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1 IIIA, Institut d’Investigacío en Intel·ligència Artificial, CSIC, Spanish Council for Scientific Research
Campus de Bellaterra, 08193 Bellaterra, Catalonia, Spain

E-mail: vtorra@iiia.csic.es
2 Toho Gakuen, 3-1-10 Naka, Kunitachi, Tokyo, 186-0004 Japan

E-mail: narukawa@d4.dion.ne.jp

Received September 10th, 2007
Revised October 5th, 2007

The computation of similarities between words is a basic element of information retrieval systems, when
retrieval is not solely based on word matching. In this work we consider a measure between words based
on dictionaries. This is achieved assuming that a dictionary is formalized as a fuzzy graph. We show that
the approach permits to compute measures not only for pairs of words but for sets of them.
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1. Introduction

Information retrieval has been a hot research topic
in the last years (seee.g. 9,3,11). The Internet and
the search engines has increased the need for tools
and methods for accessing information in an effi-
cient manner.

When information is textual, users are required
to access data from a set of keywords. Such key-
words are then matched against inverted indices to
retrieve those documents that contain the keywords.
Due to the richness of natural language such ap-
proach is not always optimal from the point of view
of the user. A major point is that language contains
synonyms and homophones.

To deal with synonyms, similarity functions can
be defined to compare the similarity among two
words. Such functions can be either defined on pur-
pose (by the designer of the system) or can beauto-
matically extracted from dictionaries (as WordNet)

or word corpus.5 and GAMBAL 11 computed simi-
larities from dictionaries. The systems using Latent
Semantics Analysis4 correspond to the second ap-
proach.

In a recent paper8, we proposed a way to con-
struct fuzzy measures from graphs. Here we review
this approach and explore its applicability to define
similarity functions between words. A relevant as-
pect of our work is that it permits us to compute
not only the similarity between pairs of words, but
also of sets of words or sentences. Such extended
similarity is based on a the assumption that exists a
basic similarity function already defined on pairs of
words.

The structure of this paper is as follows. In Sec-
tion 2 we review our approximation to construct
fuzzy measures from graphs. Then, in Section 3 we
describe how this method can be used in information
retrieval. The paper finishes with some conclusions
and future work.
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2. Preliminaries

In this section we review the results that show how
a fuzzy measure can be defined from a fuzzy graph.
First we review the definition of a fuzzy measure,
then, the one of a fuzzy graph and finally the ap-
proach to define a fuzzy measure from such fuzzy
graph.

Definition 1. A set functionµ : 2N → [0,1] is a
fuzzy measure if it satisfies the following axioms:

(i) µ(∅) = 0, µ(N) = 1 (boundary conditions);

(ii) A⊆B impliesµ(A) 6 µ(B) (monotonicity) for
A, B∈ 2N.

Definition 2. A binary operation⊕ : [0,∞) ×
[0,∞)→ [0,∞) is called a pseudo-addition if the fol-
lowing properties are satisfied:

Commutativity: a⊕b = b⊕a;
Monotonicity: a6 a′, b6 b′ impliesa⊕b6 a′⊕b′;
Associativity: (a⊕b)⊕c = a⊕ (b⊕c);
Continuity:

an → a andbn → b imply an⊕bn → a⊕b;
Zero element: 0⊕a = a⊕0; for a, b∈ [0,∞).

Example. For fixedp > 0, let

x⊕y := (xp +yp)
1
p

Then,⊕ is a pseudo-addition.
Now, we define fuzzy graphs. Note that at

present several alternative definitions exists for
fuzzy graphs, some of them can be found in1. See
also10,7 on fuzzy graphs. Roughly speaking, fuzzy
graphs have been defined adding fuzziness either on
the vertexes or on the edges.

Definition 3. Let N be a finite set and letR be
a fuzzy relation onN (that is, R ⊂ N×N, where
µR : N×N→ [0,1] is its membership function), then
G = (N,R,µR) is a fuzzy graph.

Definition 4. LetR be a fuzzy relation onN, we say
that T ⊂ R is a fuzzy tree if there exists noxi ∈ N
(2 6 i 6 n) such that(x1,x2), . . . ,(xi−1,xi) ∈ R and
x1 = xi . In other words, there are no cycles inT.

We will use TR to denote the set of all fuzzy
trees of the fuzzy graph(N,R,µR).

Definition 5. Let G = (N,R,µR) be a fuzzy graph.
Then, we define a set functionm : 2R → [0,∞) by:

m(A) := sup
I∈TR

{

⊕

(x,y)∈I

µ(x,y) | I ⊂ A

}

(1)

Given the fuzzy graphG and the set functionm, we
define another set functionν : 2R → [0,1] as fol-
lows:

ν(A) :=
m(A)

m(N)
(2)

Note that in this definition,A ∈ 2R where
R ⊂ N × N and, thus,A ⊂ N × N. In this way,
for example, if N = {1,2,3,4,5}, A can be e.g.
{(1,2),(2,3),(1,3)} or {(1,2),(2,3)}.

The next proposition follows from Definition 5

Proposition 1. 8 Let G = (N,R,µR) be a fuzzy
graph and m be the set function defined in Defini-
tion 5, then the following conditions hold:

Boundary condition: m(∅) = 0;
Monotonicity: A⊂ B implies m(A) 6 m(B);
⊕ submodularity:

m(A)⊕m(B) > m(A∪B)⊕m(A∩B).

Proposition 2. 8 Boundary condition and mono-
tonicity in Proposition 1 as well as the definition of
ν in Eq. (2) imply that the set functionν on 2R is a
fuzzy measure.

3. Measuring similarities from a dictionary

In this section we explore the definition of a measure
for sets of words. The main idea is to assume that
there exists a fuzzy graph that establishes some con-
nections between some pairs of words. This fuzzy
graph permits, then, to establish the similarity be-
tween pairs of words, and also the similarities be-
tween sets of dimensions larger than two. We start
considering the similarity between pairs of words.

Definition 6. Let D be a dictionary whereN is its
set of words,R be a set of pairs of words that are
connected in some sense and letµR be a measure
of the strength of the connectivity. Then,D can be
expressed as a fuzzy graphD = (N,R,µR). From
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now on, to unify the notation with the previous sec-
tion, and asD is a graph, we will useG to denote the
dictionary.

The definition above can be applied to different
types of dictionaries. In particular, if we consider
Wordnet12,2, N is the set of words indexed by Word-
net andR are the pairs of words that are connected
in any of its form of relation.E.g. synonyms, hy-
pernyms, hyponyms,has-part, etc. Finally,µR is a
measure defined on the links inR.

Now, given a dictionaryG , and two wordsw1

andw2, we define their similarity as follows:

Definition 7. Let G = (N,R,µR) be a fuzzy
graph, and letw1 and w2 be two elements ofN,
then, the similarity betweenw1 and w2 denoted
SimG ({w1,w2}) is computed as follows:

Let P be the set of all non-cyclic paths fromw1 to
w2.

Let A be the set of all links that defineP. This is,
A =

⋃

(x,y)∈
⋃

p∈P p(x,y).

Then, we define SimG ({w1,w2}) asν(A).

Note that SimG ({w1,w2}) measures the strength
or similarity betweenw1 andw2 with respect to the
whole graph, asν(A) contain the strength of all
links.

Note that in this definition, when there is no
path betweenw1 andw2, the similarity betweenw1

andw2 is zero. This is established in the following
proposition:

Proposition 3. Let G = (N,R,µR) be a fuzzy
graph, and let w1 and w2 be two elements of N,
then, when there is no path between w1 and w2,
SimG ({w1,w2}) = 0.

Proof. As there is no path,A is empty in Defini-
tion 7, and by Definition 5 the measure is zero.�

Under this definition, if there is a single path
from w1 andw2, then the similarity betweenw1 and
w2 is the⊕-combination of the measures of the indi-
vidual pairs(x,y) that define the path. This is stated
below.

Definition 8. Let G = (N,R,µR) be a fuzzy graph,
and letw1 and w2 be two elements ofN, we say

that there is a connected path fromw1 to w2 in R if
there exists(x1,x2),(x2,x3), . . . ,(xi−1,xi) ∈ R such
thatx1 = w1 andxi = w2.

Proposition 4. Let G = (N,R,µR) be a fuzzy
graph, and let w1 and w2 be two elements of N such
that there exists a single connected path p from w1

and w2. Then, SimG ({w1,w2}) is

1
m(N)

⊕

(x,y)∈p

µ(x,y)

Proof. To prove this proposition, first we consider
Definition 7. Therefore,

SimG ({w1,w2}) = ν(A)

whereA is the set of all links that defineP. In this
case, as there is a single path inP, and this path has
been denoted byp above, we have that:

A =
⋃

(x,y)∈
⋃

p∈P

p

(x,y) =
⋃

(x,y)∈p

(x,y)

Now, we considerν(A):

ν(A) =
1

m(N)
sup

I∈TR







⊕

(x,y)∈I

µ(x,y)|I ⊂ A







Here, asm(N) is constant, will not be considered
again.

Now, first recall that the pathp from w1 to w2 is
not cyclic. Thus,p∈TR . Moreover, all otherI such
that I ∈ TR will be subpaths ofp.

Then, as⊕ is monotonic,a⊕0= aand allµ(x,y)
are positive, we have that the largest value for allI
will be obtained consideringp. This is:

⊕

(x,y)∈I

µ(x,y) 6
⊕

(x,y)∈p

µ(x,y)

Therefore, the proposition is proven. �

Note that when several paths can be found in the
graph, it is not true that SimG ({w1,w2}) is the⊕ of
the measureµ of the links in all the paths.

The definition given above for two words can be
easily extended to sets of words. In this case, we
first consider paths from any pair of word, and from
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these paths we apply the same procedure established
in Definition 7.

Definition 9. Let G = (N,R,µR) be a fuzzy graph,
and letW a subset ofN (a set of words), then, the
similarity between elements inW denoted SimG (W)
is computed as follows:

Let P be the set of all non-cyclic paths fromwi to
w j wherewi , w j ∈W.

Let A be the set of all links that defineP. This is,

A =
⋃

(x,y)∈
⋃

p∈P

p(x,y)

Then, we define SimG (W) asν(A).

Table 1. Number of adjectives in Wordnet 1.7 with the
corresponding number of Synonyms

Num. adjectives Num. of Synonyms
3487 2
1078 3
404 4
216 5
93 6
49 7
22 8
18 9
15 10
21 11
9 12
5 13
7 14
6 15
2 16
2 17
3 18
1 21
1 22
1 25
1 26
1 27
1 29

Naturally, this definition generalizes Definition 7
when the cardinality ofW is two (W = {w1,w2}).

Additionally, this definition satisfies the following
properties:

Proposition 5. Let G = (N,R,µR) be a fuzzy
graph, and let W a subset of N (a set of words), then:

1. If for all wi, w j in W, there is no pathG con-
necting them, then SimG (W) = 0.

2. If W = N (all the words are considered),
SimG (W) = 1.

Proof. The proof of the first boundary condition is
similar to the one in Proposition 3: As no path exists,
the measure becomes zero.

The proof of the second boundary condition is
based on the fact that whenW = N, all paths are vis-
ited and, thus, all links are considered. As each link
is only visited once inA =

⋃

(x,y)∈
⋃

p∈P
p(x,y), they

are the same links visited bym(N). Therefore, the
outcome is one. �

Proposition 6. Let G = (N,R,µR) be a fuzzy
graph, and let W1 and W2 subsets of N (sets of words)
such that W1 ⊆W2, then

SimG (W1) 6 SimG (W2)

This is, the similarity is monotonic with respect
to the set of words.

3.1. Computational issues

According to Definitions 7 and 9, the approach pre-
sented here requires the computation ofm(N). Tak-
ing into account the proof of Proposition 5, we have
that all links are only considered once inm(N),
therefore computation ofm(N) only requires the de-
termination of the number of links in the dictionary
and its weight.

For example, in the case of Wordnet12, this can
be done through inspection of the files. In the case
of the adjectives, the file “index.adj” can be used to
count the number of meanings (synsets) of one ad-
jective. Each meaning can then be further linked
with several words through the “data.adj” file. In
the particular case of Wordnet 1.7 there are 18523
synsets and 22495 synonyms established between
synsets in this latter file.
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The relationships between adjectives and synsets
in such version of Wordnet are as follows. There
are 21359 adjectives, of which 5443 include at least
two synsets in their meaning. The exact number of
adjectives/synsets is included in Table 1. From this
table, we can determine that the number of links be-
tween adjectives and synsets is:

15154+(21359−5443) = 31070

So, all together, the graph for the adjectives, repre-
senting only synonymy contains 22495+ 31070=
53565 links.

Assessing a measurem equal toα for links be-
tween synsets andβ for links between adjectives and
synsets,m(N) would be equivalent, if only adjec-
tives are considered to:

m(N) = 22495α +31070β

Although this graph is huge, the computation of
the similarity measure for a pair of words (or of a
set of words) is computationally similar to the ap-
proaches in5,11 for most situations. Note that in
these latter cases, all paths between the words con-
sidered should be detected. In the approach pro-
posed here, we also need to determine these paths.
Differences correspond to the way the computation
of m is done. The approach presented here has the
advantage of being usable when the similarity be-
tween sets of more than two words are considered.

4. Conclusions and future work

In this paper we have studied the definition of sim-
ilarity measures between words based on dictionar-
ies. We have shown that when a dictionary is repre-
sented as a fuzzy graph, we can build a fuzzy mea-
sure that can be used to compute a degree of similar-
ity between sets of words. We have considered the
application of our approach to the case of Wordnet.

As future tasks to be accomplished, we consider
the implementation of the approach in our system
GAMBAL, and to consider whether simpler equiva-
lent expressions can be found for computing the sim-
ilarity for sets of words.
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