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Abstract

We present a geometric version of the Lie algebra 2-cocycle connected to quasi-
geostrophic motion in the β-plane approximation. We write down an Euler equation
for the fluid velocity, corresponding to the evolution equation for the stream function
in quasigeostrophic motion.

1 Introduction

The equation for quasigeostrophic motion in β-plane approximation written for the stream
function ψ(x1, x2) of the geostrophic fluid velocity is [1]

∂t∆ψ = −{∆ψ,ψ} − β∂x1
ψ, (1.1)

with β the gradient of the Coriolis parameter. A treatment of (1.1) as an Euler-Poincaré
equation can be found in [2] and [3].

In [4] is shown that the quasigeostrophic motion in β-plane approximation is Euler
equation on a central extension of the Lie algebra of exact divergence free vector fields on
the flat 2-torus T

2 = R
2/Z2 with volume form dx1 ∧ dx2. Considering the basis

ln = ein·x(−n2∂x1
+ n1∂x2

), n ∈ Z
2 (1.2)

of hamiltonian vector fields on T
2, the Lie bracket in the central extension is of the form

[ln, lm] = i(n1m2 − n2m1)ln+m + iβm1δ(n +m)l0, (1.3)

with l0 the central element and β ∈ R.
In this letter we present a geometric version of the Lie algebra 2-cocycle describing the

central extension (1.3). For a 2k-dimensional compact symplectic manifold (M,ω), each
closed 1-form θ on M provides a Lie algebra 2-cocycle, called Roger cocycle, on the Lie
algebra of hamiltonian vector fields on M [5]:

σθ(Hf ,Hg) =

∫
M

fθ(Hg)ω
k, (1.4)
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where f and g are hamiltonian functions with zero integral for the hamiltonian vector fields
Hf and Hg on M . On the 2-torus the volume form ω = dx1 ∧ dx2 is a symplectic form
and the Lie algebra of exact divergence free vector fields is the Lie algebra of hamiltonian
vector fields. The central Lie algebra extension given by the Roger 2-cocycle associated
to the differential 1-form θ = βdx2 coincides with (1.3).

The extendability of the cocycle (1.4) to the Lie algebra of symplectic vector fields on a
compact symplectic manifold is studied in [6]. For the 2-torus, the cocycle σθ can always
be extended to the cocycle σ̄θ on the Lie algebra of symplectic (i.e. divergence free) vector
fields, uniquely determined by the conditions σ̄θ(∂x1

, ∂x2
) = σ̄θ(∂x1

,Hf ) = σ̄θ(∂x2
,Hf ) =

0, for all smooth functions f [7].

Euler equation on the central extension of the Lie algebra of divergence free vector
fields on the flat 2-torus given by σ̄θ is

∂tu = −∇uu− ψuθ
♯ − grad p, (1.5)

where the zero integral function ψu is uniquely determined by u through dψu = iuω−〈iuω〉.
Here 〈〉 denotes the average of a 1-form on the torus: 〈αdx1 + βdx2〉 = (

∫
T2 αω)dx1 +

(
∫

T2 βω)dx2 and ♯ is the Riemannian lift with respect to the flat metric on the torus.
Equation (1.5) generalizes the equation of motion of a perfect fluid with velocity field u
and pressure function p.

The equation of motion of a perfect fluid on a Riemannian manifold M of dimension
at least two,

∂tu = −∇uu− grad p, (1.6)

is a geodesic equation on the group of volume preserving diffeomorphisms of M with right
invariant L2 metric [8][9]. The only Riemannian manifolds M with the property that the
group of exact volume preserving diffeomorphisms is a totally geodesic subgroup of the
group of volume preserving diffeomorphisms with the right invariant L2 metric are twisted
products of a flat torus with a manifold with vanishing first Betti number [10]. It follows
that on the flat 2-torus equation (1.6) preserves the property of the velocity field to possess
stream functions [11] and the evolution equation for the stream function ψ is

∂t∆ψ = −{∆ψ,ψ}. (1.7)

We show that also equation (1.5) preserves the property of u to possess stream functions,
when the 1-form θ on the 2-torus has constant coefficients. Writing the evolution equation
for the stream function in the special case θ = βdx2, we find again the quasigeostrophic
motion in β-plane approximation (1.1).

2 Cocycles on Lie algebras of symplectic vector fields

A bilinear skew-symmetric map σ : g × g → R is a 2-cocycle on the Lie algebra g if it
satisfies the condition

∑
cycl

σ([X1,X2],X3) = 0, X1,X2,X3 ∈ g.
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It determines a central Lie algebra extension ĝ := g ×σ R of g by R with Lie bracket

[(X1, a1), (X2, a2)] = ([X1,X2], σ(X1,X2)), Xi ∈ g, ai ∈ R. (2.1)

There is a 1-1 correspondence between the second Lie algebra cohomology group H2(g)
and equivalence classes of central Lie algebra extensions 0 → R → ĝ → g → 0. When G
is infinite dimensional, there are two obstructions for the integrability of the central Lie
algebra extension g ×σ R to a Lie group extension of the connected Lie group G [12]: the
period group Πσ ⊂ R (the group of spherical periods of the left invariant 2-form σl on G
defined by σ) has to be discrete and the flux homomorphism Fσ : π1(G) → H1(g) has to
vanish (Fσ([γ]) = [Iγ ] and Iγ(X) = −

∫
γ iXrσl for X ∈ g).

For a 2k-dimensional compact symplectic manifold (M,ω), each closed 1-form θ on
M provides a Roger Lie algebra 2-cocycle (1.4) on the Lie algebra of hamiltonian vector
fields on M , where f and g are hamiltonian functions with zero integral for the hamiltonian
vector fields Hf and Hg on M [5]. The cohomology class of σθ depends only on the de
Rham cohomology class [θ] ∈ H1

dR(M). A construction of the central extension of the
group of hamiltonian diffeomorphisms of a surface of genus ≥ 2 integrating the central Lie
algebra extension defined by σθ is given in [13]. The integrability in the case of a surface
of genus 1 (a torus) is an open question.

On the flat 2-torus T
2 with ω = dx1∧dx2, the hamiltonian vector field with hamiltonian

function f is Hf = (∂x2
f)∂x1

− (∂x1
f)∂x2

. The Roger cocycle defined by a 1-form θ =
αdx1 + βdx2 with constant coefficients α, β ∈ R is

σθ(Hf ,Hg) =

∫
T2

f(α∂x2
g − β∂x1

g)dx1 ∧ dx2. (2.2)

The hamiltonian vector fields with hamiltonian functions iein·x, n ∈ Z
2, namely

ln = ei(n1x1+n2x2)(−n2∂x1
+ n1∂x2

), n ∈ Z
2,

form a basis for the Lie algebra of hamiltonian vector fields on T
2 with Lie bracket [ln, lm] =

i(n1m2 − n2m1)ln+m. The Roger cocycle (2.2) evaluated at two elements of this basis is

σθ(ln, lm) = i(βm1 − αm2)δ(n +m),

hence the corresponding Lie algebra extension is the one from [4]:

[ln, lm] = i(n1m2 − n2m1)ln+m + i(βm1 − αm2)δ(n +m)l0,

with l0 the central element.
Given a 2k-dimensional compact symplectic manifold (M,ω), let (b1, b2) =

∫
M b1 ∧ b2 ∧

[ω]k−1 denote the symplectic pairing on H1
dR(M) and Vol(M) =

∫
M ωk the symplectic

volume of M .

Theorem 1. [6] The Lie algebra cocycle σθ on the Lie algebra of hamiltonian vector fields
can be extended to a Lie algebra cocycle on the Lie algebra of symplectic vector fields if
and only if

(k − 1)Vol(M)

∫
M

[θ] ∧ b1 ∧ b2 ∧ b3 ∧ [ω]k−2 = k
∑
cycl

([θ], b1)(b2, b3)

for all b1, b2, b3 ∈ H1
dR(M).
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On a surface M , the previous condition becomes
∑

cycl([θ], b1)(b2, b3) = 0 for all

b1, b2, b3 ∈ H1
dR(M). This condition is always satisfied on surfaces of genus one (the torus)

and never satisfied on surfaces of genus ≥ 2. For the flat 2-torus with ω = dx1 ∧ dx2, the
extension σ̄θ of the cocycle σθ to the Lie algebra of symplectic vector fields exists and is
uniquely determined by the conditions [7]:

σ̄θ(∂x1
, ∂x2

) = σ̄θ(∂x1
,Hf ) = σ̄θ(∂x2

,Hf ) = 0. (2.3)

3 Ideal fluid flow and stream functions

For a Lie group G with right invariant metric, the geodesic equation written for the right
logarithmic derivative u = c′c−1 of a geodesic c is

u′ = − ad(u)⊤u, (3.1)

where ad(u)⊤ denotes the adjoint of ad(u) with respect to the scalar product 〈, 〉 on g

given by the Riemannian metric. It is a first order equation on the Lie algebra g, called
the (generalized) Euler equation.

Euler equation of motion of a perfect fluid (1.6) is a geodesic equation on the group
Diffµ(M) of volume preserving diffeomorphisms of a compact Riemannian manifold M
of dimension at least two and with volume form µ, for the right invariant L2 metric
[8][9]. In this case ad(X)⊤X = P (∇XX) for all X ∈ Xµ(M), with P denoting the
orthogonal projection on the space of divergence free vector fields in the decomposition
X(M) = Xµ(M) ⊕ Im grad.

A Lie subgroup H of a Lie group G with right invariant Riemannian metric is totally
geodesic if any geodesic c, starting at the identity e in a direction of the Lie algebra h of
H, stays in H. From Euler equation (3.1) we see that this is the case if

ad(X)⊤X ∈ h for all X ∈ h. (3.2)

If there is a geodesic in G in any direction of h, then this condition is necessary and
sufficient, so by definition we say that the Lie subalgebra h is totally geodesic in g if (3.2)
holds.

The kernel of the flux homomorphism fluxµ : X ∈ Xµ(M) 7→ [iXµ] ∈ Hn−1
dR (M) is the

Lie algebra Xexµ (M) of exact divergence free vector fields. The Lie algebra homomorphism

fluxµ integrates to the flux homomorphism Fluxµ : Diffµ(M)0 → Hn−1
dR (M)/Γ on the

identity component of the group of volume preserving diffeomorphisms, with Γ a discrete
subgroup of Hn−1

dR (M). By definition the kernel of Fluxµ is the Lie group Diffexµ (M) of
exact volume preserving diffeomorphisms. IfM is a surface, then Xexµ (M) is the Lie algebra
of hamiltonian vector fields, hence it consists of vector fields possessing stream functions,
and Diffexµ (M) is the group of hamiltonian vector fields.

Theorem 2. [10] The Riemannian manifolds M with the property that Diffexµ (M) is
a totally geodesic subgroup of Diffµ(M) with the right invariant L2 metric are twisted
products M = R

k ×Λ F of a flat torus T
k = R

k/Λ and a manifold F with H1
dR(F ) = 0.

In particular the ideal fluid flow (1.6) on the flat 2-torus preserves the property of
having a stream function [11] and the evolution equation for the stream function ψ of the
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fluid velocity u becomes (1.7). Indeed, for ω = dx1 ∧ dx2 and u = Hψ, denoting by ♭ the
inverse of ♯, the following relations hold:

du♭ = (∆ψ)ω and d(∇uu)
♭ = Lu(du

♭) = {∆ψ,ψ}ω. (3.3)

4 Quasigeostrophic motion

Let Ĝ be a 1-dimensional central Lie group extension of G with right invariant metric
determined by the scalar product 〈(X,a), (Y, b)〉ĝ = 〈X,Y 〉g + ab on its Lie algebra ĝ =
g ×σ R. The geodesic equation is

u′ = − ad(u)⊤u− ak(u), a ∈ R, (4.1)

where u is a curve in g and k ∈ Lskew(g) is defined by the Lie algebra cocycle σ via

〈k(X), Y 〉g = σ(X,Y ), ∀X,Y ∈ g.

Indeed, ad(X,a)⊤(Y, b) = (ad(X)⊤Y + bk(X), 0) because

〈ad(X,a)⊤(Y, b), (Z, c)〉ĝ = 〈Y, [X,Z]〉g + bσ(X,Z) = 〈ad(X)⊤Y + bk(X), Z〉g.

To a divergence free vector field X on the 2-torus one can assign a smooth zero integral
function ψX , uniquely determined by X through dψX = iXω − 〈iXω〉. Here 〈〉 denotes
the average of a 1-form on the torus: 〈αdx1 + βdx2〉 = (

∫
T2 αω)dx1 + (

∫
T2 βω)dx2. In

particular ψHf
= f whenever f has zero integral.

Proposition 1. Let σ̄θ be the 2-cocycle extending (2.2) and satisfying (2.3). Euler equa-
tion for the L2 scalar product on Xω(T2) ×σ̄θ

R is

∂tu = −∇uu− ψuθ
♯ − grad p. (4.2)

Proof. We compute the map k corresponding to the cocycle σ̄θ and we apply equation
(4.1). Using the fact that σ̄θ(∂x1

,X) = σ̄θ(∂x2
,X) = 0 for all X ∈ Xω(T2), we get

σ̄θ(u,X) = σ̄θ(Hψu
,X) =

∫
T2

ψuθ(X)ω =

∫
T2

g(ψuθ
♯,X)ω = 〈P (ψuθ

♯),X〉,

hence k(u) = P (ψuθ
♯). Knowing also that ad(u)⊤u = P (∇uu), we get (4.2) as the Euler

equation (4.1) on Xω(T2) ×σ̄θ
R written for a = 1. �

Proposition 2. If the two coefficients of the 1-form θ on T
2 are constant, then equation

(4.2) preserves the property of having a stream function, i.e. Xexω (T2) ×σθ
R is totally

geodesic in Xω(T2) ×σ̄θ
R.

Proof. By Theorem 2 for the flat 2-torus, P (∇XX) is hamiltonian for X a hamiltonian
vector field, hence the totally geodesicity condition (3.2) in this case is equivalent to the
fact that P (ψXθ

♯) is hamiltonian for X hamiltonian vector field. By Hodge decomposition
this means ψXθ

♯ is orthogonal to the space of harmonic vector fields, so

〈P (ψXθ
♯), Y 〉 =

∫
T2

g(ψXθ
♯, Y )ω =

∫
T2

θ(Y )ψXω = 0, ∀Y harmonic.
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On the flat torus the harmonic vector fields Y are the vector fields with constant coeffi-
cients. The 1-form θ has constant coefficients and the functions ψX have vanishing integral
by definition, so the expression above vanishes for all harmonic vector fields Y and the
totally geodesicity condition holds. �

Corollary 1. For θ = βdx2, β ∈ R, equation (4.2) written for the stream function ψ of u
becomes equation (1.1) for quasigeostrophic motion in β-plane approximation, with β the
gradient of the Coriolis parameter.

Proof. One uses (3.3) and the fact that d(ψθ♯)♭ = dψ ∧ βdx2 = β∂x1
ψdx1 ∧ dx2. �

This corollary recovers the result from [4] that quasigeostrophic motion is Euler equa-
tion on the central extension (1.3).
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