥ 0. Elements of sn are called simplices of dimension n.

• A map s(f) : sm −→ sn for each f ∈ ∆(n,m).

Let Aff be the category of affine varieties, and let A : ∆ −→ Aff be the functor
sending n ≥ 0, into A(x0, ..., xn) = ∆n = {(x0, ..., xn) ∈ R

n | x0 + ... + xn = 1}. A sends
f ∈ ∆(n,m) into A(f) : A(x0, ..., xn) → A(x0, ..., xm) given by A(f)∗(xj) =

∑
f(i)=j xi,

for 0 ≤ j ≤ m. Forms of depth N on the cosimplicial affine variety A are defined by the
functor ΩN : ∆op −→ N ildga sending n ≥ 0 into

ΩN (n) = ΩN (x0, ..., xn)/ 〈x0 + ... + xn − 1, dx0 + ... + dxn〉 .

A map f ∈ ∆(n,m) induces a morphisms ΩN (f) : ΩN(m) −→ ΩN (n) given for 0 ≤ j ≤ m
by

ΩN (f)(xj) =
∑

f(i)=j

xi and ΩN (f)(dxj) =
∑

f(i)=j

dxi.
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Let set∆
op

be the full subcategory of Set∆
op

whose objects are simplicial sets generated
in finite dimensions, i.e., simplicial sets s for which there is an integer K such that for
each p ∈ si, i ≥ K, there exists q ∈ sj, j ≤ K, with p = s(f)(q) for some f ∈ ∆(p, q). We
are ready to define the contravariant functor ΩN : set∆

op
−→ N ildga announced in the

introduction. The nil-differential graded algebra ΩN (s) =
⊕∞

i=0 Ωi
N (s) associated with s

is given by

Ωi
N (s) = {a ∈

∞∏

n=0

∏

p∈sn

Ωi
N (n) | as(f)(p) = ΩN (f)(ap) for p ∈ sm and f ∈ ∆(n,m)}.

A natural transformation l : s −→ t induces a map ΩN (l) : ΩN(t) −→ ΩN (s) given by the
rule [ΩN (l)(a)]p = al(p) for a ∈ ΩN (t) and p ∈ sn.

For each integer K ≥ 0 there is functor ( )≤K : Set∆
op

−→ set∆
op

sending a simplicial
set s, into the simplicial set s≤K generated by simplices in s of dimension lesser or equal
to K. The singular functor Sing : Top −→ Set∆

op

sends a topological space X into the
simplicial set Sing(X) such that

Singn(X) = {f : ∆n −→ X | f is continous }.

Thus, for each pair of integers N and K we have constructed a functor

ΩN ◦ ( )≤K ◦ Sing : Top −→ N ildga

sending a topological space X into the nil-differential graded algebra ΩN (Sing≤K(X)).

Difference forms of depth N on simplicial sets

Next we construct difference forms of higher depth on finitely generated simplicial sets.
Difference forms on discrete affine space were introduced by Zeilberger in [28]. We proceed
to construct a discrete analogue of the functors from topological spaces to nil-differential
graded algebras introduced above. First, we construct DN (Zn) the algebra of difference
forms of depth N on Z

n. Let F (Zn, R) be the algebra concentrated in degree zero of R-
valued functions on the lattice Z

n. Introduce variables δjmi of degree j for 1 ≤ i ≤ n and
1 ≤ j < N . The graded algebra of difference forms of depth N on Z

n is given by

DN (Zn) = F (Zn, R) ⊗ R[δjmi]/
〈
δjmiδ

kmi | j, k ≥ 1
〉

.

A form ω ∈ DN (Zn) can be written as ω =
∑

I ωIdmI where I : {1, .., n} −→ N is any
map and dmI =

∏n
i=1 dI(i)mi. The degree of dmI is |I| =

∑n
i=1 I(i). The finite difference

∆i(g) of g ∈ F (Zn, R) along the i-direction is given by

∆i(g)(m) = g(m + ei) − g(m),

where the vectors ei are the canonical generators of Z
n and m ∈ Z

n. The difference
operator δ is defined for 1 ≤ j ≤ N − 2 by the rules

δ(g) =
n∑

i=1

∆i(g)δmi, δ(δjmi) = δj+1mi and δ(δN−1mi) = 0.
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It is not difficult to check that if ω =
∑

I ωIdmI , then δω =
∑

J(δω)JdmJ where

(δω)J =
∑

J(i)=1

(−1)|J<i|∆iωJ−ei
+
∑

J(i)≥2

(−1)|J<i|ωJ−ei
.

From the later formula we see that (δω)J is a linear combination of (differences of) func-
tions ωK with |K| < |J |. This fact implies that δ is nilpotent, indeed, one can check that
δn(N−1)+1 = 0. All together we have proved the following result.

Theorem 1. DN (Zn) is a graded algebra and the difference operator δ gives DN (Zn) the
structure of a (n(N − 1) + 1)-complex.

One can check that δ satisfies a twisted Leibnitz rule, so DN (Zn) is actually pretty
close of being a N -dga. Let Z

n,1 ⊆ Z
n+1 consists of tuples (m0, ...,mn) such that

m0 + ... + mn = 1. Consider the functor DN defined on ∆op sending n ≥ 0 into

DN (n) = F (Zn,1, R) ⊗
〈
δjmiδ

kmi, δm0 + ... + δmn

〉
.

A map f ∈ ∆(n, k) induces a morphisms DN (f) : DN (k) −→ DN (n) given for g ∈
F (Zk,1, R) and 0 ≤ j ≤ k by

DN (f)(g)(m0, ...,mn) = g




∑

f(i)=0

mi, ...,
∑

f(i)=k

mi



 and DN (f)(δmj) =
∑

f(i)=j

δmi.

We extend DN to the functor defined on set∆
op

sending a finitely generated simplicial set
s into DN (s) =

⊕∞
i=0 Di

N (s) where

Di
N (s) =

{

a ∈
∞∏

n=0

∏

p∈sn

Di
N (n) | as(f)(p) = DN (f)(ap) for p ∈ sk and f ∈ ∆(n, k)

}

.

A natural transformation l : s −→ t induces a map ΩN (l) : ΩN (t) −→ ΩN(s) by the
rule [DN (l)(a)]p = al(p) for a ∈ DN (t) and p ∈ sn. Thus for given integers N and K we
have constructed a functor DN ◦( )≤K ◦Sing on Top sending a topological space X into a
sort of nil-differential graded algebra satisfying a twisted Leibnitz rule DN (Sing≤K(X)) .
It would be interesting to compute the cohomology groups of the algebra of difference
forms of higher depth on known simplicial sets. Even in the case of forms of depth 2 these
groups have seldom been studied.

3 On the (3,N) curvature

Recall that a discrete quantum mechanical system is given by the following data:

1. A directed graph with set of vertices V and set of directed edges E. The Hilbert
space of the system is H = C

V .

2. A map ω : E −→ R assigning a weight to each edge.
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3. Operators Un : H −→ H for n ∈ N given by (Unf)(y) =
∑

x∈VΓ
ωn(y, x)f(x) where

the discretized kernel ωn(y, x) is given by

ωn(y, x) =
∑

γ∈Pn(x,y)

∏

e∈γ

ω(e).

Pn(x, y) denotes the set of paths in Γ from x to y of length n, i.e., sequences
(e1, · · · , en) of edges such that s(e1) = x, t(ei) = s(ei+1), for i = 1, ..., n − 1 and
t(en) = y.

Let us introduce some notation. For s = (s1, ..., sn) ∈ N
n we set l(s) = n and

|s| =
∑

i si. For 1 < i ≤ n we set s<i = (s1, ..., si−1); also we set s>n = s<1 = ∅.

N
(∞) is equal to

⊔(∞)
n=0 N

n where by convention N
(0) = {∅}. Let A be a 3-dga and e be a

degree one derivation on A. For s ∈ N
n we let e(s) = e(s1) · · · e(sn), where e(l) = dl(e) if

l ≥ 1, e(0) = e and e∅ = 1. For N ∈ N, we set EN =
{
s ∈ N

(∞) | s 6= ∅ and |s| + l(s) ≤ N
}

and for s ∈ EN we let N(s) ∈ Z be given by N(s) = N − |s| − l(s).
The following data defines a discrete quantum mechanical system:

1. The set of vertices is N
(∞).

2. There is a unique directed edge from s to t if and only if t ∈ {(0, s), s, (s + ei)},
where ei ∈ N

l(s) are the canonical vectors.

3. Edges are weighted according to the table:

source target weight

s (0, s) 1

s s (−1)|s|+l(s)

s (s + ei) (−1)|s<i|+i−1

PN (∅, s) consists of paths γ = (e1, ..., eN ), such that s(e1) = ∅, t(eN ) = s and s(el+1) =
t(el). The weight ω(γ) of a path γ ∈ PN (∅, s) is given by ω(γ) =

∏N
i=1 ω(ei). The following

result, proved in [4], tell us when d + e defines a deformation of a 3-dga into a N -dga.

Theorem 2. d + e defines a deformation of the 3-dga A into a N -dga if and only if the
(3, N) Maurer-Cartan equation holds co + c1d + c2d

2 = 0, where for 0 ≤ k ≤ 2 we set

ck =
∑

s∈EN

N(s)=k
si<3

c(s,N)e(s) and c(s,N) =
∑

γ∈PN (∅,s)

ω(γ).

Exact deformations

Let us first consider the deformation of a 3-dga into a 3-dga. According to Theorem 2 the
derivation d + e defines a 3-dga if and only if co + c1d + c2d

2 = 0 where

ck =
∑

s∈E3
N(s)=k

si<3

c(s, 3)e(s) and c(s, 3) =
∑

γ∈P3(∅,s)

ω(γ).
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Let us compute the coefficients ck. We have that

E3 = {∅, (0), (1), (2), (0, 0), (1, 0), (0, 1), (0, 0, 0)} .

Let us first compute c0. There are four vectors s in E3 such that N(s) = 0, these are
(2), (1, 0), (0, 1) and (0, 0, 0). The only path from ∅ to (2) of length 3 is

∅ −→ (0) −→ (1) −→ (2)

of weight 1. Since e(2) = d2(e), then we have that c((2), 3) = d2(e). The unique path from
∅ to (1, 0) of length 3 is

∅ −→ (0) −→ (0, 0) −→ (1, 0)

of weight 1. Since e(1,0) = d(e)e we have that c((1, 0), 3) = d(e)e. There are two paths
from ∅ to (0, 1) of length 3, namely

∅ −→ (0) −→ (0, 0) −→ (0, 1)

∅ −→ (0) −→ (1) −→ (0, 1)

of weight −1 and 1, respectively. Thus c((1, 0), 3) = 0 since the sum of the weights
vanishes. The unique path from ∅ to (0, 0, 0) of length 3 is

∅ −→ (0) −→ (0, 0) −→ (0, 0, 0)

of weight 1. Since e(0,0,0) = e3, then c((0, 0, 0), 3) = e3. Thus we have shown that

c0 = d2(e) + d(e)e + e3.

We proceed to compute c1. The vectors in E3 such that N(s) = 1 are (1) and (0, 0).
Paths from ∅ to (1) of length 3 are

∅ −→ ∅ −→ (0) −→ (1)

∅ −→ (0) −→ (0) −→ (1)

∅ −→ (0) −→ (1) −→ (1)

of weight 1, −1 and 1, respectively. Since e(1) = d(e), then c((1), 3) = d(e). Paths from ∅
to (0, 0) of length 3 are

∅ −→ (0) −→ (0) −→ (0, 0)

∅ −→ ∅ −→ (0) −→ (0, 0)

∅ −→ (0) −→ (0, 0) −→ (0, 0).

The corresponding weights are, respectively, −1, 1 and 1. We have that e(0,0) = e2,
thus c((0, 0), 3) = e2 and c1 = d(e) + e2.

Finally we compute c2. (0) is the only vector in E3 such that N(s) = 2. The paths
from ∅ to (0) of length 3 are

∅ −→ ∅ −→ ∅ −→ (0)
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∅ −→ ∅ −→ (0) −→ (0)

∅ −→ (0) −→ (0) −→ (0).

The corresponding weights are, respectively, 1, −1 and 1. Since e(0) = e, then we have
that c2 = c((0), 3) = e. Altogether we have proven the following result.

Theorem 3. d + e defines a deformation of the 3-dga A into a 3-dga if and only if

(d2(e) + d(e)e + e3) + (d(e) + e2)d + ed2 = 0.

Consider now deformations of a 3-dga into a 4-dga. Again by Theorem 2 we must have
c0 + c1d + c2d

2 = 0. We proceed to compute the coefficients ck. We have that

E4 = {∅, (0), (1), (2), (0, 0), (1, 0), (0, 1), (2, 0), (0, 2), (1, 1),

(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 0, 0)}.

(0) is the only vector in E4 such that N(s) = 3. Paths of length 4 from ∅ to (0) are of
the form ∅ → · · · → ∅︸ ︷︷ ︸

i

→ (0) → · · · → (0)︸ ︷︷ ︸
j

with weight (−1)j , where i+ j = 3, thus we have

that c3 = (1 − 1 + 1 − 1)e = 0.
We compute c2. Vectors in E4 with N(s) = 2 are (0, 0) and (1). Paths from ∅ to (0, 0) of

length 2 are of the form ∅ → · · · → ∅︸ ︷︷ ︸
i

→ (0) → · · · → (0)︸ ︷︷ ︸
j

→ (0, 0) → · · · → (0, 0)︸ ︷︷ ︸
k

of weight

∑
i+j+k=2(−1)j = 2, thus c((0, 0), 4)e(0,0) = 2e2. Paths from ∅ to (1) of length 2 are of the

form ∅ → · · · → ∅︸ ︷︷ ︸
i

→ (0) → · · · → (0)︸ ︷︷ ︸
j

→ (1) → · · · → (1)︸ ︷︷ ︸
k

with weight
∑

i+j+k=2(−1)j = 2,

thus c((1), 4)e(1) = 2d(e) and c2 = 2(e2 + d(e)).
Let us now compute c1. Vectors in E4 with N(s) = 1 are (0, 0, 0), (1, 0), (0, 1) and (2).

Paths from ∅ to (0, 0, 0) are of 5 types. Paths of the form

∅ → · · · → ∅︸ ︷︷ ︸
i

→ (0) → · · · → (0)︸ ︷︷ ︸
j

→ (0, 0) → · · · → (0, 0)︸ ︷︷ ︸
k

→ (0, 0, 0) → · · · → (0, 0, 0)︸ ︷︷ ︸
l

with weight
∑

i+j+k+l=1(−1)j(−1)l, so that c((0, 0, 0), 4)e(0,0,0) = (1 − 1 + 1 − 1)e3 = 0.
Paths of the form

∅ → · · · → ∅︸ ︷︷ ︸
i

→ (0) → · · · → (0)︸ ︷︷ ︸
j

→ (1) → · · · → (1)︸ ︷︷ ︸
k

→ (0, 1) → · · · → (0, 1)︸ ︷︷ ︸
l

with weight

∑

i+j+k+l=1

(−1)j(−1)l = 1 − 1 + 1 − 1 = 0 .

Path of the form

∅ → · · · → ∅︸ ︷︷ ︸
i

→ (0) → · · · → (0)︸ ︷︷ ︸
j

→ (0, 0) → · · · → (0, 0)︸ ︷︷ ︸
k

→ (0, 1) → · · · → (0, 1)︸ ︷︷ ︸
l
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of weight
∑

i+j+k+l=1(−1)j(−1)(−1)l so that

c((0, 1), 4)e(0,1) = ((1 − 1 + 1 − 1) + (1 − 1 + 1 − 1))ed(e) = 0.

Paths of the form

∅ → · · · → ∅︸ ︷︷ ︸
i

→ (0) → · · · → (0)︸ ︷︷ ︸
j

→ (0, 0) → · · · → (0, 0)︸ ︷︷ ︸
k

→
l

(1, 0) → · · · → (1, 0)︸ ︷︷ ︸

of weight
∑

i+j+k+l=1(−1)j(−1)l, thus c((1, 0), 4)e(1,0) = (1 − 1 + 1 − 1)d(e)e = 0. There
are also paths of the form

∅ → · · · → ∅︸ ︷︷ ︸
i

→ (0) → · · · → (0)︸ ︷︷ ︸
j

→ (1) → · · · → (1)︸ ︷︷ ︸
k

→ (2) → · · · → (2)︸ ︷︷ ︸
l

of weight
∑

i+j+k+l=1(−1)j(−1)l, so we have c((2), 4)e(2) = (1 − 1 + 1 − 1)d2(e) = 0. We
have shown that

c1 = c((0, 0, 0), 4)e(0,0,0) + c((0, 1), 4)e(0,1) + c((1, 0), 4)e(1,0) + c((2), 4)e(2) = 0.

Let us compute c0. There are several types of paths in this case. Path

∅ −→ (0) −→ (0, 0) −→ (0, 0, 0) −→ (0, 0, 0, 0)

of weight 1, thus cq((0, 0, 0, 0), 4)a
(0,0,0,0) = a4. Paths

∅ −→ (0) −→ (0, 0) −→ (0, 0, 0) −→ (0, 0, 1)

∅ −→ (0) −→ (1) −→ (0, 1) −→ (0, 0, 1)

∅ −→ (0) −→ (0, 0) −→ (0, 1) −→ (0, 0, 1)

of weight 1, thus we have that c((0, 0, 1), 4)e(0,0,1) = e2d(e). Paths

∅ −→ (0) −→ (0, 0) −→ (1, 0) −→ (0, 1, 0)

∅ −→ (0) −→ (0, 0) −→ (0, 0, 0) −→ (0, 1, 0)

of weight 0, thus c((0, 1, 0), 4)e(0,1,0) = 0ad(a)a = 0. Path

∅ −→ (0) −→ (0, 0) −→ (0, 0, 0) −→ (1, 0, 0)

of weight 1, thus c((1, 0, 0), 4)e(1,0,0) = d(e)e2. Path

∅ −→ (0) −→ (0, 0) −→ (1, 0) −→ (2, 0)

of weight 1, so c((2, 0), 4)e(2,0) = d2(e)e. Paths

∅ −→ (0) −→ (0, 0) −→ (0, 1) −→ (0, 2)

∅ −→ (0) −→ (1) −→ (0, 1) −→ (0, 2)
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∅ −→ (0) −→ (1) −→ (2) −→ (0, 2)

of weight 1, so that c((0, 2), 4)e(0,2) = ed2(e). There are also paths

∅ −→ (0) −→ (0, 0) −→ (1, 0) −→ (1, 1)

∅ −→ (0) −→ (1) −→ (0, 1) −→ (1, 1)

of weight 2, so that c((1, 1), 4)e(1,1) = (d(e))2. We see that

c0 = e4 + e2d(e) + d(e)e2 + d2(e)e + ed2(e) + (d(e))2.

All together we have shown the following result.

Theorem 4. d + e defines a deformation of the 3-dga A into a 4-dga if and only if

(e4 + e2d(e) + d(e)e2 + d2(e)e + ed2(e) + (d(e))2) + 2(e2 + d(e))d2 = 0.

Infinitesimal deformations

Let t be a formal parameter such that t2 = 0.

Theorem 5. Let (A, d) be a N -dga and e a degree one derivation on A, then we have

(d + te)N = t

N−1∑

k=0




∑

p∈Par(k,N−k+1)

(−1)w(p)



 dN−k−1(e)dN−k−1,

where

Par(k,N −k+1) = {p = (p1, · · · , pN−k+1) |
N−k+1∑

i=1

pi = k} and w(p) =

N−k+1∑

i=1

(i−1)pi.

Proof. From Theorem 2 we know that DN =
∑N−1

k=0 ckd
k. Since t2 = 0, then

(te)(s) = (te)(s1) · · · (te)(sl(s)) = tl(s)e(s) = 0

unless l(s) ≤ 1. On the other hand we have that

EN = {(0), (1), · · · , (N − 1)}.

Suppose that l(s) = 1 and N(s) = N − |s| − l(s) = k, thus |s| = N − k − 1. The unique
vector s in EN of length 1 such that |s| = N − k − 1 is s = (N − k − 1). Therefore

ck =
∑

s∈EN

N(s)=k
si<M

c(s,N)e(s) = c((N − k − 1), N)e(s) = c((N − k − 1), N)dN−k−1(e).

A path from ∅ to (N − k − 1) of length N must be of the form

∅→ · · · →︸ ︷︷ ︸
p1

∅ → (0)→ · · · →︸ ︷︷ ︸
p2

(0) → (1)→ · · · →︸ ︷︷ ︸
p3

(1) → · · · → (N−k−1)→ · · · →︸ ︷︷ ︸
pN−k+1

(N−k−1)
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with (p1 +1)+(p1 +1)+ · · ·+(pN−k +1)+pN−k+1 = N , i.e.,
∑N−k+1

i=1 pi = k. The weight
of such path is

(−1)0p1(−1)(2−1)p2(−1)(3−1)p2 ...(−1)(N−k)pN−k+1 = (−1)w(p), thus we get that

c((N − k − 1), N) =
∑

γ∈PN (∅,s)

ω(γ) =
∑

p∈Par(k,N−k+1)

(−1)w(p).

�

Corollary 1. e defines an infinitesimal deformation of the N -dga (A, d) into the N -dga
(A, d + e) if and only if

N−1∑

k=0




∑

p∈Par(k,N−k+1)

(−1)w(p)



 dN−k−1(e)dN−k−1 = 0. (3.1)

4 N Lie algebroids

In this section we introduce the notion of N Lie algebroids and construct examples of such
structures. We first review the notion of Lie algebroids, provide some examples, and write
the definition of Lie algebroids in a convenient way for our purposes.

Lie algebroids

We review basic ideas around the notion of Lie algebroids; the interested reader will
find much more information in [12, 23, 27]. The notion of Lie algebroids has gained much
attention in the last few years because of its interplay with various branches of mathematics
and theoretical physics, see [10, 11, 17]. We center our attention on the basic definitions
and constructions of Lie algebroids and its relation with graded manifolds and differential
graded algebras.

Definition 4. A Lie algebroid is a vector bundle π : E −→ M together with:

• A Lie bracket [ , ] on the space Γ(E) of sections of E.

• A vector bundle map ρ : E −→ TM over the identity, called the anchor, such that
the induced map ρ : Γ(E) −→ Γ(TM) is a Lie algebra morphism.

• The identity [v, fw] = f [v,w] + (ρ(v)f)w must hold for sections v,w of E and f a
smooth function on M .

Let (x1, ..., xn) be coordinates on a local chart U ⊂ M , and let {eα | α = 1, . . . , r}
be a basis of local sections of π : E|U −→ U . Local coordinates on E|U are given by
(xi, yα). Locally the Lie bracket and the anchor are given by [eα, eβ ]E = Cγ

αβ eγ and

ρ(eα) = ρi
α

∂
∂xi , respectively. The smooth functions Cγ

αβ , ρi
α are the structural functions

of the Lie algebroid. The condition for ρ to be a Lie algebra homomorphism is written in
local coordinates as

ρj
α

∂ρi
β

∂xj
− ρj

β

∂ρi
α

∂xj
= ρi

γ Cγ
α β.
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The other compatibility condition between ρ and [ , ] is given by

∑

cycl(α,β,γ)

(
ρi

α

∂Cµ
β γ

∂xi
+ Cµ

α ν Cν
β γ

)
= 0,

where the sum is over indices α, β, γ such that the map 1, 2, 3 −→ α, β, γ is a cyclic
permutation. The simplest examples of Lie algebroids are described below; the reader will
find further examples in the references listed at the beginning of this section.

Example. A finite dimensional Lie algebra g may be regarded as a vector bundle over a
single point. Sections are elements of g, the Lie bracket is that of g, and the anchor map
is identically zero. The structural functions Cγ

αβ are the structural constants cγ
αβ of g and

ρi
α = 0.

Example. The tangent bundle π : TM −→ M with anchor the identity map ITB on TB
and with the usual bracket on vector fields.

Exterior differential algebra of Lie algebroids

Sections Γ(
∧

E) of a Lie algebroid E play the role of vector fields on a manifold and are
called E vector fields. Sections of the dual bundle π : E∗ −→ M are called E 1-forms.
Similarly sections Γ(

∧
E∗) of

∧
E∗ are called E forms. The degree of a E form in Γ(

∧k E∗)
is k. Let us state and sketch the proof of a result of fundamental importance for the rest
of this work.

Theorem 6. Let E be a vector bundle. E is a Lie algebroid if and only if Γ(
∧

E∗) is a
differential graded algebra. A differential on

∧
E∗ is the same as a degree one vector field

v on E[−1] such that v2 = 0.

Above E[−1] denotes the graded manifold whose underlying space is E with fibers
placed in degree one. If E is a Lie algebroid one defines a differential

d : Γ(∧kE∗) −→ Γ(∧k+1E∗)

as follows:

dθ(v1, . . . , vk+1) =
∑

i

(−1)i+1ρ(vi)θ(v1, . . . , v̂i, . . . , vk+1)

+
∑

i<j

(−1)i+jθ([vi, vj ], v1, . . . , v̂i, . . . , v̂j , . . . vk+1),

for v1, . . . , vk+1 ∈ Γ(E). The axioms for a Lie algebroid imply that:

1. d2 = 0;

2. If f ∈ C∞(M) and v ∈ Γ(E), then 〈df, v〉 = ρ(v)f ;

3. d is a derivation of degree 1, i.e., d(θ ∧ ζ) = dθ ∧ ζ + (−1)θθ ∧ ζ.
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Conversely, assume that d is a degree one derivation on Γ(
∧

E∗) satisfying d2 = 0.
Then E is a Lie algebroid with the structural maps ρ and [ , ] given by

ρ(v)f = df(v)

θ([v,w]) = ρ(v)θ(w) − ρ(w)θ(v) − dθ(v,w),

for v,w ∈ Γ(E), f ∈ C∞(M) and θ ∈ Γ(
∧1 E). In local coordinates d is determined by

dxi = ρi
α eα and deγ = Cγ

αβ eα ∧ eβ ,

where {eα | α = 1, . . . , r} is the dual basis of {eα | α = 1, . . . , r}. It is not hard to see that
the conditions d2xi = 0 and d2eα = 0 are equivalent to the structural equations defining
a Lie algebroid. Let us compute the exterior algebra of a few Lie algebroids.

Example. To the trivial Lie algebroid structure on a vector bundle E corresponds to the
exterior algebra

∧
E∗ with vanishing differential.

Example. Chevalley-Eilenberg differential on
∧

g
∗ arises from the Lie algebroid g −→ {•}

of Example 4. The Chevalley-Eilenberg differential d takes the form

dθ(v1, . . . , vk+1) =
∑

i<j

(−1)i+jθ([vi, vj ], v1, . . . , v̂i, . . . , v̂j , . . . vk+1),

for vi ∈ g and θ ∈
∧

g
∗.

Example. The differential associated with the tangent bundle TM −→ M Lie algebroid
is de Rham differential.

N Lie algebroids

We are ready to introduce the main concept of this section. In the light of Theorem 6 it
is rather natural to define a N Lie algebroid as a vector bundle E together with a degree
one N -nilpotent vector field v on the graded manifold E[−1]. That definition, useful as
it might be, rules out some significant examples that we would not like to exclude, thus,
we prefer the more inclusive definition given below. Though not strictly necessary for our
definition of N Lie algebroids, the study of nilpotent vector fields on graded manifolds is
of independent interest, and we shall say a few words about them. Indeed our next result
gives an explicit formula for the N -th power of a graded vector field.

Let x1, ..., xm be local coordinates on a graded manifold and ∂1, ..., ∂m be the correspon-
ding vector fields. We recall that if xi is a variable of degree xi, then ∂i is of degree −xi,
and dxi is of degree xi + 1. Let a1, ..., am be functions of homogeneous degree depending
on x1, ..., xm. For L a linearly ordered set and f : L −→ [m] a map we define

f =
∑

i∈L

f(i) and ∂f =
∏

i∈L

∂f(i).

Also we define the sign s(f) by the rule

∂f = s(f)∂
|f−1(1)|
1 ... ∂|f−1(m)|

m .

Let p : N −→ Z2 be the map such that p(n) is 1 if n is even and −1 otherwise. Using
induction on N one can show that:
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Theorem 7.

(ai∂i)
N =

∑
s(f, α)(

N∏

i=1

∂f |
α−1(i)

af(i))∂f |
α−1(N+1)⊔N

,

where the sum runs over f : [N ] −→ [m] and α : [N − 1] −→ [2, N + 1] such that α(i) > i.
The sign s(f, α) is given by

s(f, α) = p(

N−1∑

s=1

∑

s<j<α(s)

xsa
f(j) + xsf |α−1(j)∩[s+1,N−1] ).

Corollary 2.

(ai∂i)
N =

∑

I

cI∂I ,

where I : [m] −→ N is such that 1 ≤ |I| := I(1) + ... + I(N) ≤ N , ∂I =
∏m

i=1 ∂
I(i)
i , and

cI =
∑

S(f, α)

N∏

i=1

(∂f(α−1(i))a
f(i))

where the sum runs over maps α : [N − 1] −→ [2, N + 1] with α(i) > i for i ∈ [N − 1], and
f : [N ] −→ [m] such that |{j ∈ α−1(N + 1) ⊔ {N} | f(j) = i}| = I(i), for i ∈ [m]. The
sign S(f, α) is given by

S(f, α) = s(f, α)s(f |α−1(N+1)⊔{N}) .

Corollary 3. (ai∂i)
N = 0 if and only if cI = 0 for I as above.

For example for N = 2 one gets

(ai∂i)
2 =

∑

i,j

p(xiaj)aiaj∂i∂j + ai∂i(aj)∂j .

For N = 3 we get that

(ai∂i)
3 =

∑

i,j,k

ai∂i(aj)∂j(ak)∂k + p(xiaj)aiaj∂i∂j(ak)∂k

+ p(xiak)aiaj∂j(ak)∂i∂k + p(xjak)ai∂i(aj)ak∂j∂k

+ xiaj)aiaj∂i(ak)∂j∂k + p(xjak + xiaj + xiak)aiajak∂i∂j∂k.

For N = 4 the corresponding expression have 24 terms and we won’t spell it out.
We return to the problem of defining N Lie algebroids. We need some general remarks

on differential operators on associative algebras. Given an associative algebra A we let
DO(A) be the algebra of differential operators on A, i.e., the subalgebra of End(A) gene-
rated by A ⊂ End(A) and Der(A) ⊂ End(A), the space of derivations of A. Thus DO(A)
is generated as a vector space by operators of the form x1 ◦ x2 ◦ · · · ◦ xn ∈ End(A) where
xi is in A ⊔ Der(A). Notice that DO(A) admits a natural filtration

∅ = DO≤−1(A) ⊆ DO≤0(A) ⊆ DO≤1(A) ⊆ · · · ⊆ DO≤k(A) ⊆ · · · ⊆ DO(A),
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where DO≤k(A) ⊆ DO(A) is the subspace generated by operators x1 ◦ x2 ◦ · · · ◦ xn, where
at most k operators among the xi belong to Der(A). Thus DO(A) admits the following
decomposition as graded vector space

DO(A) =
∞⊕

k=0

DOk(A) :=
∞⊕

k=0

DO≤k(A)/DO≤k−1(A).

Clearly DO0(A) = A and if A is either commutative or graded commutative, then

DO1(A) = Der(A).

The projection map π1 : DO(A) −→ DO1(A) induces a non-associative product

⋄ : DO1(A) ⊗ DO1(A) −→ DO1(A)

given by s ⋄ t = π1(s ◦ t) for s, t ∈ DO1(A). In particular if A is commutative or graded
commutative we obtain a non-associative product

⋄ : Der(A) ⊗ Der(A) −→ Der(A).

To avoid unnecessary use of parenthesis we assume that in the iterated applications of ⋄
we associate in the minimal form from right to left.

Definition 5. A N Lie algebroid is a vector bundle E together with a degree one derivation
d : Γ(

∧
E∗) −→ Γ(

∧
E∗), such that the result of N ⋄-compositions of d with itself vanishes,

i.e., d ⋄ d ⋄ · · · ⋄ d = 0.

The notions of Lie algebroids and 2 Lie algebroids agree; indeed it is easy to check that
d ◦ d = d ⋄ d for any degree one derivation d : Γ(

∧
E∗) −→ Γ(

∧
E∗). Let us now illustrate

with an example the difference between the condition d ◦ d ◦ · · · ◦ d = 0 and the much
weaker condition d⋄d⋄· · ·⋄d = 0. Let C[x1, ..., xn] be the free graded algebra generated by
graded variables xi for 1 ≤ i ≤ n. A derivation on C[x1, ..., xn] is a vector field ∂ =

∑
ai∂i

where ai ∈ C[x1, ..., xn]. The condition ∂N = 0 is rather strong and restrictive, it might
be tackled with the methods provided above. In contrast, the condition ∂ ⋄ ∂ ⋄ · · · ⋄ ∂ = 0
is much simpler and indeed it is equivalent to the condition ∂N (xi) = 0 for 1 ≤ i ≤ n.

Definition 6. A N Lie algebra is a vector space g together with a degree one derivation
d on

∧
g
∗ such that the N -th ⋄-composition of d with itself vanishes.

Our next result characterizes 3 Lie algebras in more familiar terms. For integers
k1, k2, ..., kl such that k1 + k2 + · · ·+ kl = n, we let Sh(k1, k2, · · · , kl) be the set of permu-
tations

σ : {1, · · · , n} −→ {1, · · · , n}

such that σ is increasing on the intervals [ki + 1, ki+1] for 0 ≤ i ≤ l, k0 = 1 and kl+1 = n.
Assume we are given a map [ , ] :

∧2
g −→ g.

Theorem 8. The pair (g, [ , ]) is a 3 Lie algebra if and only if for v1, v2, v3, v4 ∈ g we
have

∑

σ∈Sh(2,1,1)

sgn(σ)[[[vσ(1) , vσ(2)], vσ(3)]vσ(4)] =
∑

σ∈Sh(2,2)

sgn(σ)[[vσ(1) , vσ(2)], [vσ(3), vσ(4)]],
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Proof. One can show that a degree one differential on
∧

g
∗ is necessarily the Chevalley-

Eilenberg operator

dθ(v1, . . . , vn+1) =
∑

i<j

(−1)i+jθ([vi, vj ], v1, . . . , v̂i, . . . , v̂j , . . . vn+1) ,

where [ , ] :
∧2

g −→ g is an antisymmetric operator. We remark that we are not
assuming, at this point, that the bracket [ , ] satisfies any further identity. Jacobi
identity arises when the square of d is set to be equal to zero, but do not do that since we
want to investigate the weaker condition that the third ⋄-power of d be equal to zero. For
θ ∈

∧1
g
∗ = g

∗ the Chevalley-Eilenberg operator takes the simple form

dθ(v1, v2) = −θ([v1, v2]).

Moreover a further application of d to dθ yields

d2θ(v1, v2, v3) =
∑

σ∈Sh(2,1)

sgn(σ)θ([[vσ(1), vσ(2)], vσ(3)]).

From the last equation it is evident that Jacobi identity is equivalent to the condition
d2 = 0. We do not assume that Jacobi identity holds and proceed to compute the third
⋄-power of d. We obtain that

d ⋄ d ⋄ dθ(v1, v2, v3, v4) =
∑

σ∈Sh(2,1,1)

sgn(σ)θ([[[vσ(1), vσ(2)], vσ(3)]vσ(4)])

−
∑

σ∈Sh(2,2)

sgn(σ)θ([[vσ(1), vσ(2)], [vσ(3), vσ(4)]]).

Thus d⋄d⋄d = 0 if and only if the condition from the statement of the Theorem holds. �

Using local coordinates θ1, ..., θm on the graded manifold g[−1], it is not hard to show
that a vector field of degree one on g[−1] can be written as

∂ =
1

2
Cγ

α βθαθβ ∂

∂θγ

where the constants Cγ
α β may be identified with the structural constants of [ , ]. The

square of the vector field ∂ is given by

∂2 =

(
1

2
Cγ

α βθαθβ ∂

∂θγ

)(
1

2
Cσ

δ εθ
δθε ∂

∂θσ

)

=
1

4
Cγ

α βCσ
γ εθ

αθβθε ∂

∂θσ
−

1

4
Cγ

α βCσ
δ γθαθβθδ ∂

∂θσ
+

1

2
Cγ

α βθαθβCσ
δ εθ

δθε ∂

∂θγ

∂

∂θσ
.

Using the antisymmetry properties of Cγ
α β and the commutation rules for θα one can write

together the first to terms. We find that

∂ ⋄ ∂ =
1

2
Cγ

α βCσ
γ εθ

αθβθε ∂

∂θσ
.
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The condition ∂ ⋄ ∂ = 0 is equivalent to Jacobi identity. We assume that ∂ ⋄ ∂ 6= 0 and
proceed to compute consider the condition ∂ ⋄ ∂ ⋄ ∂ = 0. We have that

∂ ◦ (∂ ⋄ ∂) =

(
1

2
Cν

λ µθλθµ ∂

∂θν

)(
1

2
Cγ

α βCσ
γ εθ

αθβθε ∂

∂θσ

)
.

Using carefully the properties of Cγ
α β and θα we find that

∂ ◦ (∂ ⋄ ∂) =
1

2
Cν

λ µCγ
ν βCσ

γ εθ
λθµθβθε ∂

∂θσ

+
1

4
Cν

λ µCγ
α,βCσ

γ νθλθµθαθβ ∂

∂θσ

+
1

4
Cν

λ µCγ
α βCσ

γ εθ
λθµθαθβθε ∂

∂θν

∂

∂θσ
.

Therefore we have shown that

∂ ⋄ (∂ ⋄ ∂) =

(
1

2
Cν

λ µCγ
ν βCσ

γ ǫ −
1

4
Cγ

λµCσ
γαCα

βǫ

)
θλθµθβθε ∂

∂θσ
.

Thus the condition ∂ ⋄ (∂ ⋄ ∂) = 0 is equivalent to the following equations for fixed σ:

∑

λ,µ,β,ε

(
1

2
Cν

λ µCγ
ν βCσ

γ ǫ −
1

4
Cγ

λµCσ
γαCα

βǫ

)
θλθµθβθε = 0 .

Let us now go back to the case of Lie algebroids as opposed to Lie algebras. There
is a natural degree one vector field on the graded manifold T[−1]R

n, namely, de Rham
differential. We now investigate whether it is possible to deform, infinitesimally, de Rham
differential into a 3-differential. In local coordinates (x1, . . . , xn, θ1, . . . , θn) on T[−1]R

n,
with xi of degree zero and θi of degree 1, de Rham operator takes the form

∂ = δi
αθα ∂

∂xi
.

Let t be a formal infinitesimal parameter such that t2 = 0. We are going to show that
any set of functions ai

α of degree zero on T[−1]R
n determine a deformation of de Rham

operator into a 3-⋄ nilpotent operator given by

∂a =
(
δi
α + tai

α

)
θα ∂

∂xi
.

Theorem 9. ∂a ⋄ ∂a = t
∂aj

β

∂xα
θα θβ ∂

∂xj
and ∂a ⋄ (∂a ⋄ ∂a) = 0.

Proof.

∂2
a =

(
δi
α + tai

α

)
θα ∂

∂xj

(
δj
β + taj

β

)
θβ ∂

∂xj

= t
∂aj

β

∂xα
θα θβ ∂

∂xj
+ t
(
ai

αδj
β

)
θα θβ ∂

∂xi

∂

∂xj
+ t2

(

ai
α

∂aj
β

∂xi

)

θα θβ ∂

∂xj
.
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Since t2 = 0 the third term on the right hand side of the expression above vanishes. The
second term also vanishes because it is a contraction of even and odd indices. So we get
that

∂a ⋄ ∂a = t
∂aj

β

∂xα
θα θβ ∂

∂xj
.

The third power of ∂a is given by

∂a ⋄ (∂a ⋄ ∂a) = t
∂2aj

β

∂xγ∂xα
θγ θα θβ ∂

∂xj
= 0.

It also vanishes because it includes a contraction of even and odd indices. �

The nilpotency condition for the operator ∂a ⋄ ∂a is
∂aj

β

∂xα
θα θβ = 0 for j = 1, . . . , n. It

is not hard to find examples of matrices aj
β such that ∂a ⋄ ∂a = 0, for example

a =





x1 (x4)2

2 x1 x1

x2 x2 x3 x2

x3 x3 x2 x4

x4 x4 x1 x4 x3




.

More importantly there are also matrices aj
β such that ∂a ⋄ ∂a 6= 0, for example

a =





x1 x4 x1 x1 x1

x2 x2 x4 x2 x2

x3 x3 x3 x4 x3

x4 x4 x4 x1 x4




.

We now consider full deformations as opposed to infinitesimal ones. Let

∂a =
(
δi
α + ai

α

)
θα ∂

∂xi

be a vector field. We think of ∂a as a deformation of de Rham differential with deformation
parameters ai

α.

Theorem 10.

∂a ⋄ (∂a ⋄ ∂a) =
(
δl
γ + al

γ

){∂ai
α

∂xl

∂aj
β

∂xi
+ ai

α

∂2aj
β

∂xl∂xi

}

θγθαθβ ∂

∂xj
.

Proof. Since

∂2
a =

[(
δi
α + ai

α

)
θα ∂

∂xi

](
δj
β + aj

β

)
θβ ∂

∂xj

∂a ⋄ ∂a =
(
δi
α + ai

α

) ∂aj
β

∂xi
θαθβ ∂

∂xj
,
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we get

∂a ⋄ (∂a ⋄ ∂a) =
(
δl
γ + al

γ

)
θγ ∂

∂xl
⋄

[
(
δi
α + ai

α

) ∂aj
β

∂xi
θαθβ ∂

∂xj

]

=
(
δl
γ + al

γ

){∂ai
α

∂xl

∂aj
β

∂xi
+ ai

α

∂2aj
β

∂xl∂xi

}

θγθαθβ ∂

∂xj
.

�

Corollary 4. ∂a ⋄ (∂a ⋄ ∂a) = 0 if for fixed indices α, β, λ, j the following identity holds

(
δl
γ + al

γ

){∂ai
α

∂xl

∂aj
β

∂xi
+ ai

α

∂2aj
β

∂xl∂xi

}
θγθαθβ = 0.

Corollary 5. Each matrix A = (Aj
β) ∈ Mn(R) such that A2 = 0 determines a 3 Lie

algebroid structure on TR
n with differential given by (δi

α + Ai
αxα)dxα ∂

∂xi .

Our final result describes explicitly the conditions defining a 3 Lie algebroid. Let E be
a vector bundle over M . A vector field on E[−1] of degree one is given in local coordinates
by

∂ = ρi
αθα ∂

∂xi
+

1

2
Cγ

α βθαθβ ∂

∂θγ

where ρi
α and Cγ

α β are functions of the bosonic variables only.

Theorem 11. ∂ ⋄ (∂ ⋄ ∂) = 0 if and only if for fixed γ and i the following identity holds:
[

1

2
ρj

ν
∂

∂xj

(
ρi

β

∂Cγ
σ µ

∂xi

)
+

1

2
ρj

ν

∂(Cγ
α βCα

σ µ)

∂xj
+

1

2
ρi

β

∂Cγ
λ µ

∂xi
Cλ

µσ −
1

4
ρi

βCβ
νσ

∂Cγ
λµ

∂xi
+

+

(
1

2
Cγ

αβCα
λµCλ

νσ −
1

4
Cα

βµCγ
αǫCǫ

νσ

)]
θνθσθµθβ = 0 ,

[

ρl
γ

∂

∂xl

(

ρj
ν

∂ρi
γ

∂xj

)

+
1

2

(

ρl
σ

∂

∂xl

(
ρi

αCα
νγ

)
+ ρj

ǫ

∂ρi
γ

∂xj
Cǫ

σν−

−ρj
γ
∂ρi

ǫ

∂xj
Cǫ

σν + ρi
αCα

βγCβ
σν

)]
θσθνθγ = 0 .

Proof. We sketch the rather long proof. For ∂ = ρi
αθα ∂

∂xi + 1
2Cγ

α βθαθβ ∂
∂θγ , we have

∂ ⋄ ∂ =

(

ρj
β

∂ρi
γ

∂xj
+

1

2
ρi

α Cα
βγ

)

θβθγ ∂

∂xi
+

(
1

2
ρi

β

∂Cγ
λ µ

∂xi
+

1

2
Cγ

α β Cα
λ µ

)

θλθµθβ ∂

∂θγ
.

As in the previous theorem one finds that the condition ∂ ⋄ (∂ ⋄∂) = 0 is equivalent to the
following identities

[
1

2
ρj

ν
∂

∂xj

(
ρi

β

∂Cγ
σ µ

∂xi

)
+

1

2
ρj

ν

∂(Cγ
α βCα

σ µ)

∂xj
+

1

2
ρi

β

∂Cγ
λ µ

∂xi
Cλ

µσ −
1

4
ρi

βCβ
νσ

∂Cγ
λµ

∂xi
+

+

(
1

2
Cγ

αβCα
λµCλ

νσ −
1

4
Cα

βµCγ
αǫCǫ

νσ

)]
θνθσθµθβ ∂

∂θγ
= 0 ,
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and [
ρl

γ

∂

∂xl

(
ρj

ν

∂ρi
γ

∂xj

)
+

1

2

(
ρl

σ

∂

∂xl

(
ρi

αCα
νγ

)
+ ρj

ǫ

∂ρi
γ

∂xj
Cǫ

σν − ρj
γ
∂ρi

ǫ

∂xj
Cǫ

σν

)
+

+
1

2
ρi

αCα
βγCβ

σν

]
θσθνθγ ∂

∂xi
= 0.

�

Needless to say further research is necessary in order to have a better grasp of the
meaning and applications of the notion of N Lie algebroids. We expect that this approach
will lead towards new forms of infinitesimal symmetries, and for that reason alone it
should find applications in various problems in mathematical physics. In our forthcoming
work [3] we are going to discuss some applications of N Lie algebroids in the context of
Batalin-Vilkovisky algebras and the master equation.

Acknowledgments. Thanks to Takashi Kimura, Juan Carlos Moreno and Jim Stasheff.
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