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In this paper, we shall firstly illustrate why we should introduce set-valued stochastic integrals, and then
we shall discuss some properties of set-valued stochastic processes and the relation between a set-valued
stochastic process and its selection set. After recalling the Aumann type definition of stochastic integral,
we shall introduce a new definition of Lebesgue integral of a set-valued stochastic process with respect
to the time t. Finally we shall prove the presentation theorem of set-valued stochastic integral and dis-
cuss further properties that will be useful to study set-valued stochastic differential equations with their
applications.
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1. Introduction

It is well-known that classical stochastic differen-
tial equations have widely been used in optimal con-
trol problems1, mathematical finance 2,3 and so on.
Since the dynamical systems concerning practical
uses are complex, the dynamical systems having ve-
locities are usually not determined uniquely by the
state of the systems. The investigations of this kind
systems led to replacement of the differential equa-
tion ẋ(t) = f (t,x(t)) with the differential inclusion
ẋ(t) ∈ F(t,x(t)), where F is a set-valued function.
This kind of situation appears in studying the evo-
lution of macro-systems in economic, social or bi-
ological sciences, where very often it is difficult to
determine velocities uniquely.

On the other hand, we have to consider the sys-
tems in which there are random disturbances in

the real world. In this case, some stochastic op-
timal control problems can be described by set-
valued stochastic differential inclusions. Indeed, as-
sume that f = {( ft(z, p))t∈I : (z, p) ∈ Rd ×U}, g =
{(gt(z, p))t∈I : (z, p) ∈ Rd ×U} are d-dimensional
measurable and adapted stochastic processes de-
pending on parameters z ∈ Rd , p ∈ U , where U is
a fixed set and I is the set of time, for examples,
I = [0,T ] or I = [0,∞), then the control equation is

xt = ξ+
Z t

0
fs(xs,us)ds+

Z t

0
gs(xs,vs)dBs, (1.1)

for any t ∈ I a.e., where B = (Bt)t∈I is a Brownian
motion. The stochastic process ((ut)t∈I , (vt)t∈I)
is called a strategy or a control taking values in
U . If C, U, V are given sets of constraints and
strategies respectively, we shall look for the triples
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(xu,v,u,v) such that xu,v = (xu,v
t )t∈I is the solution

of (1.1), and (xu,v,u,v) ∈ C×U× V. If for any
fixed t ∈ I, z ∈ Rd , put Ft(z) = { ft(z,ut) : u ∈ U};
Gt(z) = {gt(z,vt) : v ∈ V}. Then to look for the so-
lutions of (1.1) becomes to determine the solution
set of the following set-valued stochastic differential
inclusion:

dxt ∈ Ft(xt)dt +Gt(xt)dBt , x0 = ξ, (1.2)

or stochastic integral form

xt − xs ∈ cl
(Z t

s
Fτ(xτ)dt +Gτ(xτ)dBτ

)
, s, t ∈ I

(1.2′)
The purpose of stochastic optimal control is to min-
imize the expectation value of a given function c :
C×U×V → R, where c characterizes the cost of
the loss or the errors related to the choice of a given
control strategy and c(u,v) = E[c(xu,v,u,v)] is called
the cost of control.

In (1.2), there are two parts: one is the part
Ft(xt)dt which is related to the integral of a set-
valued stochastic process with respect to time t, i.e.R t

0 Fs(xs)ds, and the other is the part Gt(xt)dBt which
is related to the Ito integral of a set-valued stochastic
process with respect to Bt . How to define these two
integrals suitably is the first problem in the theory of
set-valued stochastic analysis. What properties do
they have? These problems are what we shall con-
sider.

There are many good works in this area. In 1994,
Ahmed 4 introduced set-valued differential inclu-
sion with the special case that the second part G of
(1.2) is a real-valued function. Kisielewicz 5−10 dis-
cussed set-valued stochastic integral and solutions
problems of general stochastic differential inclusion
(1.2). In 1998, Aubin and Prato 11 obtained a viabil-
ity theorem for stochastic differential inclusion, and
Motyl 12 discussed stability problem for stochastic
inclusion. We also would like to show our thanks
to Polish mathematicians for their telling us the nice
summary in this area 13,14.

However, there are only a few papers to dis-
cuss stochastic integrals of set-valued stochastic pro-
cess. Kim 15 used the definition of stochastic inte-
gral of set-valued stochastic process introduced by
Kisielewicz 6 and discussed its properties. We called
it Aumann type integral since the idea came from

Aumann integral of a set-valued random variable 16.
We may consider the concept of Ito integral of a set-
valued stochastic process by another way, because
the Ito integral of a set-valued stochastic process
with respect to a Browniwn motion in Rd should be
a set-valued stochastic processes in Rd rather than in
L2[Ω,Rd ]. So is the set-valued Lebesgue integral.
Jung and Kim17 gave a new definition with basic
space being R by taking fixed time t. It is a quite
nice work. But we still think that this new defini-
tion is necessary to correct again since it may be
more suitable to treat a set-valued stochastic pro-
cess as a whole. Li and Ren18 introduced a new
way to define the Ito integral of set-valued stochas-
tic processes and discussed their properties. In this
paper, we should consider the Lebesgue integral of
set-valued stochastic processes and their properties.

We organize our paper as following: in section
2, we shall introduce some necessary notations, def-
initions and results about set-valued stochastic pro-
cesses. In section 3, we shall give a new definition
of Lebesgue integral of a set-valued process with re-
spect to the time t. We shall also discuss some prop-
erties of set-valued stochastic integral, especially
the presentation theorem of set-valued stochastic
Lebesgue integral.

2. Representation theorems of set-valued Lp-
bounded progressively measurable processes

Throughout this paper, assume that R is the set of all
real numbers, I = [0,T ], N is the set of all natural
numbers, Rd is the d-dimensional Euclidean space
with usual norm ‖ · ‖, B(E) is the Borel field of the
space E, (Ω,A,µ) is a complete atomless probabil-
ity space, the σ-field filtration {At : t ∈ I} satisfies
the usual conditions (i.e. complete, non-decreasing
and right continuous). Let Lp[Ω,At ,µ;Rd ] be the
set of Rd-valued At-measurable random variables ξ
with the expectation E[‖ξ‖p] < ∞ (p≥ 1). When At
is replaced by A, Lp[Ω,A,µ;Rd ] can be written as
Lp[Ω,Rd ]

Let f = { f (t),At : t ∈ I} be a Rd-valued adap-
tive stochastic process. It is said that f is pro-
gressively measurable if for any t ∈ I, the mapping
(s,ω) 7→ f (s,ω) from [0, t]×Ω to Rd is B([0, t])×
At-measurable. If denote

{A⊂ I×Ω : ∀t ∈ I,A∩([0, t]×Ω)∈B([0, t])×At},
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as C, then f is progressively measurable if and only
if f is C-measurable. Each right continuous (left
continuous) adaptive process is progressively mea-
surable.

Assume that Lp(Rd) denotes the set of Rd-valued
stochastic processes f = { f (t),At : t ∈ I} such that
f satisfying (a) f is progressive; and (b)

||| f |||p =
[
E

(Z T

0
‖ f (t,ω)‖pds

)]1/p
< ∞, (2.1)

Let f , f ′ ∈ Lp(Rd), f = f ′ if and only if ||| f −
f ′|||p = 0. Then (Lp(Rd), ||| · |||p) is complete.

Now we review notation and concepts of set-
valued stochastic processes.

Assume that K(Rd) is the family of all nonempty,
closed subsets of Rd with usual norm ‖ · ‖, and
Kc(Rd) (resp. Kk(Rd), Kkc(Rd)) is the family of all
nonempty closed convex (resp. compact, compact
convex) subsets of Rd .

For any x ∈ Rd , A is a nonempty subset of Rd ,
define the distance of x and A

d(x,A) = inf
y∈A
‖x− y‖.

The Hausdorff metric on K(Rd) is defined as:

dH(A,B) = max{sup
a∈A

d(a,B),sup
b∈B

d(b,A)} (2.2)

for A,B ∈ K(Rd). Note that the Hausdorff met-
ric between two closed sets A,B may take infinite
when they are unbounded. But it is known ( The-
orem 1.1.2 19) that the family of all bounded ele-
ments in K(Rd) is a complete separable space with
respect to the Hausdorff metric dH , and Kk(Rd) and
Kkc(Rd) are its closed subsets. For B ∈ K(Rd), de-
fine ‖B‖K = dH({0},B) = supa∈B ‖a‖.

For a set-valued random variable F ,19 20 define
the set

Sp
F = { f ∈ Lp[Ω,Rd ] : f (ω) ∈ F(ω) a.e.(µ)}.

where Lp[Ω,Rd ] is the set of all Rd-valued random
variables f such that ‖ f‖p = [E(‖ f‖p)]1/p < ∞, and
constant p≥ 1. The expectation of F is defined as

E[F ] = {E[ f ] : f ∈ S1
F}.

It is called the Aumann integral introduced by
Aumann16 in 1965 . A set-valued random vari-
able F : Ω → K(Rd) is called integrable if S1

F
is non-empty. F is called integrable bounded ifR

Ω ‖F(ω)‖Kdµ < ∞. Let Lp[Ω,A,µ;K(Rd)] (resp.
Lp[Ω,A,µ;Kc(Rd)], Lp[Ω,A,µ; Kkc(Rd)]) denote
the family of K(Rd)-valued (resp. Kc(Rd), Kkc(Rd)-
valued) Lp-bounded random variables F such that
‖F(ω)‖K ∈ Lp[Ω,R]. Concerning more definitions
and results of set-valued random variables, readers
could refer to the book 19 or the excellent paper.20

F = {F(t) : t ∈ I} is called a set-valued stochas-
tic process if F : I×Ω→K(Rd) is a set-valued func-
tion such that for any fixed t ∈ I, F(t, ·) is a set-
valued random variable.

A set-valued process F = {F(t) : t ∈ I} is called
adapted with respect to the filtration {At : t ∈ I}, if
F(t) is measurable with respect to At for each t ∈ I,
and denoted by {F(t),At : t ∈ I}. F is called mea-
surable if F is I×Ω measurable, i.e. {(t,ω)∈ I×Ω :
F(t,ω)∩A 6= /0} ∈B(I)×A for A ∈B(Rd).
Definition 2.1 A set-valued stochastic process F =
{F(t) : t ∈ I} is called to be progressively mea-
surable, if it is C-measurable, i.e. for any A ∈
B(Rd),{(s,ω) ∈ I×Ω : F(s,ω)∩A 6= /0} ∈ C.

If F is progressively measurable then F is
adapted and measurable.
Definition 2.2 A progressively measurable set-
valued stochastic process F = {F(t),At : t ∈ I} is
called Lp-bounded, if the real stochastic process
{‖F(t)‖K,At : t ∈ I} ∈ Lp(R).
Definition 2.3 A Rd-valued process { f (t),At :
t ∈ I} ∈ Lp(Rd) is called an Lp-selection of F =
{F(t),At : t ∈ I} if f (t,ω) ∈ F(t,ω) a.e.(t,ω) ∈
I×Ω.

Let Sp({F(·)}) or Sp(F) denote the family of all
Lp(Rd)-selections of F = {F(t),At : t ∈ I} , i.e.

Sp(F) =
{
{ f (t)} ∈ Lp(Rd) : f (t,ω) ∈ F(t,ω),

a.e. (t,ω) ∈ I×Ω
}

.

Please note the difference between Sp({F(·)})
and Sp

F(t)(At), the later means the selection set in
Lp[Ω,At ,µ;Rd ] of the set-valued random variable
F(t), t ∈ I.
Theorem 2.418,21 If Sp(F) 6= /0, then Sp(F) is a
closed set of (Lp(Rd), ||| · |||p).
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It is natural to ask under what conditions
Sp(F) 6= /0 and whether the set-valued stochastic pro-
cess can be represented by a sequence in Sp(F). The
next theorem will answer these questions.
Theorem 2.519, 21 Assume that F = {F(t) : t ∈ I}
is an Lp-bounded progressively measurable process.
Then there exists a sequence of progressively mea-
surable stochastic process fn : I×Ω→ Rd , n≥ 1 in
Sp(F) such that for any (t,ω) ∈ I×Ω,

F(t,ω) = cl{ fn(t,ω) : n≥ 1}. (2.3)

Furthermore, if F is an Lp-bounded closed convex
progressively measurable set-valued stochastic pro-
cess and satisfies

(C1) for any ω ∈ Ω, t 7→ F(t,ω) is lower semi-
continuous (l.s.c.),
then there exists a sequence of Caratheodory se-
lections fn : I ×Ω, n ≥ 1 of F such that for any
(t,ω) ∈ I×Ω, (2.3) exists.
Remark 2.6 For the definition of l.s.c. of a set-
valued function, readers may refer to 29 or 21). A
set-valued stochastic process is said to be trajec-
tory lower semi-continuous (l.s.c.) if it satisfies
(C1). Similarly, we may also have trajectory upper
semi-continuous (u.s.c.), trajectory continuous, tra-
jectory upper semi-continuous with respect to Haus-
dorff metric dH (h.u.s.c.), trajectory lower semi-
continuous with respect to dH (h.l.s.c.) and trajec-
tory continuous with respect to dH .
Theorem 2.7 Assume that F = {F(t) : t ∈ I} is
an Lp-bounded progressively measurable set-valued
stochastic process. Let fn : I×Ω → Rd , n ≥ 1 be
a sequence of progressively measurable stochastic
processes in Sp(F) such that for any (t,ω) ∈ I×Ω,

F(t,ω) = cl{ fn(t,ω) : n≥ 1}.

Then, for any f ∈ Sp(F) and ε > 0, there exists a
measurable partition {A1, · · · ,An} of I×Ω such that

||| f −
n

∑
i=1

IAi fi|||p < ε.

Proof Assume that for any (t,ω) ∈ I×Ω, f (t,ω) ∈
F(t,ω) with f ∈ Sp(F). Assume ρ ∈ L1(Rd) is a
positive stochastic process satisfying

Z

I×Ω
ρ(t,ω)d(λ×µ) <

εp

3
.

Let

B1 = {(t,ω) :‖ f (t,ω)− f1(t,ω) ‖p< ρ(t,ω)}
Denote

{(t,ω) :‖ f (t,ω)− fn(t,ω) ‖p< ρ(t,ω)}\ (∪n−1
i=1 Bi)

as Bn, n ≥ 2. Then {Bi} is a countable measurable
partition of I×Ω . Since f , f1 ∈Lp(Rd), there exists
an integer n such that

∞

∑
i=n+1

Z

Bi

‖ f (t,ω) ‖p d(λ×µ) <
(ε/2)p

3
,

and
∞

∑
i=n+1

Z

Bi

‖ f1(t,ω) ‖p d(λ×µ) <
(ε/2)p

3
.

Let A1 = B1
S

(
S∞

i=n+1 Bi) and A j = B j, 2 ≤ j ≤ n,
then

‖| f −
n

∑
i=1

IAi fi |‖p
p

= E
(Z T

0
‖ f (s,ω)−

n

∑
i=1

IAi fi(s,ω) ‖p ds
)

≤
n

∑
i=1

Z

Bi

‖ f (s,ω)− fi(s,ω) ‖p d(λ×µ)

+
∞

∑
i=n+1

Z

Bi

‖ f (s,ω)− fi(s,ω) ‖p d(λ×µ)

≤
Z

I×Ω
ρ(s,ω)d(λ×µ)+

∞

∑
i=n+1

2p
Z

Bi

(‖ f (s,ω) ‖p

+ ‖ f1(s,ω) ‖p)d(λ×µ)
< εp.

Thus ‖| f −
n
∑

i=1
IAi fi |‖p< ε.

Theorem 2.8 Assume that F = {F(t) : t ∈ I} is a
progressively measurable set-valued stochastic pro-
cess, then F is Lp-bounded if and only if Sp(F) is
bounded in Lp(Rd).
Proof Assume that F is Lp-bounded, then F =
{‖F(t)‖K,At : t ∈ I} ∈ Lp(R). We have ||| f |||p ≤
|||F |||p < ∞ for any f ∈ Sp(F), i.e. Sp(F) is bounded
in Lp(Rd).

Now we consider opposite part. Assume that
Sp(F) is bounded in Lp(Rd). Since F is a pro-
gressively measurable set-valued stochastic process,
there exists a sequence of progressively measurable
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selections fn ∈ Sp(F), n ≥ 1 of F such that for any
(t,ω) ∈ I×Ω,

F(t,ω) = cl{ fn(t,ω) : n≥ 1},
by Theorem 2.7. Thus by using Lemma 1.3.12 19 (or
20) on product space I×Ω, we have

E
[Z T

0
‖F(s)‖p

Kds
]
= sup

f∈Sp(F)
E

[Z T

0
‖ f (s)‖pds

]
< ∞,

Thus F is Lp-bounded.
Theorem 2.9 Assume that F = {F(t) : t ∈ I}
is a progressively measurable closed convex set-
valued stochastic process (i.e. for any t ∈ I,ω ∈ Ω,
F(t,ω) ∈ Kc(Rd)), and Sp(F) 6= /0, then Sp(F) is
convex.
Proof Let { fi(t) : t ∈ I} ∈ Sp(F), i = 1,2, a,b≥ 0,
and a+b = 1. Since F(t,ω) is convex, for any t ∈ I,
(a f1 + b f2)(t,ω) ∈ F(t,ω),a.e.. By Minkowski in-
equality on product space I×Ω, we have that

‖|a f1 +b f2|||p
=

[
E

(Z T

0
‖a f1(s)+b f2(s)‖pds

)]1/p

≤ a
[
E

(Z T

0
‖ f1(s)‖pds

)]1/p

+b
[
E

(Z t

0
‖ f2(s)‖pds

)]1/p

< ∞,

i.e. a f1 +b f2 ∈ Sp(F), the proof is completed.

Let Lp(K(Rd)) denote the set of all Lp-bounded
progressively measurable K(Rd)-valued stochastic
process. Similarly, we have notations Lp(Kc(Rd)),
Lp(Kk(Rd)) and Lp(Kkc(Rd)).

Take Fi = {Fi(t) : t ∈ I} ∈ Lp(K(Rd)), i = 1,2.
Since for any t ∈ I,

dH(F1(t,ω),F2(t,ω)) ≤ ‖F1(t,ω)‖K +‖F2(t,ω)‖K

< ∞,

the real-valued stochastic process {dH(F1(t),F2(t)) :
t ∈ I} belongs to Lp(R). Thus, define

∆p(F1,F2) =
[
E

(Z T

0
dp

H(F1(s,ω),F2(s,ω))ds
)]1/p

.

F1 and F2 are said to be equivalent, if for any t ∈
I, ∆p(F1,F2) = 0, denoted by F1 = F2. Then ∆p

is a metric on Lp(K(Rd)). In fact, for any Fi ∈
Lp(K(Rd)), i = 1,2,3, by Minkowski inequality, we
have that

∆p(F1,F2)

=
[
E

(Z T

0
dp

H(F1(s,ω),F2(s,ω))ds
)]1/p

≤
{

E
[(Z T

0

(
dH(F1(s,ω),F3(s,ω))+

dH(F3(s,ω),F2(s,ω))
)p

ds
)]}1/p

≤
[
E

(Z T

0
dp

H(F1(s,ω),F3(s,ω))ds
)]1/p

+
[
E

(Z T

0
dp

H(F3(s,ω),F2(s,ω))ds
)]1/p

= ∆p(F1,F3)+∆p(F3,F2).

It is easy to prove that (Lp(K(Rd)),∆p) is com-
plete, Lp(Kc(Rd)), Lp(Kk(Rd)) and Lp(Kkc(Rd))
are closed subsets of (Lp(K(Rd)),∆p). Denote

|||F |||p = ∆p(F,{0}) =
[
E

(Z T

0
‖F(s)‖p

Kds
)]1/p

.

Definition 2.10 A non-empty set Γ ⊂ Lp(Rd) of
Rd-valued progressively measurable stochastic pro-
cesses is called decomposable with respect to the
progressively measurable σ-field C , if for any f ,g∈
Γ, any U ∈ C, we have IU f + IUcg ∈ Γ.

Firstly, we know that for any progressively mea-
surable stochastic process F ∈ Lp(K(Rd)), Sp(F) is
decomposable with respect to σ-field C. Further-
more we have the following Theorem.
Theorem 2.11 Assume that Γ ⊂ Lp(Rd) is a non-
empty closed set of Rd-valued progressively measur-
able stochastic processes, then Γ is decomposable
with respect to progressively measurable σ-field C if
and only if there exists a progressively measurable
set-valued stochastic process F ∈ Lp(K(Rd)) such
that Γ = Sp(F). Furthermore, Γ is convex if and only
if F ∈ Lp(Kc(Rd)).
Proof If there exists a progressively measurable set-
valued stochastic process F ∈ Lp(K(Rd)) such that
Γ = Sp(F), then Γ is decomposable with respect to
σ-field C since Sp(F) is decomposable, i.e. for any
f1, f2 ∈ Sp(F), U ∈ C we have IU f1 + IUc f2 ∈ Γ.

Now let Γ be a non-empty closed set of Rd-
valued progressively measurable stochastic pro-
cesses in Lp(Rd), and Γ is decomposable with re-
spect to σ-field C, then there exists a sequence of
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{ fi : i ∈ N} ⊂ Lp(Rd) such that for any t ∈ I, ω ∈
Ω,{ fi(t,ω) : i ∈ N} is dense in Rd .

For every i, let

αi = inf{‖| fi−g |‖p: g ∈ Γ},

then there exists a sequence {gi j : j ≥ 1} ⊂ Γ, such
that

lim
j→∞

||| fi−gi j|||p = αi.

Define

F(t,ω) = cl{gi j(t,ω) : i, j ∈ N},(t,ω) ∈ I×Ω,

then F = {F(t) : t ∈ I} ∈ Lp(K(Rd)).
Next we will prove Γ = Sp(F). For any f ∈

Sp(F), ε > 0, by Theorem 2.7, there exists a finite
C-measurable partition {A1, · · · ,An} of I ×Ω and
{h1, · · · ,hn} ⊂ {gi j} such that

‖| f −
n

∑
k=1

IAk hk |‖p< ε.

Since ∑n
k=1 IAk hk ∈ Γ and Γ is a closed set, f ∈ Γ. So

Sp(F)⊆ Γ.
Suppose that Sp(F)& Γ. Then there exist f ∈ Γ,

A ∈ C, and δ > 0 such that

inf
i, j
‖ f (t,ω)−gi j(t,ω) ‖≥ δ, ∀(t,ω) ∈ A

and (λ×µ)(A) > 0. Thus, there exists fi such that

B = A∩{
(t,ω) ∈ I×Ω :‖ f (t,ω)− fi(t,ω) ‖≤ δ

3
}

has a positive measure, and let

g′j = IB f + IΩ\Bgi j, j ∈ N,

then {g′j} ⊂ Γ with ‖| fi−g′j |‖p≥ αi ≥ 0. Since

‖ fi(t,ω)−gi j(t,ω) ‖
≥ ‖ f (t,ω)−gi j(t,ω) ‖ − ‖ f (t,ω)− fi(t,ω) ‖
≥ 2δ

3
,

‖| fi−gi j |‖p −αi ≥ ‖| fi−gi j |‖p − ‖| fi−g′j |‖p

≥ T
1
p (

2δ
3
− δ

3
)µ(B) > 0.

It contracts ‖| fi−gi j |‖p→ αi when j −→ ∞. Then
we have Γ = Sp(F).

Suppose that Γ is convex, and Γ = Sp(F). Let
G = coF , then Sp(G) is a closed convex set in
Lp(Rd). Since Sp(F) ⊂ Sp(G), coSp(F) ⊂ Sp(G).
Next we will prove coSp(F) ⊃ Sp(G). By Theorem
2.5, there exists a sequence { fi} ⊂ Sp(F) such that
F(t,ω) = cl{ fi(t,ω), i≥ 1}, let

W = {g : g =
m

∑
i=1

αi fi,αi ∈ Q+,
m

∑
i=1

αi = 1,m≥ 1}

then W is a subset of Sp(G), and G(t,ω) =
cl{g(t,ω) : g ∈W}. For any f ∈ Sp(G), ε > 0, by
Theorem 2.7, there exist a finite measurable parti-
tion {A1, · · · ,An} of I×Ω and stochastic processes
g1, · · · ,gn in W such that

‖| f −
n

∑
k=1

IAk gk |‖p< ε.

Thus there exists an integer m, for 1 ≤ k ≤ n, we

have gk =
m
∑

i=1
αki fi, where αki ≥ 0 and

m
∑

i=1
αki = 1.

Therefore
n

∑
k=1

IAk gk =
n

∑
k=1

IAk(
m

∑
i=1

αki fi) =
n

∑
k=1

m

∑
i=1

αkiIAk fi.

Since IAk fi ∈ Sp(F),
n
∑

k=1
IAk gk is a convex combi-

nation of the elements in Sp(F), which means f ∈
coSp(F). Thus, we have coSp(F) = Sp(G). Hence,
F is convex. The opposite part is obvious, which
completes the proof of Theorem. .

3. The Lebesgue integral of set-valued stochastic
process.

Definition 3.1 Let a set-valued stochastic process
F = {F(t) : t ∈ I} ∈ Lp(K(Rd)), 1 ≤ p < +∞. For
any ω ∈Ω, t ∈ I, define

(A)
Z t

0
F(s,ω)ds :=

{Z t

0
f (s,ω)ds : f ∈ Sp(F)

}
,

where
R t

0 f (s,ω)ds is the Lebesgue integral,
(A)

R t
0 F(s,ω)ds is called the Aumann type

Lebesgue integral of set-valued stochastic process
F with respect to time t. For any 0≤ u < t < ∞,

(A)
Z t

u
F(s,ω)ds := (A)

Z t

0
I[u,t](s)F(s,ω)ds.
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Remark 3.2 In the definition 3.1, the set of selec-
tions is Sp(F), 1 ≤ p < +∞. As a matter of fact,
if we only consider the Lebesgue integral, we can
use S1(F). But we often consider the sum of inte-
gral a set-valued stochastic process with respect to
time t and integral of a set-valued stochastic process
with respect to Brown motion, where we have to use
S2(F). Thus we here use Sp(F) for more general
case.
Theorem 3.3 Let a set-valued stochastic pro-
cess F = {F(t) : t ∈ I} ∈ Lp(K(Rd)), then for
any t ∈ I, (A)

R t
0 F(s)ds is a non-empty subset of

Lp[Ω,At ,µ;Rd ]. Furthermore, if F ∈ Lp(Kc(Rd)),
then for any t ∈ I, (A)

R t
0 F(s)ds is a non-empty con-

vex subset of Lp[Ω,At ,µ;Rd ].
Proof Since Sp(F) is non-empty and by the
Jensen inequality of integral, it is easy to
know that (A)

R t
0 F(s)ds is a non-empty subset of

Lp[Ω,At ,µ;Rd ]. If F ∈ Lp(Kc(Rd)), then by The-
orem 2.9, Sp(F) is a convex subset of Lp(Rd). Thus
(A)

R t
0 F(s)ds is convex.

Remark 3.4 For any t > 0, it is natural to hope
that the result of integral is a set-valued stochas-
tic process taking values in K(Rd) rather than in
Lp[Ω,At ,µ;Rd ]. So it is necessary to give a new defi-
nition. However, (A)

R t
0 F(s)ds is not decomposable

in general. Hence, we firstly give the definition of
decomposable closure.
Definition 3.5 For any non-empty subset Γ⊂ Lp[I×
Ω,C,λ×µ;Rd)] , define the decomposable closure of
Γ with respect to C

deΓ = {g = {g(t,ω) : t ∈ I} : for any ε > 0, there

exists a C-measurable finite partition

{A1, · · · ,An} of I×Ω and f1, · · · , fn ∈ Γ

such that |||g−∑n
i=1 IAi fi|||p < ε }.

Theorem 3.6 Let F = {F(t) : t ∈ I} ∈ Lp(K(Rd)),
Γ(t) = (A)

R t
0 F(s)ds, then there exists a C-

measurable set-valued stochastic process L(F) =
{Lt(F) : t ∈ I} ∈ Lp(K(Rd)) such that Sp(L(F)) =
de{Γ(t) : t ∈ I}. Furthermore, if F ∈ Lp(Kc(Rd)),
then {Lt(F) : t ∈ I} ∈ Lp(Kc(Rd)).
Proof For any t ∈ I, Γ(t) is a non-empty subset of
Lp[Ω,At ,µ;Rd ] from Theorem 3.3. For any x(t) ∈
Γ(t), there exists f ∈ Sp(F) such that x(t)(ω) =

R t
0 f (s,ω)ds, ∀ ω ∈Ω. Let

M = de{Γ(t) : t ∈ I}
= de

{
g = {g(t) : t ∈ I} : g(t)(ω) =

Z t

0
f (s,ω)ds, f ∈ Sp(F)

}
,

then M is a closed convex subset of Lp[I×Ω,C,λ×
µ;Rd ] and it is decomposable with respect to C. By
Theorem 2.11, there exists a set-valued stochastic
process L(F) = {Lt(F) : t ∈ I} ∈ Lp(K(Rd)) such
that Sp(L(F)) = M.

If F ∈ Lp(Kc(Rd)), then Γ(t) is convex by The-
orem 3.3. To finish the proof of Theorem, we only
need to prove that M = de{Γ(t) : t ∈ I} is convex
from Theorem 2.11.

For any φ,ψ ∈ M, any ε > 0, there exists two
C- measurable partitions {Ai : i = 1,2, ...,n},{B j :
j = 1,2, ...,m} of I ×Ω and {φi : i = 1,2, ...,n},
{ψ j : j = 1,2, ...,m} ⊂ U := {g = {g(t) : t ∈ I} :
g(t) =

R t
0 f (s)ds,{ f (·)} ∈ Sp(F)} such that

|||φ−
n

∑
i=1

IAiφi|||p < ε,

|||ψ−
m

∑
j=1

IB j ψ j|||p < ε.

For any α ∈ [0,1], we have that

∣∣∣
∣∣∣
∣∣∣αφ+(1−α)ψ−α

n

∑
i=1

IAiφi− (1−α)
m

∑
j=1

IB j ψ j

∣∣∣
∣∣∣
∣∣∣

p

≤ α
∣∣∣
∣∣∣
∣∣∣φ−

n

∑
i=1

IAiφi

∣∣∣
∣∣∣
∣∣∣

p
+(1−α)

∣∣∣
∣∣∣
∣∣∣ψ−

m

∑
j=1

IB j ψ j

∣∣∣
∣∣∣
∣∣∣

p

≤ αε+(1−α)ε = ε,

and

α
n

∑
i=1

IAiφi +(1−α)
m

∑
j=1

IB j ψ j

=
n

∑
i=1

m

∑
j=1

IAi∩B j(αφi +(1−α)ψ j).

Since Sp(F) is convex, {αφi + (1 − α)ψ j : i =
1, · · · ,n; j = 1, · · · ,m} ⊂ U . This with {Ai ∩ B j :
i = 1, · · · ,n; j = 1, · · · ,m} being also a C-measurable
partition of I×Ω implies αφ+(1−α)ψ∈ deU = M,
the proof is completed.
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Remark 3.7 We can prove that the decomposable
closure of Γ(t) = (A)

R t
0 F(s)ds is bounded in Lp.

That is,

‖|
n

∑
i=1

IAi

Z t

0
fi(s,ω)ds‖|p

= [E
Z T

0
‖

n

∑
i=1

IAi

Z t

0
fi(s,ω)ds‖pdt]

1
p

≤ [E
Z T

0
(

n

∑
i=1
‖IAi

Z t

0
fi(s,ω)ds‖)pdt]

1
p

≤ [E
Z T

0
(

n

∑
i=1
‖IAi‖‖

Z t

0
fi(s,ω)ds‖)pdt]

1
p

≤ [E
Z T

0
(

n

∑
i=1

IAi

Z t

0
‖ fi(s,ω)‖ds)pdt]

1
p

≤ [E
Z T

0
(

n

∑
i=1

IAi

Z t

0
‖F(s,ω)‖Kds)pdt]

1
p

≤ [E
Z T

0
(

n

∑
i=1

IAi

Z T

0
‖F(s,ω)‖Kds)pdt]

1
p

= [E
Z T

0
(
Z T

0
‖F(s,ω)‖Kds)p(

n

∑
i=1

IAi(t))
pdt]

1
p

= [E
Z T

0
(
Z T

0
‖F(s,ω)‖Kds)pdt]

1
p

< C

where C is a constant and is not relative to n.
Definition 3.8 The set-valued stochastic pro-
cess L(F) = {Lt(F) : t ∈ I} defined in Theorem
3.6 is called the Lebesgue integral of a set-valued
stochastic process F = {Ft : t ∈ I} ∈ L

p
T (K(Rd))

with respect to the time t, and denoted as Lt(F) =
(L)
R t

0 F(s)ds.

Now we state the representation theorem of
Lebesgue integral of the set-valued stochastic pro-
cess.
Theorem 3.9 Let F = {Ft : t ∈ I} ∈ Lp(K(Rd)),
then there exists a sequence of Rd-valued stochastic
processes { f i = { f i(t) : t ∈ I} : i≥ 1} ⊂ Sp(F) such
that

F(t,ω) = cl{ f i(t,ω) : i≥ 1}, a.e. (t,ω) ∈ I×Ω,

and

Lt(F)= cl
{Z t

0
f i(s,ω)ds : i≥ 1

}
a.e. (t,ω)∈ I×Ω.

Proof For any t ∈ I, {Lt(F) : t ∈ I} ∈ Lp(K(Rd))
from Theorem 3.6. By virtue of Theorem 2.5, there
exists a sequence of {φn = {φn(t) : t ∈ I} : n≥ 1} ⊂
Sp(L(F)) such that

Lt(F)(ω) = cl
{

φn(t,ω) : n≥ 1
}

, a.e. (t,ω)∈ I×Ω.

Since

Sp(L(F))
= de{Γ(t) : t ∈ I}
= de

{
g = {g(t) : t ∈ I} : g(t) =

Z t

0
f (s)ds,

{ f (·)} ∈ Sp(F)
}

= cl
{

h = {h(t) : t ∈ I} : h(t) =
l

∑
k=1

IAk

Z t

0
fk(s)ds,

{Ak : k = 1.2, · · · , l} ⊂ C is a finite partition of
I×Ω and {{ fk(·)} : k = 1, · · · , l} ⊂ Sp(F),

l ≥ 1
}

,

then for any n≥ 1, there exists {hi
n : i≥ 1} such that

|||φn(t)−hi
n(t)|||p → 0 (i→ ∞), and

hi
n(t) =

l(i,n)

∑
k=1

I
A(i,n)

k

Z t

0
f (i,n)
k (s)ds,

where {A(i,n)
k : k = 1.2, · · · , l(i,n)} ⊂ C is a fi-

nite partition of Ω and {{ f (i,n)
k (t) : t ∈ I} : k =

1,2, · · · , l(i,n)} ⊂ Sp(F). Hence, there exists a
subsequence {i j : j ≥ 1} of {1,2, · · ·} such that
‖φn(t,ω)− hi j

n (t,ω)‖p → 0 a.e. ( j → ∞). Thus, for
a.e. (t,ω) ∈ I×Ω, we have that

Lt(F)(ω) = cl
{

hi j
n (t,ω) : n, j ≥ 1

}

⊂ cl
{Z t

0
f (i j,n)
k (s,ω)ds : n, j ≥ 1,

k = 1, · · · , l(i j,n)
}

⊂ Lt(F)(ω).

This implies that for a.e. (t,ω) ∈ I×Ω, we have

Lt(F)(ω) = cl
{R t

0 f (i j,n)
k (s,ω)ds : n, j ≥ 1,

k = 1, · · · , l(i j,n)
}

. (3.1)
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Since F ∈ Lp(K(Rd)) and from Theorem 2.5,
there exists a sequence {ξd(t) : t ∈ I} ∈ Sp(F), d ≥ 1
such that for any (t,ω) ∈ I×Ω,

F(t,ω) = cl{ξd(t,ω) : d ≥ 1}. (3.2)

We rewrite the countable set {{ξd(t) : t ∈
I},{ f (i j,n)

k (t) : t ∈ I} : n, j,d ≥ 1,k = 1, · · · , l(i j,n)},
as {{ f i(t) : t ∈ I} : i≥ 1}. Then from (3.1) and (3.2),
{{ f i(t) : t ∈ I} : i ≥ 1} satisfies the Theorem. The
proof is completed.

Example 3.10 Let f = { ft : t ∈ I}, g = {gt : t ∈ I}
be real valued stochastic processes satisfying that
for a.e. (t,ω) ∈ I×Ω, f (t,ω) < g(t,ω), and f ,g ∈
Lp(R). Define Ft(ω) = [ ft(ω),gt(ω)], then it is easy
to have that F = {Ft ,At : t ≥ 0} is a Lp-bounded set-
valued stochastic process.

If h = {ht : t ∈ I} ∈ Lp(R) satisfying ft(ω) ≤
ht(ω)≤ gt(ω) for a.e. (t,ω)∈ I×Ω, then h∈ Sp(F)
and Sp(F) = {h = {ht : t ∈ I} ∈ Lp(R) : ft(ω) ≤
ht(ω) ≤ gt(ω) for a.e.(t,ω) ∈ I ×Ω}. Thus, there
exists a sequence of real valued stochastic process
{hi = {hi(t) : t ∈ I} : i≥ 1} ⊂ Sp(F) such that

F(t,ω) = cl{hi(t,ω) : i≥ 1}, a.e. (t,ω) ∈ I×Ω,

and

Lt(F)

= cl
{Z t

0
hi(s,ω)ds : i≥ 1

}

=
[Z t

0
f (t,ω)ds,

Z t

0
g(t,ω)ds

]
, a.e. (t,ω) ∈ I×Ω.

Theorem 3.11 Let set-valued stochastic processes
F(i) = {F(i)(t),At : t ∈ I} ∈ Lp(K(Rd)), i = 1,2,
then for any t ∈ I,

(L)
Z t

0
cl

(
F(1)(s,ω)+F(2)(s,ω)

)
ds

= cl
{

(L)
Z t

0
F(1)(s)ds+(L)

Z t

0
F(2)(s,ω)ds

}
.

Proof It only needs to prove the equality

Sp
(

L
(
cl(F(1) +F(2))

))

= cl
(

Sp(L(F(1))
)
+Sp(L(F(2))

))
.

In fact,

Sp
(

L
(
cl(F(1) +F(2))

))

= de
{

g = {g(t) : t ∈ I} : g(t) =
Z t

0
f (s)ds,

{ f (·)} ∈ Sp
(

cl(F(1) +F(2))
)}

= de
{

g = {g(t) : t ∈ I} : g(t) =
Z t

0
f (s)ds,

{ f (·)} ∈ cl
(

Sp(F(1))+Sp(F(2))
)}

= de
{

h = {h(t) : t ∈ I} : h(t) := g(1)(t)+g(2)(t)

:=
Z t

0
f (1)(s)ds+

Z t

0
f (2)(s)ds,

{ f (1)(·)} ∈ Sp(F(1)),{ f (2)(·)} ∈ Sp(F(2))
}

= cl
{

de
{

g = {g(1)(t) : t ∈ I} : g(1)(t) =
Z t

0
f (1)(s)ds,{ f (1)(·)} ∈ Sp(F(1))

}

+de
{

g = {g(2)(t) : t ∈ I} : g(2)(t) =
Z t

0
f (2)(s)ds,{ f (2)(s)} ∈ Sp(F(2))

}}

= cl
(

Sp(L(F(1))
)
+Sp(L(F(2))

)
.

4. Conclusions

In this paper, we firstly stated the necessities of
studying set-valued stochastic integrals. It may be
useful in the area of stochastic control and mathe-
matical finance. Secondly, we defined a new type
Lebesgue integral of a set-valued stochastic pro-
cess with respect to time t based on the nice works
such as Kisielewicz 6, Kim 15, M. Kisielewicz, M.
Michta and J. Motyl 13, 14. And then we discussed
some properties of set-valued Lebesgue integral, es-
pecially we proved the presentation theorem of set-
valued stochastic integral. Those results will be use-
ful to study set-valued stochastic differential equa-
tions and their applications.
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