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Abstract

Using the complete group classification of semilinear differential equations on the
three-dimensional Heisenberg group H, carried out in a preceding work, we estab-
lish the conservation laws for the critical Kohn-Laplace equations via the Noether’s
Theorem.

1 Introduction

In the last few decades a great number of papers treat semilinear partial differential equa-
tions on the (2n + 1)−dimensional Heisenberg group Hn. Recall that Hn is a Lie group,
topologically equivalent to the real vector space R

2n+1 endowed with a product φ defined
by

φ((x, y, t), (x0, y0, t0)) := (x + x0, y + y0, t + t0 + 2(y · x0 − x · y0)),

where x, x0, y, y0 ∈ R
n and t, t0 ∈ R. Its name reflects the fact that it represents in

an abstract form the commutation relations for the quantum-mechanical position and
momentum operators in higher-dimensional configuration space.

The Heisenberg group is a representative of more general structures called Carnot
groups. In the latter, there exists a natural second order differential operator in the form
of sum of squares of certain vector fields and hence quite similar to the usual Laplacian.
For the Heisenberg group this is the Kohn-Laplace operator ∆Hn and the studied equations
are of the form

∆Hnu + f(x, u) = 0. (1.1)

(For the corresponding definitions of these notions, see section 2.)
It is a big tentation to extend to Hn known results concerning semilinear partial differ-

ential equations involving the Laplace operator in the Euclidean case. This however is not
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trivial and straightforward task due to the fact that the Kohn-Laplace operator is not a
strongly elliptic operator and thus the analytical techniques do not always apply. In this
regard there is a lot of existence and nonexistence results for solutions of (1.1). We shall
briefly recall a few of them.

Existence results for weak solutions of the semilinear Kohn-Laplace equation (1.1) in
open bounded or unbounded subsets of Hn with homogeneous Dirichlet boundary con-
ditions are obtained by Garofalo and Lanconelli in [23] for f(x, u) having growth of the
form:

f(x, u) = f(u) = o(|u|
Q+2

Q−2 ) when u → ∞,

where Q = 2n + 2 is the homogenous dimension of Hn. (For the definition see section 2.)
These authors establish remarkable Pokhozhaev Identities which enabled them to prove
nonexistence results for solutions of (1.1). They also prove regularity results. See [23].
Further Biagini [7] proved the existence of nonnegative classical nontrivial solutions u,

assuming some hypothesis on the function f(x, u), e.g. f(x, u) = f(u) and f(s)
sp−1 → 0,

when |s| → ∞, for p < 2 + 2/n. If f(x, u)|u=0 = fu(x, u)|u=0 = 0, Birindelli et al. showed
in [8] the existence of positive solutions for the Dirichlet problem in a bounded domain of
Hn.

Earlier results regarding the Dirichlet problem for the Kohn-Laplacian on Hn belong
to Jerison [28, 29]. In the works of Jerison and Lee [30, 31] on the Cauchy-Riemann
(CR) Yamabe problem the Kohn-Laplace equation arises as Euler-Lagrange equation of a
variational problem on CR manifolds. For further results we direct the interested reader
to [6, 9, 11, 21, 22, 25, 26, 33, 34, 36, 5] and the references therein.

From the cited results it is clear that the critical Sobolev-Stein exponent for Hn

q⋆
n :=

Q + 2

Q − 2
=

n + 2

n

plays an important role in the analysis of the Kohn-Laplace equation. We recall that the
so-called critical exponents in the Euclidean case are found as critical powers for embedding
theorems of Sobolev type. They can be viewed as numbers which divide the existence and
nonexistence of solutions for semilinear differential equations with power nonlinearities.
Such equations appear as Euler-Lagrange equations of functionals involving the Frechét
derivatives of Sobolev and Lp+1 norms. E.g. the equation ∆ϕ + ϕp = 0, where ∆ is the
Laplacian in R

n, n ≥ 3, admits positive solutions if and only if p ≥ (n + 2)/(n − 2)−the
well-known Sobolev exponent (see [24, 16]).

By the Folland-Stein embedding theorem (see [19, 34]), the Sobolev space Sp
k(Ω) ⊆

Lq(Ω), where Ω ⊂ H1 is a bounded domain, q ≤ Qp
Q−kp

, 1 < p, q < ∞ and k ≥ 1. The

embedding is compact if q < Qp
Q−kp

.

We note that the value of the critical Sobolev-Stein exponent for the Kohn-Laplace
equation can be computed using the symmetry approach to criticality of semilinear differ-
ential equations proposed in [15].

The existence of solutions of (1.1) with critical nonlinearity f(u) = u
Q+2

Q−2 , in Hn, is
ensured by a result of Citti and Uguzzoni in [17]. For a survey of results regarding the
critical Kohn-Laplace equations on the Heisenberg group see [32].
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In a previous work [13], we obtained the complete group classification of the following
semilinear equation on the three-dimensional Heisenberg group H := H1:

∆Hu + f(u) = 0, (1.2)

(Here ∆H is the Kohn-Laplace operator.). Further, we showed in [14] that all Lie point
symmetries of (1.2) in the critical Sobolev-Stein case f(u) = u3 are variational or diver-
gence symmetries.

The purpose of this paper is to establish the corresponding conservation laws via the
Noether’s Theorem ([10, 35]). As it is well known, the latter provides an algorithimic
procedure for construction of conservation laws. Namely, let

X = ξi ∂

∂xi
+ η

∂

∂u

be the generator of an infinitesimal transformation admitted by certain Euler-Lagrange
equation E(L) = 0 of order 2k, whose Lagrangian is denoted by L. If X is a divergence
symmetry of E(L) = 0, that is, if there exists a vector valued function ϕ = (ϕi) such that

X(k)L + LDiξ
i = Diϕ

i, (1.3)

then the Noether’s Theorem states that the following conservation law holds

Di(ξ
iL + W i[u, η − ξjuj ] − ϕi) = 0 (1.4)

for all solutions u of E(L) = 0. Above we have used the same notations and conventions
as in [10]. (For the definition of W i see [10], pp. 254-255.) Therefore, as pointed out in
[10], to apply this theorem one must

(i) find all transformations admitted by E(L) = 0 and

(ii) check which infinitesimal generators X satisfy the condition (1.3).
Hence it is clear that the major difficulty in applying the Noether’s Theorem is that

usually there is no explicit formula for the potential ϕ.
As it was already mentioned in the begining, the first step (i) is done in [13] and the

second (ii) - in the work [14]. Further we observe that in [14] we found explicity the
potentials ϕ associated to the corresponding divergence symmetries of the equation

∆Hu + u3 = 0. (1.5)

Thus we have at our disposal all ingredients which will enable us to apply directly the
Noether’s Theorem by a straightforward calculation.

An alternative possibility is to apply modern versions of the Noether’s Theorem, namely,
the so-called Direct Construction Method, devised and developed by George Bluman
and Stephen Anco [2, 3, 4, 1]. In this way one can by-pass the need of potentials ϕ
since the full form of the admitted conservation laws can be computed directly from the
admitted symmetries [2]. Moreover, since the equation (1.2) with power nonlinearity
f(u) = up, p 6= 0, p 6= 1 possesses the scaling symmetry

x
∂

∂x
+ y

∂

∂y
+ 2t

∂

∂t
+

2

1 − p
u

∂

∂u
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(see [13]), all conservation laws with non-zero scaling weight can be obtained from an
explicit formula of Anco [1] which uses the full admitted symmetry group of the equation.
However, in our specific case, this will result in a calculation lengthier than here presented.
It will contain a big number of divergence free expressions. To recognize the latter fact,
one needs to perform another lengthy computation. Actually, this is the price of generality
of the modern method when applied to the considered particular equation. On the other
hand, we have already granted from [13, 14] the potentials ϕ and this is the reason to
apply the classical approach to conservation laws.

For a discussion and comparison of four approaches to the calculation of conservation
laws see [38].

In this paper we are interested in the critical Kohn-Laplace equation (1.5) since it
possesses the widest symmetry group among the nonlinear equations of form (1.2). See
[13]. Actually our main motivation to write [13, 14] as well as the present paper is the
general property, established and discussed in [12] (and in some of the references therein),
relating the variational/divergence symmetries of critical differential equations and the
Sobolev Theorem. Namely, the Lie point symmetry group of large classes of ordinary
and partial differential equations and systems, involving power nonlinearities, coincides
with their Noether symmetry group if and only if the corresponding exponent assumes the
critical value.

The Noether symmetries and the corresponding conservation laws in the non-critical
cases (e.g. the linear cases f(u) = 0 and f(u) = u as well as the exponential case
f(u) = Exp(u)) are studied in [20].

From a general point of view, conservation laws for partial differential equations (PDEs)
provide a priori estimates which can be used for proving existence and uniqueness results.
Following Wolf [38], “the knowledge of conservation laws is useful in the numerical integra-
tion of PDEs. The existence of a large number of conservation laws of a PDE is a strong
indication of its integrability.” In this regard, as Bluman and Kumei pointed out in [10],
p. 252, “finding the conservation laws of a system is often the first step towards finding
its solution: the more conservation laws one finds the closer one gents to the complete
solution.”

The next steps in this research are to study the invariant solutions of (1.2) and to
construct nonlocal symmetries and the corresponding to them nonlocal conservation laws
for the solutions of critical semilinear Kohn-Laplace equations on the Heisenberg Group
using the above mentioned recent methods of Bluman, Anco et al. These problems will be
treated elsewhere. Here we merely point out that the obtained (local) conservation laws
will be used for that purpose.

The paper is organized as follows. In section 2 we recall briefly some of the main aspects
of the Heisenberg group and the Kohn-Laplace equations. In section 3 we present parts
of the results, obtained in [13, 14], which will be used later. The conservation laws are
stated in section 4, in the form of Theorem 1.
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2 The Heisenberg group and the Kohn-Laplace equations

Let g be a Lie algebra. g is said to be a nilpotent Lie algebra if there exist k ∈ N such
that gk = 0, where

g1 := g, g2 := [g, g], · · · gk := [g, gk−1],

[g, g] := {[X,Y ], X, Y ∈ g} and the others are defined by the same way. In this case, we
say that g is a k-step nilpotent Lie algebra, where k := minn∈N{n ∈ N | gn = 0}.

A Lie algebra g is called graded if it can be written as a direct sum

g = ⊕r
j=1g

j

with the following property: [gj , gk] ⊆ gj+k, if j + k ≤ r. A homogeneous structure of a
graded nilpotent Lie algebra is the pair (Rn, δλ), where δλ(Xj) := λaj Xj , Xj ∈ gj , λ >
0, aj ∈ R, and each gj is identified with R

nj , n1 + · · · + nr = n.

Now consider the space R
n as a Lie group with a product φ. Let g be its associated

Lie algebra. Further, suppose R
n endowed with a homogeneous structure {δλ}λ>0 of the

form

δλ(x) := (λx(1), λ2x(2), · · · , λrx(r)), (2.1)

where x(i) ∈ R
ni , 1 ≤ i ≤ r and n1 + · · · + nr = n. For i = 1, · · · , n1, define Xi as the

vector fields of the Lie algebra g which agree at the origin with the canonical basis of
R

ni . Assume that the Lie algebra generated by X1, · · · ,Xn1
is the same of g. The triple

G := (Rn, φ, δλ) is called Carnot Group. We say that G is r-step nilpotent Lie group; it
has n1 generators.

The number

Q :=

r
∑

j=1

jnj (2.2)

is called homogeneous dimension of G.

Definition 1. We define the linear-homogeneous space of a Carnot group (Rn, φ, δλ), as
the space genereted by {X1, · · · ,Xn1

}.

In the linear-homogeneous space Lhom of a Carnot group G there exists a kind of
second-order operator, called sub-Laplacian, defined by a sum of square of vector fields of
Lhom, that is,

∆G :=

n1
∑

i=1

X2
i .

These operators are subelliptic operators. See [37].

The three-dimensional Heisenberg group H (= H1) is defined as follows: let φ : R
3 ×

R
3 → R

3, defined by φ((x, y, t), (x0, y0, t0)) := (x + x0, y + y0, t + t0 + 2(yx0 − xy0)), be
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the composition law of H determining its Lie group structure. Then the vector fields

X =
d

ds
φ((x, y, t), (s, 0, 0))

∣

∣

∣

∣

s=0

=
∂

∂x
+ 2y

∂

∂t
,

Y =
d

ds
φ((x, y, t), (0, s, 0))

∣

∣

∣

∣

s=0

=
∂

∂y
− 2x

∂

∂t
,

T =
d

ds
φ((x, y, t), (0, 0, s))

∣

∣

∣

∣

s=0

=
∂

∂t

(2.3)

form a basis of left invariant vectors fields on H. The Heisenberg group H can be easily
seen as the three-dimensional 2-step nilpotent Carnot group of homogeneous dimension
Q = 4 and graded algebra h = g1 ⊕ g2, with g1 = {X,Y } and g2 = {T}, where the vector
fields X,Y, T are defined by (2.3). For H, the critical Sobolev-Stein exponent q⋆

1 = 3.

For the Heisenberg group, a basis for the linear-homogeneous space is given by X,Y .
In this space the subelliptic Kohn-Laplace operator ∆H := X2 + Y 2, where X and Y are
defined in (2.3). For u = u(x, y, t) : R

3 → R, we have

∆Hu = uxx + uyy + 4(x2 + y2)utt + 4yuxt − 4xuyt.

From (2.3) one can immediately construct the natural Riemannian metric of H

ds2 = dx2 + dy2 + (2ydx − 2xdy + dt)2.

This metric is a left invariant metric. The Lie algebra generated by

T =
∂

∂t
, R = y

∂

∂x
− x

∂

∂y
, X̃ =

∂

∂x
− 2y

∂

∂t
, Ỹ =

∂

∂y
+ 2x

∂

∂t
(2.4)

is the Lie algebra of the infinitesimal isometries of H. We note that the operator T
corresponds to translations in t, the operator R - to rotations in the x − y plane, X̃ and
Ỹ are the generators of the right multiplication in H.

3 The Noether symmetries of critical Kohn-Laplace equa-

tions

The equation (1.5) arises from the following Lagrangian

L =
1

2
u2

x +
1

2
u2

y + 2(x2 + y2)u2
t + 2yuxut − 2xuyut −

u4

4
. (3.1)

By the group classification [13], the symmetry algebra of (1.5) is generated by (2.4)
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and the following vectors fields:

Z = x
∂

∂x
+ y

∂

∂y
+ 2t

∂

∂t
− u

∂

∂u
,

V1 = (xt − x2y − y3)
∂

∂x
+ (yt + x3 + xy2)

∂

∂y
+ (t2 − (x2 + y2)2)

∂

∂t
− tu

∂

∂u
,

V2 = (t − 4xy)
∂

∂x
+ (3x2 − y2)

∂

∂y
− (2yt + 2x3 + 2xy2)

∂

∂t
+ 2yu

∂

∂u
,

V3 = (x2 − 3y2)
∂

∂x
+ (t + 4xy)

∂

∂y
+ (2xt − 2x2y − 2y3)

∂

∂t
− 2xu

∂

∂u
.

The operator Z determines a dilation while the operators V1, V2, V3 correspond to trans-
formations of more complicated structure.

In [14] we showed that (2.4) and Z are variational symmetries (ϕ = 0 in (1.3)) and
V1, V2 and V3 are divergence symmetries of (1.5). Hence all Lie point symmetries of the
critical Kohn-Laplace equation (1.5) are Noether symmetries (variational or divergence
symmetries). Moreover, in [14] we found explicitly the potentials ϕ in the conservation
laws implied by the Noether’s Theorem.

In the next section we state the main result of this paper.

4 The Conservation Laws

Theorem 1. The conservations laws of the Noether symmetries are:

1. For the symmetry T , the conservation law is Div(τ) = 0, where τ = (τ1, τ2, τ3) and

τ1 = −2yu2
t − uxut,

τ2 = 2xu2
t − uyut,

τ3 =
1

2
u2

x +
1

2
u2

y − 2(x2 + y2)u2
t −

1

4
u4.

2. For the symmetry R, the conservation law is Div(σ) = 0, where σ = (σ1, σ2, σ3) and

σ1 = −
1

2
yu2

x +
1

2
yu2

y + 2y(x2 + y2)u2
t + xuxuy −

1

4
yu4,

σ2 = −
1

2
xu2

x −
1

2
xu2

y − 2x(x2 + y2)u2
t − yuxuy +

1

4
xu4,

σ3 = −2y2u2
x − 2x2u2

y + 4xyuxuy − 4y(x2 + y2)uxut + 4x(x2 + y2)uyut.

3. For the symmetry X̃, the conservation law is Div(χ) = 0, where χ = (χ1, χ2, χ3)
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and

χ1 = −
1

2
u2

x +
1

2
u2

y + 2(x2 + 3y2)u2
t + 2yuxut − 2xuyut −

1

4
u4,

χ2 = −4xyu2
t − uxuy + 2xuxut + 2yuyut,

χ3 = −3yu2
x − yu2

y + 4y(x2 + y2)u2
t + 2xuxuy − 4(x2 + y2)uxut +

1

2
yu4.

4. For the symmetry Ỹ , the conservation law is Div(υ) = 0, where υ = (υ1, υ2, υ3) and

υ1 = −4xyu2
t − uxuy − 2xuxut − 2yuyut,

1

2
u2

x −
1

2
u2

y + 2(3x2 + y2)u2
t + 2yuxut − 2xuyut −

1

4
u4,

υ3 = xu2
x + 3xu2

y − 4x(x2 + y2)u2
t − 2yuxuy − 4(x2 + y2)uyut −

1

2
xu4.

5. For the symmetry Z, the conservation law is Div(ζ) = 0, where ζ = (ζ1, ζ2, ζ3) and

ζ1 = −
1

2
xu2

x +
1

2
xu2

y + 2(x3 − 2ty + xy2)u2
t − yuxuy − 2tuxut

−2(x2 + y2)uyut − uux − 2yuut −
1

4
xu4,

ζ2 =
1

2
yu2

x −
1

2
yu2

y + 2(2tx + x2y + y3)u2
t − xuxuy + 2(x2 + y2)uxut

−2tuyut − uuy + 2xuut −
1

4
yu4,

ζ3 = (t − 2xy)u2
x + (t + 2xy)u2

y − 4t(x2 + y2)u2
t + 2(x2 − y2)uxuy − 4x(x2 + y2)uxut

−4y(x2 + y2)uyut + 2xuuy − 2yuux − 4(x2 + y2)uut −
1

2
tu4.

6. For the symmetry V1, the conservation law is Div(A) = 0, where A = (A1, A2, A3)
and

A1 = −
1

2
(tx − x2y − y3)u2

x +
1

2
(tx − x2y − y3)u2

y + 2t(x3 + xy2 − ty)u2
t

−(x3 + xy2 + ty)uxuy − [t2 − (x2 + y2)2]uxut − 2t(x2 + y2)uyut

−tuux − 2tyuut + yu2 −
1

4
(tx − x2y − y3)u4,
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A2 =
1

2
(x3 + ty + xy2)u2

x −
1

2
(x3 + ty + xy2)u2

y + 2t(x2y + y3 + tx)u2
t

−(tx − x2y − y3)uxuy + 2t(x2 + y2)uxut − [t2 − (x2 + y2)2]uyut

−tuuy + 2txuut − xu2 −
1

4
(x3 + ty + xy2)u4,

A3 = +
1

2
(t2 − x4 − 4txy + 2x2y2 + 3y4)u2

x +
1

2
(t2 + 3x4 + 4txy + 2x2y2 − y4)u2

y

−2(x2 + y2)[t2 − (x2 + y2)2]u2
t + 2[t(x2 − y2) − 2xy(x2 + y2)]uxuy

−4(x2 + y2)(tx − x2y − y3)uxut − 4(x2 + y2)(x3 + ty + xy2)uyut

−2tyuux + 2txuuy − 4t(x2 + y2)uut + 2(x2 + y2)u2 −
1

4
[t2 − (x2 + y2)2]u4.

7. For the symmetry V2, the conservation law is Div(B) = 0, where B = (B1, B2, B3)
and

B1 = −
1

2
(t − 4xy)u2

x +
1

2
(t − 4xy)u2

y + [2t(x2 + 3y2) − 4xy(x2 + y2)]u2
t

+−(3x2 − y2)uxuy + 2(x3 + ty + xy2)uxut − 2(tx − x2y − y3)uyut

+2yuux + 4y2uut −
1

4
(t − 4xy)u4,

B2 =
1

2
(3x2 − y2)u2

x −
1

2
(3x2 − y2)u2

y + 2(x4 − 2txy − y4)u2
t − (t − 4xy)uxuy

+2(tx − x2y − y3)uxut + 2(x3 + ty + xy2)uyut + 2yuuy − 4xyuut − u2

−
1

4
(3x2 − y2)u4,

B3 = (7xy2 − x3 − 3ty)u2
x + (5x3 − 3xy2 − ty)u2

y + 4(x2 + y2)(x3 + ty + xy2)u2
t

+2(tx − 7x2y + y3)uxuy − 4(t − 4xy)(x2 + y2)uxut − 4(3x4 + 2x2y2 − y4)uyut

+2xu2 + 4y2uux − 4xyuuy + 8y(x2 + y2)uut +
1

2
(x3 + ty + xy2)u4

8. For the symmetry V3, the conservation law is Div(C) = 0, where C = (C1, C2, C3)
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and

C1 =
1

2
(x2y − tx + y3)u2

x +
1

2
(tx − x2y − y3)u2

y + 2t(x3 − ty + xy2)u2
t

−(x3 + ty + xy2)uxuy − [t2 − (x2 + y2)2]uxut − 2t(x2 + y2)uyut

−tuux − 2tyuut −
1

4
(tx − x2y − y3)u4,

C2 =
1

2
(x3 + ty + xy2)u2

x −
1

2
(x3 + ty + xy2)u2

y + 2t(tx + x2y + y3)u2
t

−(tx − x2y − y3)uxuy + 2t(x2 + y2)uxut − [t2 − (x2 + y2)2]uyut

−u2 − tuuy + 2txuut −
1

4
(x3 + ty + xy2)u4,

C3 =
1

2
(t2 − x4 − 4txy + 2x2y2 + 3y4)u2

x +
1

2
(t2 + 3x4 + 4txy + 2x2y2 − y4)u2

y

−2(x2 + y2)[t2 − (x2 + y2)2]u2
t + 2[t(x2 − y2) − 2xy(x2 + y2)]uxuy

+4(x2 + y2)(x2y − tx + y3)uxut − 4(x2 + y2)(x3 + ty + xy2)uyut

+2txuuy − 2tyuux − 4t(x2 + y2)uut + 2yu2 −
1

4
[t2 − (x2 + y2)2]u4.

Proof. First, we observe that the potentials for the symmetries T, R, X̃, Ỹ and Z of
(1.5) are 0, that is, these symmetries are variational [14]. Further, the potentials ϕ of
V1, V2, V3 are (−yu2, xu2,−2(x2 + y2)u2), (0, u2,−2xu2), (−u2, 0,−2yu2) respectively. See
[14].

Now, with these at hand, as mentioned in the introduction, the proof is by a tedious
straightforward calculation, which we shall not present here for obvious reasons. However,
a computer assisted proof can be obtained by two simple Mathematica programs. The
first one calculates the components of the conservation laws, which appear in the equation
(1.4). The second program verifies the conservation laws using the Noether Identity [27].
Both Mathematica notebooks can be obtained form the authors upon request. �
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