
 

 

  
Abstract— Feature subset selection, applied as a pre-
processing step to machine learning, is valuable in 
dimensionality reduction, eliminating irrelevant data and 
improving classifier performance. In the classic formulation of 
the feature selection problem, it is assumed that all the 
features are available at the beginning. However, in many real 
world problems, there are scenarios where not all features are 
present initially and must be integrated as they become 
available. In such scenarios, online feature selection provides 
an efficient way to sort through a large space of features. It is 
in this context that we introduce online feature selection for 
the classification of emphysema, a smoking related disease 
that appears as low attenuation regions in High Resolution 
Computer Tomography (HRCT) images. The technique was 
successfully evaluated on 61 HRCT scans and compared with 
different online feature selection approaches, including hill 
climbing, best first search, grafting, and correlation-based 
feature selection. The results were also compared against 
“density mask”, a standard approach used for emphysema 
detection in medical image analysis. 
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I. INTRODUCTION 
High Resolution Computer Tomography is a valuable 
imaging modality for assessing diffuse lung diseases and 
in particular, emphysema. Quantitative image analysis, a 

useful extension of visual evaluation of the CT scans, is of 
great assistance for radiologists performing diagnosis. The 
automated analysis of HRCT scans poses difficult problems, 
because the radiographic patterns observed are often varied 
and subtle. HRCT scans have high specificity for diagnosing 
emphysema and are the most accurate means of emphysema 
diagnosis in determining its type and extent. Emphysema is a 
common chronic respiratory disorder characterized by the 
destruction of lung tissue and is often reflected as areas of low 
attenuation in CT images [1] as can be seen in Figure 1. Visual 
evaluation by medical experts usually overestimates the 
percentage of damaged lung area. Further to this, 
reproducibility is poor both between examiners and between 
assessments made by the same examiner on different 
occasions [2]. Hence, there is a need for an objective and 
 

 
 

accurate technique to detect and quantify emphysema that is 
useful to radiologists. 

 

 
Figure 1: A typical HRCT scan containing emphysema. The regions pointed 

by arrows denote emphysema. 
 

In many real world problems, feature selection is an essential 
part of data analysis. When applied as a pre-processing step to 
machine learning, feature selection is valuable in 
dimensionality reduction, isolating the most important 
information and thereby improving classifier performance. In 
recent years, datasets in many applications have become larger 
and contain more features. Correlated or non-informative 
features can behave like noise in the data, thereby degrading 
classifier performance, as both performance and cost are 
sensitive to the features used to construct the classifier. As a 
result, dimensionality reduction through feature selection 
plays an important role in classification tasks. The standard 
formulation of feature selection assumes that all candidate 
features are available from the beginning. However, in many 
real world problems, there are scenarios where not all features 
are present initially and must be integrated as they become 
available.  
 
In the classic formulation of the feature selection problem, a 
learning system is presented with a training set D consisting of 
(x, y) pairs, where the x values are represented by fixed-length 
numeric feature vectors, and the y values are typically numeric 
scalars. The learner’s task is to select a subset of the elements 
of x that can be used to derive a mapping function f from x to y 
that is as “good as possible” according to some criterion C, 
and sparse with respect to x. If one cannot afford to wait until 
all features have arrived before learning begins, the problem is 
to derive an x → y mapping at each time step, that is as good 
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as possible using a subset of just the features seen so far. We 
call this scenario online feature selection (OFS). In OFS, the 
number of training examples is fixed, but the length of the 
feature vectors increases over time. 
 
The aim of our research is to perform OFS for classification of 
emphysema in HRCT images where the features truly are 
generated online. In the HRCT domain, the potential feature 
space is enormous and only a few features can be held in 
memory at any given time. As a result, we show that this is a 
natural fit for OFS and is an approach that can outperform 
existing algorithms for emphysema classification. In this 
work, we deal with two main components: feature extraction 
and feature selection. We begin OFS for emphysema 
classication with training images and a corresponding ground 
truth that marks each pixel in the training image as either 
emphysema or non-emphysema. Our feature extractor, 
described in Section 3, generates combinations of image 
processing operators and applies them to the training images 
to produce features. A classifer is then produced from a linear 
combination of these features. The OFS algorithm, discussed 
in Section 4, selects a subset of those features and integrates 
them into the model as they arrive. The subset of features that 
was selected is stored and d more features are generated and 
added to the set. Then the online feature selection algorithm 
selects another subset. The last two steps are repeated until a 
stopping condition is met. 
 

II. RELATED RESEARCH 
A common approach to detecting emphysema is called 
“Density Mask” which is simply a thresholding technique [1]. 
Friman et al. [2] have combined image processing and neural 
networks into an emphysema detection system that produces 
high accuracy and reproducibility. Emphysema, along with 
other diffuse lung diseases, is a disease where textural features 
have been used widely for detection [1, 4]. Uppaluri et al. [5] 
has used a Bayesian classifier for recognizing several lung 
disorders, among them emphysema. Their approach partitions 
the lung into 31 x 31 blocks which subsequently are classified, 
which implies an immediate loss in accuracy. It has also been 
shown that Independent Component Analysis (ICA) can be 
used to perform feature subset selection for classification of 
emphysema using naive Bayes and C4.5 decision tree in 
HRCT images [6]. ICA is an iterative algorithm that is aimed 
at producing an entirely new co-ordinate system, with the first 
component being the “most non-gaussian’’, the next being less 
non-gaussian than the first and so on. However, the use of ICA 
as a feature selection technique has been used in the traditional 
sense where it is assumed that all the features are available in 
the beginning. More recently, Singh [7] has explored 
Emphysema detection using JPEG compressed lung images 
with reasonable accuracy. Prasad et al. [8] have used semi-
supervised learning techniques to classify different types of 
Emphysema.  
Feature selection algorithms generally fall into three main 
categories: filters, wrappers and embedded methods [9]. In the 
filter model, feature selection algorithms can be classified into 
two groups, namely, feature weighting algorithms and subset 

search algorithms. The Relief algorithm is a feature weighting 
algorithm that assigns a “relevance” weight to each feature 
[9]. It samples patterns randomly from the training set and 
updates the relevance values based on the difference between 
the selected pattern and the two nearest patterns of the same 
and opposite classes. Relief works by selecting those features 
whose scores exceed a user-defined threshold to form the final 
subset. For the subset search algorithms in the filter model, 
exhaustive search over all possible subsets of a feature set is 
not computationally feasible. Hence a number of authors have 
explored the use of heuristics, often in conjunction with 
branch and bound search [9, 10, 11]. Another school of 
thought argues that the bias of a particular classifier should be 
taken into account when selecting features. This technique is 
called the `wrapper’ [10]. It uses an induction algorithm 
together with a statistical resampling technique such as cross-
validation to evaluate feature subsets. Wrappers often achieve 
better results than filters due to the fact that they are tuned to 
the specific interaction between an induction algorithm and its 
training data. However, they are usually much slower than 
filters as they repeatedly execute the induction algorithm and 
must be re-run when a different induction algorithm is used 
[11]. Embedded methods implement the same idea, but 
proceed more efficiently by directly optimizing a two-part 
objective function with a goodness-of-fit term and a penalty 
for a large number of variables.  
 
While the feature selection literature is ample, the OFS 
literature is rather sparse and mostly involves example 
problems where all of the features are actually available 
beforehand [12]. Jiang et al. [13] have also explored online 
feature selection algorithm in a boosting manner to select the 
most representative features in the context of content-based 
image retrieval. Nurmi and Floreen [14] have also performed 
online feature selection using Gaussian kernels from time 
series data. The efficiency of the technique is evaluated for the 
purpose of activity recognition using toy data and real context 
data, gathered using a 3D accelerometer. Woodley et al. have 
proposed a tracking algorithm based on OFS in order to 
improve robustness to occlusions in the images [15]. Local 
features obtained from regions that overlap with outlier 
regions are excluded from the classifier. Thus, the classifier 
only considers features in regions consistent with the 
generative model. Recently, Glocer et al. [16] have also 
explored OFS in grayscale imagery but their work was limited 
to the problem of edge detection only. 

III. FEATURE EXTRACTION 
 
The lungs are initially located using software developed 
within the group [25] and features are extracted from the lungs 
identified. Feature extraction is an integral part of classifier 
construction. In image processing, a feature can be generated 
as the output of one of a series of operators applied to an 
image. The scalar value of a pixel in the output image is the 
value of the feature for that instance. Feature extraction 
encompasses not only the question of which operators are used 
but also the complexity with which they are combined. We 
study the effects of feature complexity by comparing simple 
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features that consist of a single operator to features whose 
structure is a tree of operators. 

A.  “Simple” Features 
A “simple” feature is generated by running a single image 
processing operator on a raw input image. The operators used 
in this work are listed in Table 1. Some of these operators are 
neighborhood operators, where each output pixel is computed 
from a set of neighboring input pixels. For instance, each pixel 
in the output of the Gaussian smoothing operator is a weighted 
average of the pixels in its neighborhood in the input image. 
The weights are given by a Gaussian centered at that pixel. 
Similarly, the median filter provides the median of the pixels 
in its neighborhood. Binary thresholding converts a raw input 
image into a binary image by setting pixels below a certain 
threshold to zero and the remaining to one. The statistical 
operators perform various computations on the pixel values in 
a neighborhood of a given pixel and the result of those 
computations provide the pixel values for the output image. 
 
A suite of morpohological operations such as opening, closing 
and thresholding are included for feature extraction. In the 
HRCT setting, textural features are often used to characterize 
emphysema in the lung regions. Textural parameters for the 
classification of emphysema are calculated on a small 
neighbourhood surrounding each image point belonging to the 
lung region. The following methods are used for textural 
feature extraction in the context of emphysema classification: 
 

1. moments of gray level histogram of a local area 
(Moments_Histogram) 

2. gray level co-occurrence matrix method (GLCMM) 
3. gray level run length matrix method (GLRLMM) 
4. gray level difference method (GLDM) 

 
The GLCMM, one of the well known texture analysis 
methods, estimates image properties related to second-order 
statistics. Each entry (i,j) in GLCM corresponds to the number 
of occurrences of the pair of gray levels i and j at a distance d 
apart at an angle θ in original image. The configurations of the 
co-occurrence matrix used in our experiments include 1 ≤ d ≤ 
2 and 0 ≤ θ ≤ 90, ± 45 since these values are sufficient to 
cover uniformity of disease features. The GLRLMM is based 
on computing the number of gray level runs of various lengths 
in different directions. Each element of the GLRLM (i,j) 
specifies the estimated number of times a picture contains a 
run of length j, for gray level i, in the direction of angle θ . 
Three grey level run length matrices, where 0 ≤ θ ≤ 360, ± 45, 
are used in our experiments. The full range of θ provides 
greater uniformity among the various disease features used in 
our experiments. GLDM is concerned with the spatial gray-
level distribution and spatial dependence among the gray 
levels in a local area. The features extracted from the methods 
are displayed in Table 1; some features have multiple values, 
as discussed above. 
 

Moments_Histogram GLCMM GLRLM GLDM 

Mean 
 
SD 
 
Variance 
 
Energy 
 
Entropy 

Energy 
 
Entropy 
 
Homogeneity 
 
Contrast 

Short 
Emphasis 
 
Long run 
emphasis 
 
Gray level 
uniformity 
 
Primitive 
length 
uniformity 
 
Primitive 
percentage 

Mean 
 
Contrast 
 
Entropy 
 
SD 
 
Variance 

 
Table 1: Textural Features 

 
The final set of “simple” features are listed as categories in 
Table 2. A neighbouring window size of 12 x 12 is used for 
computing neighbourhood based features. It is reported by 
Prasad et al. [17] that window sizes less than 12x12 do not 
provide uniformity of disease patterns and window sizes larger 
than 12x12 are computationally expensive. These features 
form the foundation for constructing tree-structured features. 
Simple features used with a linear classifier restrict the 
hypothesis class to linear combinations of single operators. 
This is not rich enough to learn hypotheses that require 
combinations of operators. As a result, a richer set of features 
formed using the ‘simple’ features in the form of tree-
structures are used to produce richer hypothesis class. 
 

Feature Category 

Gaussian Smoothing 
Mean Filter 
Median Filter 
Moments_Histogram Features 
GLCMM Features 
GLRLM Features 
GLRDM Features 
Morphological Open, Close 
Binary thresholding 

SMOOTH 
SMOOTH 
SMOOTH 
STAT 
STAT 
STAT 
STAT 
MORPH 
MORPH 

 
Table 2: Operators used to produce simple features which also form the 

building block for all tree-structured features. 
 

B. Complex Features 
The richer set of complex features are constructed using 
tree-structures that have been demonstrated to work well in 
other situations [18]. Given a rich set of operators, these 
trees can represent a large variety of functions of the 
original input data. The operators for these features are the 
same as those used to generate simple features, but are 
combined only in ways that make sense given the nature of 
the operators. This constraint is provided by a context-
sensitive grammar as they offer many advantages. Firstly, 
only sensible features are generated. Secondly, by 
restricting the way in which features can be combined, 
grammars greatly reduce the size of the search space and 
thirdly, they provide an efficient way to incorporate domain 
knowledge. The production of the grammar is described in 
Table 3. When using simple features, a linear classifier is 
restricted to linear combinations of single operators. This 
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also restricts the classifiers from learning sequential 
combinations of operators. The grammar is used to define 
the sequence of operations need to generate the complex 
features. For instance, an example of STAT (SMOOTH(x)) 
may correspond to the process of getting histogram related 
features from an image that has been smoothed using the 
Gaussian filter.  
 

Production 
STAT (SMOOTH (x)) |  
MORPH (SMOOTH (x)) |  
STAT (x) |  
STAT (STAT(X)) |  
MORPH (STAT(X)) |  
MORPH (STAT (SMOOTH(x)) | 
MORPH (MORPH(x)) 

 
Table 3: Grammar used to generate features. Additionally, new features can 
be generated by adding, subtracting, multiplying or dividing any two features 
generated from these rules. 

IV. ONLINE FEATURE SELECTION 

Online feature selection (OFS) is used to provide a systematic 
way to search the large feature space at different time points. 
The OFS problem assumes that features arrive in stages but no 
new instances are added to the problem. At stage t, a new set ft 
of features arrives. The set of all features at stage t is denoted 
by Ft. Thus, Ft = { ft∪ Fs,t-1}, the union of features that have 
just arrived with the set of features that was selected at time t-
1. At time t, after the arrival of ft, a feature selection algorithm 
selects the subset Fs,t ⊆Ft based on some as yet unspecified 
criterion. In this way online feature selection can be viewed as 
adding a wrapper around a feature selection algorithm that is 
parameterized by the number of features added per stage, 
dt=|ft|, and by the feature selection algorithm it uses. At the 
core of the online feature selection framework is the criterion 
and the search that changes the choice of the features selected. 
In this work, two wrappers, a correlation based filter approach 
and grafting (an embedded technique) is used. 
 

A. Hill Climbing using “empirical Bayes risk” 
The hill climbing algorithm initializes a cache with d features. 
The initial features of the algorithm is the fitness of the initial 
cache. The cache is then mutated in one of three ways, each of 
which is equally probable: a randomly selected feature is 
removed from the cache, a randomly generated feature is 
added to the cache, or a randomly selected feature in the cache 
is replaced with a randomly generated feature. If this mutation 
improves the fitness, the mutation is kept. Forrest and Mitchell 
[19] refer to this as a random mutation hill climbing, or 
RMHC. In this work, the criterion used to evaluate the fitness 
of the cache is the “empirical Bayes risk” introduced by Green 
and Swets [20], which can be computed from the ROC curve 
by finding the point on the curve where the slope is 45 
degrees.  
 

B. Best First Search 
It has been reported by Kovahi and John [21] that best first 
search is more robust than hill climbing. Two most common 

variants of best first search are sequential forward selection 
and sequential backward elimination. Although the process 
can be slower, backward elimination is used in this work 
because it is not sensitive to the feature that is chosen first. 
The number of features per stage of the online feature 
selection algorithm is small enough that the computation time 
for either algorithm is much less than the time it takes to 
extract new features. Sequential backward elimination is 
initialized with a full set of features F0. The algorithm first 
removes each feature fi ∈  F0 from F0 and trains an induction 
algorithm with the feature set F0 – {fi}. We use the Fisher 
Linear Discriminant as an induction algorithm in this work. 
The feature fmax whose removal minimizes the error in the 
resulting classifier is removed, and F1 = F0 - {fmax}. In the next 
round, for each of the remaining features fi ∈  F1, the 
algorithm tests the feature subset F1 – {fi} and removes the 
feature fmax that minimizes the error of the resulting classifier 
to produce F2 = F1 - {fmax}. This process repeats until a local 
minimum of classifier error has been reached or some other 
stopping condition is met. Removing a feature may have only 
a small negative impact on performance, so backward 
elimination becomes a trade-off between marginally lower 
performance and a smaller set of features. This implies the 
need for some sort of regularization. Following Kovahi and 
John [19], we have used the same approach of adding a 
penalty c=0.001 per feature in order to force the algorithm to 
favour smaller subsets. Hence, the best first search algorithm 
minimizes the loss function given below where BAYESR  is the 
empirical Bayes risk, described earlier. 
 

0||ωcRL BAYES +=
   

(1) 
 

C. Filter based Correlation Based Feature Selection 
 
Comparisons were also performed with Correlation based 
Feature Selection (CFS) metric that has been commonly used 
in the filter framework for many machine learning problems 
[11]. The heuristic by which CFS measures the goodness of 
feature subsets takes into account the usefulness of individual 
features for predicting the class label along with the level of 
intercorrelation among them. The hypotheses on which the 
heuristic is based can be stated: Good feature subsets contain 
features highly correlated (predictive of) with the class, yet 
uncorrelated with (not predictive of) each other. The heuristic 
is formalized by the definition: 
 

ff

cf
s

r)1k(kk

rk
Merit

−+
=     (2) 

where sMerit   is the heuristic “merit” of a feature subset S 
containing k features, 

cfr the average feature-class correlation, 

and ffr the feature-feature intercorrelation. Equation 2 is 
nothing but Pearson’s correlation coefficient [22], where all 
variables have been standardized. Pearson's correlation 
coefficient reflects the degree of the dependency between two 
variables. The numerator of the equation indicates how 
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strongly a feature group is correlated with the class and the 
denominator indicates how much redundancy is present 
among them. More details of the technique can be obtained in 
(Hall, 1999) where the performance of CFS using best first 
search has been shown to be superior to other search strategies 
[11]. 
 

D. Grafting 
 
Grafting [12] uses the idea of regularization as an alternative 
to feature selection. In other words, the technique minimizes a 
regularized risk criterion of the form: 
 

       
(3) 

 
The second term, the regularizer, is the l1 norm of the weight 
vector. The free parameter,  characterizes the trade-off 
between accuracy and complexity. The first term of the 
criterion function is the loss function, which is implemented as 
the binomial negative log likelihood (BNLL) loss described in 
Hastie et al. (2001): 
 

     
(4) 

 
The grafting algorithm is based on the observation that the 
addition of feature i incurs a penalty of . Thus adding 
the feature is only worthwhile if the reduction of the mean loss 
is greater than the increase in the penalty, and that this will 
only happen if . This gradient test is 
performed for each feature as it arrives, and it is faster than re-
optimizing the classifier with respect to the new feature. If the 
weights do not pass the test, then they are discarded. On the 
other hand, if at least one weight passes, then the weight that 
maximizes the magnitude of the gradient is added and the 
model is optimized with respect to all of its parameters. 
Grafting differs from the other algorithms because it considers 
not only whether to add a new feature but also whether to drop 
currently selected features and even whether to discard 
features. 

V. EXPERIMENTAL RESULTS AND DISCUSSION 
The aim of performance evaluation is to compare the level of 
effort expended between algorithm-based classification versus 
manual classification of the same job. Accuracy is estimated 
using 10 fold cross-validation on a dataset consisting of 61 
HRCT scans. The regions were labeled manually through 
interactive drawing of regions of interest in consultation with 
radiologists. They are shown as darker areas in Figure 2(a). 
With the different range of parameter values, the total number 
of simple features resulted in 49 features. Random mutation 
hill climbing was not used due to the small number of 
features. It is worth noting that the space of tree-structured 
features is much larger than the simple features space. 

Because generating features is the time-limiting step, each 
algorithm was allowed to explore a total of 500 features. The 
hill climber was initialized to one. At each iteration, a feature 
was added to the cache, removed from the cache, or replaced 
with another feature. For best first search, the feature cache 
was initialized to five features. The backward elimination was 
run with a complexity penalty of c=0.001 for every feature. 
Grafting differs from the other algorithms in that whenever a 
new feature is added, it can check discarded features and 
potentially reincorporate them into the model. Ideally, the best 
result would happen by keeping all the features in memory, 
but this is not feasible. Instead, 20 iterations are run where 25 
features are explored at every iteration. Evaluation was done 
using C4.5 decision trees [24]. C4.5 is an algorithm that 
represents the training data in the form of a decision tree and 
is known for their robustness and execution speed.  
 
To illustrate the nature of these experiments, Figure 2 shows 
the results of emphysema classification using the features 
selected by the CFS technique, using the whole feature set 
along with “density mask” and the original image. “Density 
Mask” uses a simple thresholding technique where areas with 
attenuation of less than -910HU correlated closely with the 
pathologic assessment of emphysema. As can be seen in 
Figure 2(d), the output of the “density mask” algorithm shows 
that a lot of noise is picked up along with the emphysema 
regions. The mean accuracy comparison of the different 
techniques along with “density mask” is shown in Table 4 and 
it can be observed that using the feature selection techniques 
results in higher mean accuracy. CFS outperforms hill 
climbing, which in turn was slightly better than best first 
search and grafting.  
 
Additionally, we also combined the different online feature 
selection techniques using a simple voting scheme. The 
features selected by the different techniques at each time point 
are chosen by a majority vote. However, the accuracy using 
the combined approach resulted in a very small improvement 
as can be seen in Table 4. The comparison of the different 
techniques was also made using statistical tests, and a 
significant difference between the online feature selection 
techniques and that of the original features was observed (all p 
<0.001). While a significant difference was not observed 
among the online feature selection techniques, there was a 
difference between the techniques and “Density Mask” (all p 
<0.001). Although no quantification was made, it was 
observed that the decision trees built by the online techniques 
were dependant on the order in which relevant features were 
seen. 
 
 

Technique Mean Accuracy 
Hill Climbing 87.37 
Best First Search 87.11 
CFS 88.13 
Grafting 86.97 
Combined 89.33 
“Density Mask” 79.36 
Original Features 83.51 

Table 4: Evaluation of different techniques for emphysema classification 
given by mean accuracy. 
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It was also observed that the tree-structured features 
outperformed the simple features for the same algorithm and 
hence, proving that there is an advantage to increasing the 
complexity of the feature structure. Table 5 shows comparison 
of the results for the different techniques when tree-structured 
features were used.  
 

Technique Simple 
features 

Tree-structured 
features 

Hill Climbing 85.75 87.63 
Best First Search 82.17 85.19 
CFS 85.37 88.31 
Grafting 86.33 87.91 

Table 5: Comparison of mean accuracy using different OFS techniques for 
simple alone and tree-structured features included. 

 
 

VI. CONCLUSIONS 
In this paper, we have presented a novel online feature 
selection algorithm for the detection of emphysema in HRCT 
images. In the HRCT domain, the computational bottleneck is 
the feature generator, not the classier. Adding complexity to 
the structure of the features makes the feature space too large 
to search exhaustively but it increases the flexibility of the 
hypothesis class and can improve the performance of the 
resulting classifier. OFS provides a systematic way to search 
this larger feature space, and we compared classification using 
online feature selection as a pre-processing technique against 
classification in the original feature space along with the 
classical “density mask’’ approach. The OFS algorithms 
achieve higher accuracy comparatively and hence, we are able 
to provide better emphysema quantitative measures for 
medical experts. CFS in particular was found to be an efficient 
way to incorporate features in an online fashion. The OFS 
technique is more practical and widely applicable since many 
“real-world’ computer vision applications are dominated by 
features that are not readily available in the beginning. 
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Figure 2: 2(a) contains the original image where the dark regions correspond 
to emphysema. 2(b) and 2(c) and 2(d) are the outputs of C4.5 in original 
feature space and in the feature space chosen by CFS respectively. The blue 
regions correspond to emphysema. 
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