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Abstract—Slowness is a crucial factor to prevent matrix 
method from its practical use in network topology. The 
matrix method which gets full connectivity matrix by 
multiplying the adjacency matrix repeatedly and determines 
connective sets by comparing or scanning rows of the full 
connectivity matrix is very time-consuming. Nodes in a 
connective set have same rows in the full connectivity matrix, 
the connective set can be determined by the first row of these 
same rows. Calculation of other rows whose connective set is 
fixed by the preceding rows is unnecessary. Once a node is 
certain in an exist connective set, the calculation of the row 
related to the node can be stopped. Based on the above 
consideration, a network topology method by matrix partial 
multiplication is presented. Row comparing or scanning is 
unnecessary in the presented method, and sparse matrix 
techniques, connectivity matrix elements immediately 
updating, optical node numbering are also used in the 
presented method. All these measures greatly decrease 
calculation and speed up the network topology. A practical 
network being analyzed by the proposed method is presented, 
and the results prove the effectiveness of the proposed 
method. 
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I. INTRODUCTION  
The power system network topology algorithm is a 

basic and critical tool which furnishes data for many power 
system studies such as state estimation, power flow, 
contingency analysis, and dispatcher training simulator. It 
establishes the bus/branch model for network analysis 
from the switch/node model of power systems. Being 
algorithm about connectivity of graph in graph theory, the 
network topology algorithm can be accomplished by the 
search method [1-4], matrix method [5-9], and method of 
solving equations [10-11]. The matrix method implements 
the network topology by the operation of the adjacency 
matrix which represents the relationship of the nodes. The 
matrix method needs more computer storage and computer 
time, which hinders its practical usage. 

To determinate connectivity the matrix method 
computes the n–1 power to adjacency matrix to get full 
connectivity matrix. The full connectivity matrix can be 
obtained by multiplying the adjacency matrix n–2 times 
for systems with n nodes at the worst, which is very time-
consuming. The number of matrix multiplication decreases 

to maximal log2(n–1) times by squaring the connectivity 
matrix successively [5]. In fact the number of matrix 
multiplication can be reduced if the computation is ceased 
as soon as full connectivity matrix is achieved. If the 
element of the connectivity matrix and its symmetry 
element are updated and used immediately after the new 
one is calculated, the full connectivity matrix is achieved 
by only two times of the matrix multiplication [7], or by 
only one time of matrix multiplication we can acquire a 
connectivity matrix which is not a full connectivity matrix 
but can reveal network topology sufficiently, and network 
topology is then gained by reverse row sweep [8]. Both the 
above two methods increase the speed of network topology 
greatly. The matrix method obtains the connectivity 
network by multiplication of matrices, the connectivity 
matrix as one multiplier is dense, the other multiplier being 
adjacency matrix is sparse, and the sparse matrix 
techniques can apply to this multiplier, the sparse matrix 
techniques speed up the multiplication greatly [9]. 

The nodes in a connective set have identical rows in 
the full connectivity matrix, so we can find the connective 
set by the first row of these same rows. Computation of 
other rows whose connective set is fixed by the preceding 
rows is unnecessary. Once a node is certain in a connective 
set which includes preceding nodes, the calculation of the 
row related to the node can be stopped. Based on the above 
consideration, a new method network topology by matrix 
partial multiplication is presented. And many other 
measures which can greatly speed up network topology 
such as sparse matrix techniques, connectivity matrix 
elements immediately updating, optical node numbering 
are also used in the presented method. A practical network 
with 7097 physical nodes is analyzed by the proposed 
method, and the results prove the effectiveness of the 
proposed method. For this network, the running time is 
0.016s for the proposed method. 

II. ANALYSIS ON NETWORK TOPOLOGY BY MATRIX 
METHOD 

A. Network Topology 

The purpose of network topology is to establish the 
bus/branch model for other network analysis such as 
power flow, state estimation. It includes two main sections: 

(a) Substation configuration: to form buses from nodes 
according to the connection of the nodes by closed 
switches (circuit breaks or disconnectors). 
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(b) Network configuration: to form islands from buses 
according to the connection of the buses by live branches 
(transmission lines, transformers, and etc.). 

Although the purpose and the object of substation 
configuration and network configuration are different, they 
involve same topic in graph theory named connectivity of 
graph. Because the procedure of substation configuration 
is only carried out at the substation voltage levels and the 
number of the nodes in each substation voltage level is 
small, tracing in a substation voltage level is very fast. But 
searching scope for network configuration is entire 
network. 

B. Connectivity and Connectivity Matrix 

The connection of nodes in a network can be 
represented by adjacency matrix. For a network with n 
nodes, the adjacency matrix A is an n × n square matrix 
whose element aij is one if node i and node j connect 
directly and aij is zero if node i and node j do not directly 
connect. The adjacency matrix represents the first level of 
the network connectivity.  

If the adjacency matrix is multiplied by itself, the 
resulting matrix T which is named as the connectivity 
matrix represents the second level of the network 
connectivity, which the element tij being one indicates that 
node i and node j are directly connected or connected via 
another node. We can obtain at best the (n–1)th level of the 
network connectivity for a network with n nodes, which is 
called as full connectivity matrix. 

C. The Matrix Method 

The matrix method is described as follows: 

 ATT kk  )()1(
 

where A is the adjacency matrix, T is the connectivity 
matrix, the superscript (k) denotes the kth level 
connectivity matrix. 

The adjacency matrix represents the first level of the 
network connectivity, so T(1) = A. 

Equation (1) is repeated until the adjacency matrix to 
the power (n–1). By squaring the connectivity matrix, we 
can reach the (n–1)th power of the adjacency matrix 
rapidly, so the following equation is also used to obtain the 
full connectivity matrix: 


)()()2( kkk TTT   

At the worst we need multiply n–2 times to get the full 
connectivity matrix with (1) or log2(n–1) times with (2). In 
fact it does not need so much times of matrix 
multiplication, since when the successive connectivity 
matrices are same, i. e. the element of the connectivity 
matrix does not change any more, the full connectivity 
matrix is reached. 

The connectivity matrix resulting from multiplication 
of the matrices is dense one, and the degree of the density 
increased rapidly along with the number of matrix 
multiplication. New connectivity matrix is obtained by (1) 
or (2). The multipliers are both dense matrices in (2), and 
one of the two multipliers is dense matrix in (1), such the 
sparse matrix techniques are not applied to the matrix 
method. 

D. The Sparse Matrix Method 

Multiplication of two dense matrices is very time-
consuming, therefore the running time of the matrix 
method is very long and unbearable. In (1) the connectivity 
matrix as one multiplier is dense, but the adjacency matrix 
as the other multiplier is sparse and unchanged, thus the 
sparse matrix techniques can apply to this multiplier.  

In (1), when the adjacency matrix is stored in compact 
form, we can apply the sparse matrix techniques to matrix 
method. 

a) Compact Storage of the Adjacency Matrix 

For compact storage of the adjacency matrix, we can 
use the following two arrays: 

(a) AC   is the column number of each non-zero 
element. 

(b) AR   is the location in array AC for the first non-
zero element in each row of the adjacency matrix. 

Compact storage of the adjacency matrix saves much 
computer storage. 

b) Computation of the Connectivity Matrix 

When the connectivity matrix is calculated by (1), and 
considering symmetry of the adjacency matrix, the element 
of the connectivity matrix is as follows: 
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The elements of the connectivity matrix are stored with 
an n × n array, and the adjacency matrix is stored by 
compact storage.  

Since the adjacency matrix is sparse one, lookup all 
elements in a given row is unwanted, we only need pay 
attention to a few )(k

imt  whose column number is same as 

that of ajm. If any of these )(k

imt  is one, and then )1( k

ijt  will 
be one and further computation is needless. The flow chart 
of the computation of the element )1( k

ijt  of the connectivity 
matrix is shown in Fig .1. 
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Figure 1.  Flow chart of formation of the element of the connectivity 

matrix 
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III. DETERMINATE CONNECTIVITY BY MATRIX 
PARTIAL MULTIPLICATION 

The matrix method which gets full connectivity matrix 
by multiplication of the matrices is very time-consuming. 

The rows of the full connectivity matrix belong to the 
same connective set are identical, so we can find a 
connective set by just sweeping its first row rather than all 
the rows.  

From (3), it needs only the old elements in the ith row 
of the connectivity matrix to calculate new elements in the 
ith row of the connectivity matrix, the other rows have 
nothing to do with formation of the elements in ith row. So 
the elements of every row of the connectivity matrix can 
be calculated independently. 

During multiplication of the matrices, once a row is 
certain to belong to same connective set with the preceding 
row, calculation of the elements of the row is unnecessary 
and can be stopped. So calculation of many rows can be 
cancel by the presented method. Because many rows of the 
full connectivity matrix are incomplete, the real full 
connectivity matrix is not achieved. We call the resulting 
matrix as quasi full connectivity matrix. 

 

A. Formation of the Quasi Full Connectivity Matrix 

The Flow chart of the formation of the quasi full 
connectivity matrix is showed as Fig .2.  To form a new 
connectivity matrix, we want know if an element can be 
changed to 1, so we just calculate the elements whose old 
value is 0. The elements whose old value is 1 already need 
not be calculated. 

When the elements in one row of the connectivity 
matrix is being formed, only the elements right to the 
principal diagonal need be calculated, that is we just need 
determinate whether one node connects to the nodes whose 
number is great than that of the node, the connection with 
the nodes whose number is less has be justified when the 
preceding rows is calculated. So only the elements right to 
the principal diagonal need be calculated and updated 
immediately. 

In Fig .2, Change recodes the variation of the 
connectivity matrix. If the elements of the connectivity 
matrix do not change, then change = 0, which means the 
quasi full connectivity matrix is obtained. 

Array Group[] records the numbers of the groups nodes 
belong to. Group[i] = k (k ≠ 0) means that node i belongs 
to the kth group; Group[i] = 0 means that node i does not 
belong to any group yet, a new group which includes node 
i will be created. During first multiplications, a connective 
set may include many groups, groups merge along with the 
procedure, and at last there is only a group in a connective 
set when the quasi full connectivity matrix is obtained. 

B. Determination of Connective Set 

When the quasi full connectivity matrix is obtained, 
Group[] are the numbers of the connective sets nodes 
belong to. If Group[i] = k (k ≠ 0), node i belongs to the kth 
connective set. So after the matrix partial multiplication is 
done, the connective sets are also decided, the row sweep 
is unnecessary to the presented method. 
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Figure 2.  Flow chart of the formation of the quasi full connectivity 
matrix 

IV. CASE STUDY 
A real network named Hangzhou network in China is 

used to testify our conclusions. There are 187 stations, 715 
busbars, 7329 switches, 318 transmission lines, 127 two-
winding transformers, 123 three-winding transformers, 11 
series reactors, 232 shunt capacitors, and 27 shunt reactors 
in the network. There are total 7097 nodes, and 825 
branches including transmission lines, series reactors and 
transformers (3 branches for a three-winding transformer). 

The study is fulfilled on a personal computer with an 
Intel Pentium process of 1.10 GHz. The procedure of 
substation configuration is limited at the substation voltage 
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levels, while searching scope for network configuration is 
entire network. 957 buses and 49 islands are found. Only 
one island of these islands is live. There are 704 buses in 
the live island, and 122 buses in dead islands, the other 
buses are isolated ones.  

The network topology on this network was carried out 
by four different methods: 

Method 1: The full connectivity matrix is determined 
by multiplying the adjacency matrix repeatedly. 

Method 2: The full connectivity matrix is determined 
by squaring the connectivity matrix repeatedly. 
 Method 3: The full connectivity matrix is determined 
by multiplying the adjacency matrix repeatedly, and 
sparse matrix techniques are applied. 
 Method 4: The presented method. 

A. Comparison of the Number of Matrix Multiplication 

The number of matrix multiplication required by 
different methods in the network configuration is listed in 
Table I. The number of matrix multiplication includes one 
more time for detecting whether the full connectivity 
matrix is reached. 

TABLE I. THE NUMBER OF MATRIX MULTIPLICATION IN NETWORK 
CONFIGURATION 

Methods Number of matrix multiplication 

Method 1 23 

Method 2 6 

Method 3 6 

Method 4 9 

 
The presented method needs more times of matrix 

multiplication than the method of squaring the connectivity 
matrix repeatedly or the method with sparse matrix 
techniques, but greatly less than the method of multiplying 
the adjacency matrix repeatedly. 

B. Comparison of Running Time for Different  Methods 

The running time required by different methods is 
listed in Table II.   

TABLE II.  COMPUTER TIME REQUIRED BY DIFFERENT METHODS 

Methods 
Running time (s) 

substation 
configuration 

network 
configuration 

Total running 
time 

Method 1 0.546 81.938 82.484 

Method 2 0.329 24.359 24.688 

Method 3 0.016 0.078 0.094 

Method 4 0.008 0.008 0.016 

 
As showed in Table II, the presented method is greatly 

fast than the method implements the full connectivity 
matrix by multiplying the adjacency matrix repeatedly or 
the method implements the full connectivity matrix by 
squaring the connectivity matrix repeatedly.  It is also fast 
than the method with sparse matrix techniques, although 

needs little more times of matrix multiplication to reach 
the quasi full connectivity matrix. 

For all these method, most of the running time is 
consumed in network configuration because the matrices 
in network configuration are large while those in 
substation configuration are small.  

V. CONCLUSION 
The matrix methods which form full connectivity 

matrix by multiplication of the matrices are very time-
consuming. The nodes belong to same connective set have 
identical rows in full connectivity matrix; the connective 
set can be found by sweep its first row in the full 
connectivity matrix. The first row of a connective set in 
the full connectivity matrix is enough, calculation of any 
of the other rows belong to the same connective set can be 
cancel if it has already found that the row belong to the 
connective set determined by receding row.  

So network topology can be implemented by matrix 
partial multiplication. Study on a large practical network 
shows that the proposed method is very fast and suitable 
for real-time operation.  

ACKNOWLEDGMENT 
This work was supported in part by NSFC under Grant 61273137 to 

Dan Wang. 

REFERENCES 
[1] R. J. Trudeau. Introduction to graph theory. New York: Dover 

Publications, Inc. 1993. 
[2] M. Prais and A. Bose. “A topology processor that tracks network 

modifications over time,” IEEE Trans. on Power Systems, vol. 3, 
no. 3, Aug. 1988, pp. 992-998. 

[3] P. D. Yehsakul and I. Dabbaghchi. “A topology-based algorithm 
for tracking network connectivity,” IEEE Trans. on Power Systems, 
vol. 10, no. 1, Feb. 1995, pp. 339-345. 

[4] Yubin Yao, Wenzhuan Jin and Li Jin. “Fast network topology 
method for a distribution network,” (in Chinese), Relay, vol. 33, no. 
19, Oct. 2005, pp. 31-35. 

[5] F. Goderya, A. A. Metwally and O. Mansour. “Fast detection and 
identification of islands in power networks,” IEEE Trans. on Power 
Apparatus and Systems, vol. 99, no. 1, Jan. / Feb. 1980, pp. 217-
221. 

[6] Wei Zheng, Yuncheng Zhou, Tongyu Xu and Yingli Cao. “Electric 
connectivity analyzing for 10kV distribution network based on 
GIS,” Proceedings of the APPEEC2010, March, 2010, pp. 1-5. 

[7] Yubin Yao, Jian Xuan, Na Yu, Dan Wang and Zhiliang Wu. 
“Determination of network topology by quasi-square of the 
connectivity matrix,” (in Chinese). Power System Protection and 
Control, vol. 39, no. 5, March, 2011, pp. 31-34, 40. 

[8] Yubin Yao. “Determination of network topology by fast quasi-
square of the adjacency matrix,” (in Chinese). Power System 
Protection and Control, vol. 40, no. 6, March, 2012, pp. 17-21, 29. 

[9] Yubin Yao, Shuangli Ye, Zhiliang Wu and Dan Wang. 
“Determination of network topology by the matrix method with 
sparse matrix techniques,” (in Chinese). Power System Protection 
and Control, vol. 39, no. 23, Dec. 2011, pp.1-5, 10. 

[10] Yubin Yao, Dan Wang, Zhiliang Wu and Weike Xu. “Network 
topology analysis by solving equations,” (in Chinese), Electric 
Power Automation Equipment, vol. 30, no. 1, Jan. 2010, pp. 79-83. 

[11] Yubin Yao, Guoshun Zhou, Hong Li and Dan Wang. “A network 
topology method by solving logic equations,” Proceedings of the 
SUPERGEN2009, April, 2009, pp. 1-6. 

 

856




