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Abstract

Approximate Lie symmetries of the Navier-Stokes equations are used for the applica-
tions to scaling phenomenon arising in turbulence. In particular, we show that the
Lie symmetries of the Euler equations are inherited by the Navier-Stokes equations
in the form of approximate symmetries that allows to involve the Reynolds number
dependence into scaling laws. Moreover, the optimal systems of all finite-dimensional
Lie subalgebras of the approximate symmetry transformations of the Navier-Stokes
are constructed. We show how the scaling groups obtained can be used to introduce
the Reynolds number dependence into scaling laws explicitly for stationary parallel
turbulent shear flows. This is demonstrated in the framework of a new approach to
derive scaling laws based on symmetry analysis [11]-[13].

1 Introduction

In this paper we develop and generalize the results devoted to approximate symmetry
analysis of the Navier-Stokes equation obtained in [7]. The aim is, first, to transfer the
results of calculations of approximate Lie symmetries of the Navier-Stokes equation to
the case of arbitrary-order approximate symmetries and, then, to give their application
to scaling phenomenon arising in the statistical theory of turbulence. We also present
the procedure of construction of the so-called optimal systems of all finite-dimensional Lie
subalgebras corresponding to the approximate group transformations obtained.

The basic idea of approximate symmetries, and of approximate transformation groups
may be found in Fushchich and Shtelen [5], Euler et al [3], [4], Ibragimov, Baikov and
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Gazizov [1], [2]. We do not review in details the papers devoted to the concept of approx-
imate symmetries which is a combination of the Symmetry Group Analysis of differential
equations on the basis of Lie (Lie-Bäcklund) groups and the Theory of Perturbation of
differential equations. The notion of approximate symmetry is used when the symmetry
properties of equations involving a small parameters are studied. In the main two ap-
proaches reasonably well known are due to Fushchich, Shtelen and Euler on one hand and
due to Baikov et al on the other and they both employ the perturbation techniques. In the
first approach the dependent variables are expanded in a perturbation series and (a sys-
tem of) equations under consideration are separated at each order of approximation. The
exact symmetries of a coupled system obtained in the framework of the theory of pertur-
bation are defined to be the approximate symmetries of the original (system of) equations
with the small parameter. The second approach is quite different, the Lie operator is
expanded only in a perturbation series so that an approximate infinitesimal operator can
be constructed. Gazizov in [6] presented a criterion which enables us to connect these
approaches. In general, symmetry operators obtained in the framework of developed by
Fushchich, Shtelen and Euler and approximate symmetry operators in the sense by Baikov
et al (based on the theory of approximate transformation groups) are not equivalent to
each other. The corresponding examples are given by Gazizov [6]. The algorithm for a
direct calculation of approximate symmetry operators is more difficult for a realization
than in standard Lie method and it can be taken from [6].

We also mention the paper [17] wherein the comparison of the above-mentioned ap-
proaches are given in details. Moreover, the authors give another method for construction
of approximate symmetries which is in consistence with the perturbation theory. Higher
symmetries including a small parameters are studied in [18] to construct approximate so-
lutions of perturbed equations. The reccurent relations for an expansion of symmetry by
a small parameter are found for evolution equations with one spatial variable [18]).

Using the criterion obtained by Gazizov, we showed in [7] that the first-order approx-
imate symmetries in the sense by Baikov et al of the Navier-Stokes equations can be
derived by the exact symmetries of the coupled system coming out from the Navier-Stokes
equations. The nice form of the coefficient functions to the infinitesimal operator of the
first-order approximate system (coupled system) associated with the Navier-Stokes equa-
tions enabled us to obtain the above-mentioned result. Moreover, we proved that the
Lie symmetries of the Euler equations are inherited by the Navier-Stokes equations in
the form of approximate symmetries. This factum is especially important in the line of
their application to the theory of turbulence. From the knowledge of the approximate
symmetries of the Navier-Stokes equations which include two scaling symmetry operators
we can obtain a broad variety of results for the turbulent flows since the symmetries of
fluid motion are admitted by all statistical quantities of turbulent flow. In the context of
Symmetry Group Methods the approach to derive certain turbulent scaling laws arising
in the statistical theory of turbulence was given in [11]. In particular, it unifies a large
set of scaling laws for the mean velocity of stationary parallel turbulent shear flows. The
approach is derived from the Reynolds averaged Navier-Stokes equations, the fluctuations
equations, and the velocity product equations, which are the dyad product of the velocity
fluctuations with the equations for the velocity fluctuations. Therefore, it was shown that
the knowledge of symmetries make it possibly to derive a family of scaling laws but these
scaling laws are fixed by using the symmetries of the Euler equations. Reconsidering the
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derivation of the different scaling laws in [12] we note that the use of symmetries of the
Navier-Stokes equations do not enable us to introduce the Reynolds number dependence
into scaling laws explicitly. In fact, viscosity is symmetry breaking one scaling symme-
try and as a consequence the entire scaling law theory will broke down. That is why
it is seen to be important to pursue research on developing the theory of approximate
transformation groups for the applications to the statistical theory of turbulence.

We do not review the results by Barenblatt and Chorin about investigation of the
influence of the intermittency phenomenon on certain scaling laws presented by the von
Kármán-Prandtl universal logarithmic law of the wall (in the intermediate region of wall-
bounded turbulence), and the Kolmogorov-Obukhov scaling for the local structure of
turbulence. We only mention that the concept of the so-called incomplete similarity and
intermediate asymptotics was used to make a correction of the classical scaling laws when
the Reynolds number is finite but large. The analysis extended the classical form of
dependency between the velocity gradient and the spatial coordinate y, the shear stress
at the wall τ , the pipe diameter d, the kinematic viscosity ν and density ρ without using
the Navier-Stokes equations directly. For details see [14]–[16].

Our aim is to find approximate symmetries which to leading order correspond to the
Euler equations but to higher order allows for the Reynolds number dependence of a tur-
bulent motion. In Section 2, we calculate arbitrary-order approximate symmetries of the
Navier-Stokes equations applying the theory of approximate symmetries, and the Navier-
Stokes equations are considered as a perturbation of the Euler equations. We construct
the so-called approximate Lie symmetry tangent vector field to the manifold defined by
the Navier-Stokes equations which is motivated by their application to the theory of turbu-
lence. In particular, we show that the Lie symmetries of the Euler equations are inherited
by the Navier-Stokes equations in the form of approximate symmetries (arbitrary-order
approximation). Moreover, the optimal systems of all finite-dimensional Lie subalgebras
of the approximate symmetry transformation of the Navier-Stokes are presented in Sec-
tion 3. In Section 4, we show how the scaling groups obtained can be used to introduce the
Reynolds number dependence into scaling laws explicitly for stationary parallel turbulent
shear flows.

2 Lie symmetries of the S-order approximate system for the

Navier-Stokes equations

Let us consider the Navier- Stokes equation

~ut + (~u · ∇)~u+ ∇p = ν∆~u, div ~u = 0 (2.1)

and the perturbation series for ~u and p in this null viscosity ν

uα(~x, t) = uα0 (~x, t) +

S
∑

s=1

νsuαs (~x, t) + o(νS), s = 1, . . . , S (2.2)

p(~x, t) = p0(~x, t) +
S

∑

s=1

νsps(~x, t) + o(νS).
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Inserting these series into the Navier-Stokes equations, we obtain the S-order approximate
system for the Navier-Stokes equations in the following denoted by coupled system. In a
first step we present the exact Lie symmetry for this coupled system obtained. This
symmetry is called S-order approximate symmetries of the Navier-Stokes equations. The
infinitesimal operator for this system of any order approximation can be written in the
following form

XS = ξ0
∂

∂t
+ ξi

∂

∂xi
+ η0,α ∂

∂uα0
+ ηs,α

∂

∂uαs
+ ζ0 ∂

∂p0
+ ζs

∂

∂ps
, s = 1, . . . S. (2.3)

Remark 1. We note that symmetries of a coupled system obtained in the framework of
the reduction of differential equations with a small parameter using the expansion of the
depending variables asymptotically in terms of a small parameter have been considered
by Fushchich, Shtelen and Euler et al. in [3] – [5] as approximate symmetries of the
corresponding differential equations with the small parameter.

In the present section we are primarily interested in the calculation of exact symmetry
of the coupled system for the Navier-Stokes equations. However, that this is in view of
finding the S-order approximate infinitesimal operator to be derived in the next section.
We expand a solution (~u, p) in a perturbation series according to (2.2) to obtain the coupled
system of equations for finding (~u0, . . . , ~uS), and (p0, . . . , pS)

ν0 : ~u0t + (~u0 · ∇)~u0 + ∇p0 = 0, (2.4)

div ~u0 = 0.

νs : ~ust +

s
∑

k=0

(~uk · ∇)~us−k + ∇ps = ∆~us−1, (2.5)

div ~us = 0, s = 1, . . . , S.

The corresponding infinitesimal operator is due to (2.3) and the corresponding prolonga-
tion of this operator can be written in the form

X̃S = X1+η0,α
m

∂

∂uα0,m
+ηs,αm

∂

∂uαs,m
+ζ0

m

∂

∂p0,m
+ζsm

∂

∂ps,m
+η0,α

mn

∂

∂uα0,mn
+ηs,αmn

∂

∂uαs,mn
, (2.6)

where ηs,αm = Dm(ηs,α) − uαs,jDm(ξj), ζsm = Dm(ζs) − ps,jDm(ξj), ηs,αmn = Dn(η
s,α
m ) −

uαs,mrDn(ξ
r), s = 0, 1, . . . , S. Here Dm denotes the total derivative operator

Dm =
∂

∂xm
+ uαs,m

∂

∂uαs
+ uβs,mn

∂

∂uβs,n
+ ps,m

∂

∂ps
+ ps,mn

∂

∂ps,n
+ · · · .

Applying the operator X̃S to the coupled system (2.4), (2.5) we find that the smooth
coefficients ξ0, ξ1, η0,i, ηs,i, ζ0 and ζs, s = 1, . . . , S are given by

ξ0 = (2a0 + b0)t+ c0,

ξi = (a0 + b0)x
i + aijx

j + hj(t),

η0,i = −a0u
i
0 + aiju

j
0 + h′j(t), (2.7)

ηs,i = −a0u
i
s + aiju

j
s − sb0u

i
1,

ζ0 = −2a0p0 − xih′′i (t) + g0(t),

ζs = −2a0ps + gs(t) − sb0ps,
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where a0, b0, c0 are arbitrary constants, the numbers aij are connected by the relationships
aii = 0, aij +aji = 0 for i 6= j and hj , g

0, gs are arbitrary smooth functions of the variable
t. We note that the functions ξ0, ξi, η0,i, ζ0 coincide with the coefficient functions of the
infinitesimal operator for the Euler equations.

To adopt the symmetry operator (2.3), (2.7) for their application in turbulence, we need
to rewrite (approximately) this operator (or the Lie symmetry vector field) in the original
variables (∂/∂t, ∂/∂xi, ∂/∂uα, ∂/∂p). For this aim we use the concept of Approximate
Group Transformations by Ibragimov, Baikov and Gazizov [1], [2] wherein the infinitesimal
operator is expanded in a perturbation series with the small parameter ν.

3 Approximate Lie symmetry of the Navier-Stokes equa-

tions

Following the paper [6], we consider a family G of invertible transformations

x̄i ≈ ωi(t, ~x, ~u, p, a; ν) ≡ ωi0(t, ~x, ~u, p, a) + νωi1(t, ~x, ~u, p, a) + · · · + νSωiS(t, ~x, ~u, p, a) + o(νS),

t̄ ≈ λ(t, ~x, ~u, p, a; ν) ≡ λ0(t, ~x, ~u, p, a) + νλ1(t, ~x, ~u, p, a) + · · · + νSλS(t, ~x, ~u, p, a) + o(νS),

ūα ≈ τα(t, ~x, ~u, p, a; ν) ≡ τα0 (t, ~x, ~u, p, a) + ντα1 (t, ~x, ~u, p, a) + · · · + νSταS (t, ~x, ~u, p, a) + o(νS),

p̄ ≈ µ(t, ~x, ~u, p, a; ν) ≡ µ0(t, ~x, ~u, p, a) + νµ1(t, ~x, ~u, p, a) + · · · + νµS(t, ~x, ~u, p, a) + o(νS),

ν̄ ≈ νθ(a; ν) ≡ νθ1(a) + · · · + νSθS(a) + o(νS),

where f ≈ g means that f − g = o(νS), |o(νS)| ≤ CνS+1. According to the theory of
approximate Lie symmetries (see, for example [1]), the S-order approximate infinitesimal
operator can be written in the form

Xappr
S = [ξ0(0)(t, ~x, ~u, p) + νξ0(1)(t, ~x, ~u, p) + · · · + νSξ0(S)(t, ~x, ~u, p)]

∂

∂t

+ [ξi(0)(t, ~x, ~u, p) + νξi(1)(t, ~x, ~u, p) + · · · + νSξi(S)(t, ~x, ~u, p)]
∂

∂xi

+ [ηα(0)(t, ~x, ~u, p) + νηα(1)(t, ~x, ~u, p) + · · · + νSηα(S)(t, ~x, ~u, p)]
∂

∂uα

+ [ζ(0)(t, ~x, ~u, p) + νζ(1)(t, ~x, ~u, p) + · · · + νSζ(S)(t, ~x, ~u, p)]
∂

∂p
+ [νκ1 + · · · + νSκS ]

∂

∂ν
,

where

ξ0(s) =
∂λ(s)

∂a

∣

∣

∣

∣

a=0

, ξi(s) =
∂ωi(s)

∂a

∣

∣

∣

∣

∣

a=0

,

ηα(s) =
∂τα(s)

∂a

∣

∣

∣

∣

∣

a=0

, ζ(s) =
∂µ(s)

∂a

∣

∣

∣

∣

a=0

, κs =
∂θs
∂a

∣

∣

∣

∣

a=0

, s = 1, . . . , S.

An algorithm for the direct calculation of the coefficients of Xappr
S can be taken from [1].

In the case of S = 1, the following assertion establishes a relationship between the
operators X1 and Xappr

1 :
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The operator X1 of an exact symmetry of the coupled system (2.4) can be rewritten in
the form of an approximate infinitesimal operator Xappr

1 if and only if it has the form

X1 = ξ0(0)
∂

∂t
+ ξi(0)

∂

∂xi
+ ηα(0)

∂

∂uα0
+ ζ(0)

∂

∂p0

+ [ηα(1) − ξj(1)u
α
0,j +

∂ηα(0)

∂uβ0
uβ1 −

∂ξj(0)

∂uβ0
uα0,ju

β
1 − κ1u

α
1 ]

∂

∂uα1
(3.1)

+ [ζ(1) − ξj(1)p0,j +
∂ζ0
∂p0

p1 −
∂ξj(0)

∂p0
p0,jp1 − κ1p1]

∂

∂p1

which is obtained by substituting (2.2) for S = 1 (the first-order approximation) into the
operator Xappr

1 and expanding the coefficient functions into Taylor series (for details see
Theorem 1 [6]). It is worthwhile noticing that, thanks to the nice form of the coefficient
functions obtained in (2.7) of the operator X1 we are able to apply (3.1) for calculating
Xappr

1 . Indeed, comparing (2.7) and (3.1) we obtain that

ξi(1) ≡ 0, ηα(1) ≡ 0, ζ(1) = g1(t), κ1 = b0. (3.2)

taking into account that (see (2.7))

∂ξj(0)

∂uβ0
= 0,

∂ξj(0)

∂p0
= 0,

∂ηα(0)

∂uβ0
= aαβ (β 6= α),

∂ηα(0)

∂uα0
= −a0,

∂ζ0
∂p0

= −2a0.

As a result, we obtain that the operator X1 is transformed to

Xappr
1 = ξ0

∂

∂t
+ ξi

∂

∂xi
+ η0,α ∂

∂uα
+ [ζ0 + νg1(t)]

∂

∂p
+ νb0

∂

∂ν
. (3.3)

Moreover, this operator is admitted by the Navier-Stokes equations in the sense of the
first-order approximation of the theory of approximate transformation groups and the
operator X0 (unperturbed term of Xappr

1 )

X0 = ξ0
∂

∂t
+ ξi

∂

∂xi
+ η0,α ∂

∂uα
+ ζ0 ∂

∂p

coincides with the infinitesimal operator for the Euler equations. Therefore we showed that
the operator X0 is inherited [8] by the Navier-Stokes equations in the form of approximate
symmetry (3.3) (see, [7]).

Remark 2. We note that an infinitesimal operator admitted by an unperturbed equation
cannot be always extended in the form of approximate symmetry operator of the perturbed
equation under consideration, see [2], [6].

After observing that the first-order approximate Lie symmetries of the Navier-Stokes
equations can be easily calculated by using the exact symmetries obtained of the corre-
sponding coupled system, we repeat this derivation to manage with the general case of
arbitrary-order approximation. In fact, we need only to generalize the formula (3.1) for
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arbitrary integer numbers S. In order to reduce calculation, we present this derivation for
a non-point approximate operator [6] of the form

Y appr
S =

[

fα(0)(~x, ~w, ~wx, . . . ) + νfα(1)(~x, ~w, ~wx, . . . ) + · · · + νSfα(S)(~x, ~w, ~wx, . . . )
] ∂

∂wα

+
[

νκ1 + · · · + νSκS
] ∂

∂ν
, (3.4)

where ~w = (~u, p) and then give ”a point symmetry version”. With the help of Taylor
formula

f(~y0 + ν~y1 + · · · + νS~yS) = f(~y0) + ν
∂f(~y0)

∂yβ1
0

yβ1
1 + ν2

[

∂f(~y0)

∂yβ1
0

yβ1
2 +

1

2

∂2f(~y0)

∂yβ1
0 ∂yβ2

0

yβ1
1 yβ2

1

]

+ ν3

[

∂f(~y0)

∂yβ1
0

yβ1
3 +

1

2

∂2f(~y0)

∂yβ1
0 ∂yβ2

0

(yβ1
1 yβ2

2 + yβ2
1 yβ1

2 ) +
1

3

∂3f(~y0)

∂yβ1
0 ∂yβ2

0 ∂yβ3
0

yβ1
1 yβ2

1 yβ3
1

]

(3.5)

...

+ νS





S
∑

|σ|=1

1

σ!

∂|σ|f(~y0)

(∂y1
0)
σ1 . . . (∂yN0 )σN

∑

|µ|=S

y(µ)



 + o(νS),

where σ = (σ1, . . . σN ) is a multi-index; |σ| = σ1 + · · ·+σN , σ! = σ1! . . . σN !, σk = 0, . . . , S;
y(µ) = y1

(µ1) . . . y
N
(µN ) and

yk(µk) =
∑

i1+···+iσk
=µk

yki1 . . . y
k
iσk
.

Here µ = (µ1, . . . , µN ) is a multi-index associated with σ (see [2]) and we can write

fα(0)(~x, ~w0 + ν ~w1 + · · · + νS ~wS , ~w0x + ν ~w1x + · · · + νS ~wSx, . . . )

= fα(0)(~w0, ~w0x, . . . ) + ν

[

∂fα(0)(~w0, ~w0x, . . . )

∂wβ1
0

wβ1
1 +

∂fα(0)(~w0, ~w0x, . . . )

∂wβ1

0j1

wβ1
1j1

+ . . .

]

+ ν2

[

∂fα(0)(~w0, ~w0x, . . . )

∂wβ1
0

wβ1
2 +

1

2

∂2fα(0)(~w0, ~w0x, . . . )

∂wβ1
0 ∂wβ2

0

wβ1
1 wβ2

1

+
∂fα(0)(~w0, ~w0x, . . . )

∂wβ1

0j1

wβ1
2j1

+
1

2

∂2fα(0)(~w0, ~w0x, . . . )

∂wβ1

0j1
∂wβ2

0j2

wβ1
1j1
wβ2

1j2
+ . . .

]

(3.6)
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+ ν3

[

∂fα(0)(~w0, ~w0x, . . . )

∂wβ1
0

wβ1
3 +

1

2

∂2fα(0)(~w0, ~w0x, . . . )

∂wβ1
0 ∂wβ2

0

(wβ1
1 wβ2

2 + wβ2
1 wβ1

2 )

+
1

3

∂3fα(0)(~u0, ~w0x, . . . )

∂wβ1
0 ∂wβ2

0 ∂wβ3
0

wβ1
1 wβ2

1 wβ3
1 +

∂fα(0)(~w0, ~w0x, . . . )

∂wβ1

0j1

wβ1
3j1

+
1

2

∂2fα(0)(~w0, ~w0x, . . . )

∂wβ1

0j1
∂wβ2

0j2

(wβ1
1j1
wβ2

2j2
+ wβ2

1j2
wβ1

2j1
) +

1

3

∂3fα(0)(~w0, ~w0x, . . . )

∂wβ1

0j1
∂wβ2

0j2
∂wβ3

0j3

wβ1
1j1
wβ2

1j2
wβ3

1j3
+ . . .

]

...

+ νS





S
∑

|σ|=1

1

σ!

∂|σ|fα(0)(~w0, ~w0x, . . . )

(∂w1
0)
σ1 . . . (∂wN0 )σN

∑

|µ|=S

w(µ) + . . .



 + o(νS)

where the lower index jk = 1, . . . , n denotes the corresponding partial derivative of the
functions wγs , γ = 1, . . . N and s = 0, . . . S. The symbol . . . denotes the omitted terms
arising due to the Taylor formula and can be easily reconstructed. For the applications
to the coupled system (2.4),(2.5) these terms are not used in further calculations due to
the linear functional dependence of the coefficients η0,i, ηs,i, ζ0 and ζs on us and ps in the
formula (2.7). Repeating the formula (3.6) for each term νsfαs , s = 1, . . . S and using the
perturbation series for ~u, p, we can rewrite the terms in square brackets of the operator

Y appr
1,S =

[

fα(0)(~x, ~w, ~wx, . . . ) + νfα(1)(~x, ~w, ~wx, . . . ) + · · · + νSfα(S)(~x, ~w, ~wx, . . . )
] ∂

∂wα
,

in the form

fα(0)(~w0, ~w0x, . . . ) + ν
[

fα(1)(~w0, ~w0x, . . . )

+
∂fα(0)(~w0, ~w0x, . . . )

∂wβ1
0

wβ1
1 +

∂fα(0)(~w0, ~w0x, . . . )

∂wβ1
0j1

wβ1

1j1
+ . . .

]

+ ν2

[

fα(2)(~w0, ~w0x, . . . ) +
∂fα(0)(~w0, ~w0x, . . . )

∂wβ1
0

wβ1
2 +

1

2

∂2fα(0)(~w0, ~w0x, . . . )

∂wβ1
0 ∂wβ2

0

wβ1
1 wβ2

1

+
∂fα(0)(~w0, ~w0x, . . . )

∂wβ1

0j1

wβ1

2j1
+

1

2

∂2fα(0)(~w0, ~w0x, . . . )

∂wβ1

0j1
∂wβ2

0j2

wβ1

1j1
wβ2

1j2
+ · · · +

∂fα(1)(~w0, ~w0x, . . . )

∂wβ1
0

wβ1
1

+
∂fα(1)(~w0, ~w0x, . . . )

∂wβ1

0j1

wβ1
2j1

+ . . .

]

(3.7)
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+ ν3

[

fα(3)(~w0, ~w0x, . . . ) +
∂fα(0)(~w0, ~w0x, . . . )

∂wβ1
0

wβ1
3 +

1

2

∂2fα(0)(~w0, ~w0x, . . . )

∂wβ1
0 ∂wβ2

0

(wβ1
1 wβ2

2 + wβ2
1 wβ1

2 )

+
1

3

∂3fα(0)(~u0, ~w0x, . . . )

∂wβ1
0 ∂wβ2

0 ∂wβ3
0

wβ1
1 wβ2

1 wβ3
1 +

∂fα(0)(~w0, ~w0x, . . . )

∂wβ1

0j1

wβ1
3j1

+
1

2

∂2fα(0)(~w0, ~w0x, . . . )

∂wβ1

0j1
∂wβ2

0j2

(wβ1
1j1
wβ2

2j2
+ wβ2

1j2
wβ1

2j1
) +

1

3

∂3fα(0)(~w0, ~w0x, . . . )

∂wβ1

0j1
∂wβ2

0j2
∂wβ3

0j3

wβ1
1j1
wβ2

1j2
wβ3

1j3
+ . . .

+
∂fα(2)(~w0, ~w0x, . . . )

∂wβ1
0

wβ1
1 +

∂fα(2)(~w0, ~w0x, . . . )

∂wβ1

0j1

wβ1
1j1

+ · · · +
∂fα(1)(~w0, ~w0x, . . . )

∂wβ1
0

wβ1
2

+
1

2

∂2fα(1)(~w0, ~w0x, . . . )

∂wβ1
0 ∂wβ2

0

wβ1
1 wβ2

1 +
∂fα(1)(~w0, ~w0x, . . . )

∂wβ1

0j1

wβ1
2j1

+
1

2

∂2fα(1)(~w0, ~w0x, . . . )

∂wβ1

0j1
∂wβ2

0j2

wβ1
1j1
wβ2

1j2
. . .

]

...

+ νS



fα(S)(~x, ~w, ~wx, . . . ) +
S

∑

s=1

s
∑

|σ|=1

1

σ!

∂|σ|fα(S−s)(~w0, ~w0x, . . . )

(∂w1
0)
σ1 . . . (∂wN0 )σN

∑

|µ|=s

w(µ) + . . .



 + o(νS).

Denote by

Y appr
2,S =

[

νκ1 + · · · + νSκS
] ∂

∂ν
(3.8)

the second operator in the formula (3.4). Direct calculations show that

∂

∂wα
= ν−s

∂

∂wαs
, s = 0, . . . S,

and

νκ1
∂

∂ν
= −κ1

(

wα1
∂

∂wα1
+ 2wα2

∂

∂wα2
+ · · · + SwαS

∂

∂wαS

)

ν2κ2
∂

∂ν
= −κ2

(

wα1
∂

∂wα2
+ 2wα2

∂

∂wα3
+ · · · + SwαS+1

∂

∂wαS+1

)

(3.9)

...

νSκS
∂

∂ν
= −κS

(

wα1
∂

∂wαS
+ 2wα2

∂

∂wαS+1

+ · · · + Swα2S−1

∂

∂wα2S−1

)

.

Considering only a finite number of terms of a given order of approximation in the non-
point symmetry operator (3.4), we obtain the following constraints on the function θ:

κs =
∂θs
∂a

∣

∣

∣

∣

a=0

≡ 0, s = 2, . . . , S. (3.10)
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Then the operator Y appr
S in the variables wαs is transformed to

XS = fα(0)(~w0, ~w0x, . . . )
∂

∂wα0
+

[

fα(1)(~w0, ~w0x, . . . )

+
∂fα(0)(~w0, ~w0x, . . . )

∂wβ1
0

wβ1
1 +

∂fα(0)(~w0, ~w0x, . . . )

∂wβ1
0j1

wβ1

1j1
+ · · · − κ1w

α
1

]

∂

∂wα1

+

[

fα(2)(~w0, ~w0x, . . . ) +
∂fα(0)(~w0, ~w0x, . . . )

∂wβ1
0

wβ1
2 +

1

2

∂2fα(0)(~w0, ~w0x, . . . )

∂wβ1
0 ∂wβ2

0

wβ1
1 wβ2

1

+
∂fα(0)(~w0, ~w0x, . . . )

∂wβ1
0j1

wβ1

2j1
+

1

2

∂2fα(0)(~w0, ~w0x, . . . )

∂wβ1
0j1
∂wβ2

0j2

wβ1

1j1
wβ2

1j2
+ · · · +

∂fα(1)(~w0, ~w0x, . . . )

∂wβ1
0

wβ1
1

+
∂fα(1)(~w0, ~w0x, . . . )

∂wβ1

0j1

wβ1
2j1

+ · · · − 2κ2w
α
2

]

∂

∂wα2
(3.11)

+

[

fα(3)(~w0, ~w0x, . . . ) +
∂fα(0)(~w0, ~w0x, . . . )

∂wβ1
0

wβ1
3 +

1

2

∂2fα(0)(~w0, ~w0x, . . . )

∂wβ1
0 ∂wβ2

0

(wβ1
1 wβ2

2 + wβ2
1 wβ1

2 )

+
1

3

∂3fα(0)(~u0, ~w0x, . . . )

∂wβ1
0 ∂wβ2

0 ∂wβ3
0

wβ1
1 wβ2

1 wβ3
1 +

∂fα(0)(~w0, ~w0x, . . . )

∂wβ1

0j1

wβ1
3j1

+
1

2

∂2fα(0)(~w0, ~w0x, . . . )

∂wβ1
0j1
∂wβ2

0j2

(wβ1
1j1
wβ2

2j2
+ wβ2

1j2
wβ1

2j1
) +

1

3

∂3fα(0)(~w0, ~w0x, . . . )

∂wβ1
0j1
∂wβ2

0j2
∂wβ3

0j3

wβ1
1j1
wβ2

1j2
wβ3

1j3
+ . . .

+
∂fα(2)(~w0, ~w0x, . . . )

∂wβ1
0

wβ1
1 +

∂fα(2)(~w0, ~w0x, . . . )

∂wβ1

0j1

wβ1
1j1

+ · · · +
∂fα(1)(~w0, ~w0x, . . . )

∂wβ1
0

wβ1
2

+
1

2

∂2fα(1)(~w0, ~w0x, . . . )

∂wβ1
0 ∂wβ2

0

wβ1
1 wβ2

1 +
∂fα(1)(~w0, ~w0x, . . . )

∂wβ1
0j1

wβ1
2j1

+
1

2

∂2fα(1)(~w0, ~w0x, . . . )

∂wβ1
0j1
∂wβ2

0j2

wβ1
1j1
wβ2

1j2
+ · · · − 3κ3w

α
3

]

∂

∂wα3

...

+



fα(S)(~x, ~w, ~wx, . . . ) +

S
∑

s=1

s
∑

|σ|=1

1

σ!

∂|σ|fα(S−s)(~w0, ~w0x, . . . )

(∂w1
0)
σ1 . . . (∂wN0 )σN

∑

|µ|=s

w(µ) + · · · − SκSw
α
S





∂

∂wαS
.

Therefore we are able to prove the following extension of Gazizov’s result (see Theo-
rem 1 [6]).

Let a non-point approximate symmetry operator be of the form

Y appr
S =

[

fα(0)(~x, ~w, ~wx, . . . ) + νfα(1)(~x, ~w, ~wx, . . . ) + · · · + νSfα(S)(~x, ~w, ~wx, . . . )
] ∂

∂wα

+ νκ1
∂

∂ν
, (3.12)

then the operator (3.12) takes the form (3.11) in the variables wαs . Moreover, if the equa-
tion under consideration approximately admits the operator Y appr

S , then the corresponding
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coupled system admits the operator XS . The proof directly follows from the definition
of approximate infinitesimal operator [1], [2], substitution of the perturbation series for
~w into the original equation and separation with respect to ν exploiting the results of
calculations done above.

If (3.12) is an approximate Lie symmetry operator i.e. it has the form

Xappr
S = [ξ0(0)(t, ~x, ~w) + νξ0(1)(t, ~x, ~w) + · · · + νSξ0(S)(t, ~x, ~w)]

∂

∂t

+ [ξi(0)(t, ~x, ~w) + νξi(1)(t, ~x, ~w) + · · · + νSξi(S)(t, ~x, ~w)]
∂

∂xi

+ [ηα(0)(t, ~x, ~w) + νηα(1)(t, ~x, ~w) + · · · + νSηα(S)(t, ~x, ~w)]
∂

∂wα
+ νκ1

∂

∂ν
,

then the corresponding operator (3.11) are presented in the form

XS = ξ0(0)(t, ~x, ~w0)
∂

∂t
+ ξi(0)(t, ~x, ~w0)

∂

∂xi
+ ηα(0)(t, ~x, ~w0)

∂

∂wα0

+

[

ηα(1)(t, ~x, ~w0) − ξj(1)(t, ~x, ~w0)w
α
0j +

∂ηα(0)(t, ~x, ~w0)

∂wβ1
0

wβ1
1 (3.13)

−
∂ξj(0)(t, ~x, ~w0)

∂wβ1
0

wβ1
1 wα0j − κ1w

α
1

]

∂

∂wα1

+

[

ηα(2)(t, ~x, ~w0) − ξj(2)(t, ~x, ~w0)w
α
0j +

∂ηα(0)(t, ~x, ~w0)

∂wβ1
0

wβ1
2 +

∂ξj(0)(t, ~x, ~w0)

∂wβ1
0

wβ1
2 wα0j

+
1

2

∂2ηα(0)(t, ~x, ~w0)

∂wβ1
0 ∂wβ2

0

wβ1
1 wβ2

1 −
1

2

∂2ξj(0)(t, ~x, ~w0)

∂wβ1
0 ∂wβ2

0

wβ1
1 wβ2

1 wα0j +
∂ηα(1)(t, ~x, ~w0)

∂wβ1
0

wβ1
1

−
∂ξj(1)(t, ~x, ~w0)

∂wβ1
0

wβ1
1 wα0j − 2κ2w

α
2

]

∂

∂wα2

+

[

ηα(3)(t, ~x, ~w0) − ξj(3)(t, ~x, ~w0)w
α
0j +

∂ηα(0)(t, ~x, ~w0)

∂wβ1
0

wβ1
3 −

∂ξj(0)(t, ~x, ~w0)

∂wβ1
0

wβ1
3 wα0j

+
1

2

∂2ηα(0)(t, ~x, ~w0)

∂wβ1
0 ∂wβ2

0

(wβ1
1 wβ2

2 + wβ2
1 wβ1

2 ) −
1

2

∂2ξj(0)(t, ~x, ~w0)

∂wβ1
0 ∂wβ2

0

(wβ1
1 wβ2

2 + wβ2
1 wβ1

2 )wα0j

+
1

3

∂3ηα(0)(t, ~x, ~w0)

∂wβ1
0 ∂wβ2

0 ∂wβ3
0

wβ1
1 wβ2

1 wβ3
1 −

1

3

∂3ξj(0)(t, ~x, ~w0)

∂wβ1
0 ∂wβ2

0 ∂wβ3
0

wβ1
1 wβ2

1 wβ3
1 wα0j

+
∂ηα(1)(t, ~x, ~w0)

∂wβ1
0

wβ1
2 −

∂ξj(1)(t, ~x, ~w0)

∂wβ1
0

wβ1
2 wα0j +

1

2

∂2ηα(1)(t, ~x, ~w0)

∂wβ1
0 ∂wβ2

0

wβ1
1 wβ2

1

−
1

2

∂2ξj(1)(t, ~x, ~w0)

∂wβ1
0 ∂wβ2

0

wβ1
1 wβ2

1 wα0j − 3κ3w
α
3

]

∂

∂wα3
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...

+



ηα(S)(t, ~x, ~w0) − ξj(S)(t, ~x, ~w0)w
α
0j +

S
∑

s=1

s
∑

|σ|=1

1

σ!

∂|σ|ηα(S−s)(t, ~x, ~w0)

(∂w1
0)
σ1 . . . (∂wN0 )σN

∑

|µ|=s

w(µ)

−

S
∑

s=1

s
∑

|σ|=1

1

σ!

∂|σ|ξj(S−s)(t, ~x, ~w0)

(∂w1
0)
σ1 . . . (∂wN0 )σN





∑

|µ|=s

w(µ)



wα0j − SκSw
α
S





∂

∂wαS
.

We apply the formula (3.13) to calculate the approximate Lie symmetry operator of
the Navier-Stokes equations. Inspired by the formula (3.13) and the calculation of the
first-order approximate infinitesimal operator Xappr

1 for the Navier-Stokes equations, we
obtain, comparing (2.7) and (3.13), that

ξj(1) ≡ 0, ηα(1) ≡ 0,
∂ηα(0)

∂uβ1
0

= aαβ1 (α 6= β1),
∂ηα(0)

∂uα0
= −a0, α = 1, 3

η4
(1) ≡ ζ(1) = g1(t),

∂η4
(0)

∂p0
= −2a0, η4

(0) ≡ ζ0, κ1 = b0, (3.14)

ξj(2) ≡ 0, ηα(2) ≡ 0, α = 1, 3, η4
(2) ≡ ζ(2) = g2(t),

∂2ξj
(0)

∂wβ1
0 ∂wβ2

0

≡ 0,

∂2ηα(0)

∂wβ1
0 ∂wβ2

0

≡ 0,
∂ξj(1)

∂wβ1
0

≡ 0,
∂ηα(1)

∂wβ1
0

≡ 0, α = 1, 4

...

ξj(S) ≡ 0, ηαS ≡ 0, α = 1, 3, η4
(S) ≡ ζS = gS(t),

higher-order derivatives
∂|σ|ξj(S−s)

(∂w1
0)
σ1 . . . (∂wN0 )σN

,
∂|σ|ηα(S−s)

(∂w1
0)
σ1 . . . (∂wN0 )σN

become zero for |σ| ≥ 2 due to (2.7).

Therefore we derive that the S-order approximate symmetry operator XS for the Navier-
Stokes equations is transformed to

Xappr
S = ξ0

∂

∂t
+ ξi

∂

∂xi
+ η0,α ∂

∂uα
+ [ζ0 + νg1(t) + · · · + νSgS(t)]

∂

∂p
+ (3.15)

νb0
∂

∂ν
.

This operator is admitted by the Navier-Stokes equations in the sense of S-order approx-
imation of the theory of approximate transformation groups. Moreover, we can see that
the infinitesimal operator X0 of Lie symmetries for the Euler equations is inherited by the
Navier-Stokes equations in the form of approximate symmetry (3.15) for arbitrary-order
approximation.
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4 Optimal systems of finite-dimensional Lie subalgebras of

the approximate group of transformations

In this section we construct the so-called optimal system of all finite-dimensional Lie
subalgebras generated by the approximate symmetry operator Xappr

S . According to the
theory of approximate Lie symmetries, a vector space L of approximate operators is called
an approximate Lie algebra of operators if it is closed (in approximation of some given
order) under the approximate commutator

[A,B] ∈ L, [A,B] ≈ AB −BA,

for any A, B ∈ L. The approximate commutator [A,B] is calculated to the precision
indicated. Examples of the approximate symmetries show that such symmetries usually
do not form a Lie algebra, but create the the so-called approximate Lie algebra [19].

The approximate Lie algebra L admitted by the Navier-Stokes equations was found in
the previous section. Therefore this algebra is decomposed into the semi-direct sum of the
finite-dimensional subalgebra L6 spanned by the generators

X1 =
∂

∂t
, X2 = 2t

∂

∂t
+ xi

∂

∂xi
− ui

∂

∂ui
− 2p

∂

∂p
,

X1,2 = x1 ∂

∂x2
− x2 ∂

∂x1
+ u1 ∂

∂u2
− u2 ∂

∂u1

X2,3 = x2 ∂

∂x3
− x3 ∂

∂x2
+ u2 ∂

∂u3
− u3 ∂

∂u2
(4.1)

X3,1 = x3 ∂

∂x1
− x1 ∂

∂x3
+ u3 ∂

∂u1
− u1 ∂

∂u3

X6 = t
∂

∂t
+ xi

∂

∂xi
+ ν

∂

∂ν

and the infinite-dimensional ideal L∞ with the basis

Xai = ai(t)
∂

∂xi
+ ait(t)

∂

∂ui
− xiaitt(t)

∂

∂p
, i = 1, 2, 3 (4.2)

X7 = a4(t)
∂

∂p
, X8 = νa5(t)

∂

∂p
, . . . , X7+S = νSa4+S(t)

∂

∂p

where ak(t) are smooth arbitrary functions. The direct calculation of commutators shows
us that L6 forms (exact) Lie algebra of the infinitesimal operators with respect to the
(exact) commutator operator.

We construct complete systems of all inequality subalgebras of the Lie algebra L6 where
every subalgebra represents a class of equivalent subalgebras. According to [9], we denote
the optimal system by the symbol ΘLn where n is a dimension of the corresponding
system. Recall that inequivalent subalgebras are used to find invariant solutions such
that the solutions so obtained cannot be carried over into each other by the admissible
transformations of the differential equation under consideration. To construct the optimal
system ΘLn, it is necessary to find the group of inner automorphisms Aut(L6) of Lie
subalgebra L6.
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In order to simplify the calculation of commutators, we consider the algebra L′
6 (which

is isomorphic to L6) spanned by the basis < Y1, . . . , Y6 > where

Y1 = X1, Y2 = 2X6 −X2, Y3 = X2 −X6, Y4 = X2,3, Y5 = X3,1, Y6 = X1,2.

Table of commutators for the basis operators of this algebra reads

[Y1, Y1] = [Y1, Y2] = 0, [Y1, Y3] = Y1, [Y1, Y4] = [Y1, Y5] = [Y1, Y6] = 0,

[Y2, Y1] = [Y2, Y2] = [Y2, Y3] = [Y2, Y4] = [Y2, Y5] = [Y2, Y6] = 0,

[Y3, Y1] = −Y1, [Y3, Y2] = [Y3, Y3] = [Y3, Y4] = [Y3, Y5] = [Y3, Y6] = 0,

[Y4, Y1] = [Y4, Y2] = [Y4, Y3] = [Y4, Y4] = 0, [Y4, Y5] = −Y6, [Y4, Y6] = −Y5,

[Y5, Y1] = [Y5, Y2] = [Y5, Y3] = 0, [Y5, Y4] = Y6, [Y5, Y5] = 0, [Y5, Y6] = Y6,

[Y6, Y1] = [Y6, Y2] = [Y6, Y3] = 0, [Y6, Y4] = Y5, [Y6, Y5] = −Y4, [Y6, Y6] = 0.

This algebra is decomposed into the direct sum L′
6 = O3 ⊕ K ⊕ T of ideals O3 =<

Y4, Y5, Y6 >, K =< Y1, Y3 >, T =< Y2 > where T is the center of L′
6. O3 = RY4 ⊕RY5 ⊕

RY6 is 3D simple Lie algebra. Here R denotes the field of real numbers. The group of
inner automorphisms Aut(L′

6) = Aut(O3)⊕Aut(K) is isomorphic to G = PO3 ⊕R where
PO3 is the 3D rotational group in R3 and R = Ra ⊕ Rt is 2D non-Abelian subalgebra
such that

R = {φx,y|x ∈ R \ 0, y ∈ R}

is 2D non-Abelian subgroup and for φ = φx,y we have Y φ
1 = xY1, Y

φ
3 = Y3 + yY1. Here

the symbol (·)f denotes the action of an inner automorphism f on an element (·).

The above decompositions allows us to construct the optimal systems. The transitivity
property of Aut(O3) (R) on the set of vectors from O3 of an equal length ({Y3+yY1|y ∈ R})
is also used. We briefly describe the construction of optimal systems ΘL′

i.

To construct the optimal system ΘL′
1 we consider a vector v = αv1 + βv2 + γv3 ∈ L′

6

where v1 ∈ O3, v2 ∈ K, v3 ∈< Y2 >.

At first we suppose that α 6= 0. Then α′−1v = αα′−1v1 + βα′−1v2 + γα′−1v3 where
α′−1 6= 0 and there exists φ ∈ Aut(O3) such that vφ1 = Y4 + β′v2 + γ′v3.

Let v2 = β1Y3+β2Y1. Suppose that β1 6= 0 then there exists ψ ∈ Aut(K) such that vψ2 =

λY3 and Y ψ
4 = Y4. Therefore the subalgebra < v > is isomorphic to < Y4 + λY3 + µY2 >

and subalgebras with different λ and µ are not conjugate.

Suppose that β1 = 0 and β2 6= 0 then there exists θ ∈ Aut(K) such that (β′v2)
θ = Y1.

Therefore the subalgebra < v > is isomorphic to < Y1 + Y4 +µY2 > and subalgebras with
different µ are not conjugate.

Now suppose that β1 = β2 = 0 i.e. v2 = 0 then the subalgebras < v > is isomorphic to
< Y4 + µY2 >.

In the case of α = 0 we can easily find as above that the subalgebra < v > is isomorphic
to < Y2 + µY3 > or < Y1 + Y2 > or < Y1 > or < Y2 >.

Consider a 2D subalgebra P and let the first element of a base of this subalgebra be
v = Y4 + λY3 + µY2 then the second element w = τY1 + τ1Y3 + ξY2 and [v,w] = λτY1.
Suppose that λτ 6= 0 then P =< Y4 + λY3 + µY2, Y1 >.

Now assume that τ = 0, τ1 6= 0 then w = Y3 + ξY2 and P =< Y4 + µ1Y2, Y3 + µ2Y2 >.

If τ = τ1 = 0 then w = Y2 and P =< Y4 + λY3, Y2 >.
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Suppose that τ 6= 0 and λ = 0 then for v = Y4 + µ1Y2 we can take w = Y3 + µ2Y2

for τ1 6= 0 or w = Y1 + Y2 for τ1 = 0. Therefore P =< Y4 + µ1Y2, Y3 + µ2Y2 > or
P =< Y4 + µ1Y2, Y1 + Y2 >. Finally for λ = τ = τ1 = 0 we obtain that P =< Y4, Y2 >.

Let now the first element of a base of P be v = Y4 + Y1 + µY2 then the second element
w ∈ K ⊕ < Y2 > and [v,w] ∈< Y1 >. Therefore [v,w] = 0 (otherwise dimP > 2)
and w = Y1 + ξY2 or w = Y2. As a result, we obtain P =< Y4 + µY2, Y1 + ξY2 > or
P =< Y4 + Y1, Y2 >.

The result of classification in the case when P ⊆ K ⊕ T is given by the following list:
< Y1, Y3 + µY2 >, < Y1, Y2 >, < Y2, Y3 > since < Y1, Y3 >∈< Y1, Y3 + µY2 > for µ = 0.

Let us consider 3D subalgebras {Sn}. Immediately we can find two inequivalent sub-
algebras K ⊕ T and O3. Otherwise, we can choose a first element of a base of Sk in
the form v = Y4 + λY3 + µY1 + ξY2. Further, since there not exists 2D subalgebras in
O3 we can take Sn =< v > ⊕S0n where 2D subalgebra S0n ⊆ K⊕ < Y2 >. There-
fore S01 =< Y2, Y3 >, S02 =< Y1, Y2 > and S03 =< Y3 + cY2, Y1 >. So we found that
S1 =< Y4, Y3, Y2 >, S2 =< Y4 + λY3, Y1, Y2 > and S3 =< Y4 + c1Y2, Y3 + c2Y2, Y1 > since
< Y1, Y3 >⊂< Y3 + cY2, Y1 > for c = 0.

In order to classify 4D subalgebras {Vn} let us suppose that O3 ⊂ Vl then Vl =< v >
⊕O3 where < v >∈ K ⊕ T . Another words < v >=< Y3 + µY2 > or < v >=< Y1 + Y2 >,
< v >=< Y1 > or < v >=< Y2 > i.e. we have four classes inequivalent subalgebras.

In the case of O3 6⊂ Vl we obtain that P =< v > ⊕K ⊕ T where v ∈ O3. Therefore
P =< Y1, Y2, Y3, Y4 >.

It is clear that for any 5D subalgebra Wk to be hold O3 ⊆ Wk. It means that Wk =
O3 ⊕ P0 where P0 is a 2D subalgebra in K ⊕ T .

Therefore we have three classes of inequivalent 5D subalgebras.

The results of constructing of the optimal systems ΘL′
i, i = 1, . . . , 5 are presented by

the following classes of inequivalent subalgebras:

(ΘL′
1) A0ci :< Y4 + c1Y3 + c2Y2 >, A1c1 :< Y4 + c1Y2 + Y1 >,

A2 :< Y1 + Y2 >, A3 :< Y1 >, A4 :< Y3 >,

A5c :< Y2 + cY3 >,

where ci is real numbers;

(ΘL′
2) B0c1,c2 :< Y4 + c1Y3 + c2Y2, Y1 >,B1c1 :< Y4 + c1Y2, Y1 + Y2 >,

B2c2 :< Y4 + c1Y2, Y1 >,

B3c1,d1 :< Y3 + c1Y2, Y4 + d1Y2 >, B4c1 :< Y3 + c1Y4, Y2 >,

B5 :< Y1, Y2 >, B6 :< Y2, Y4 >,

B7c1 :< Y1, Y3 + c1Y2 >,

(ΘL′
3) C0c1,c2 :< Y4 + c1Y2, Y1, Y3 + c2Y2 >, C1c1 :< Y4 + c1Y3, Y1, Y2 >,

C2 :< Y4, Y3, Y2 >, C3 : O3, C4 : K ⊕ T,
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(ΘL′
4) D0f1 :< Y4, Y5, Y6, Y3 + f1Y2 >, D1 :< Y4, Y5, Y6, Y2 >,

D2 :< Y4, Y5, Y6, Y1 + Y2 >, D3 :< Y4, Y5, Y6, Y1 >,

D4 :< Y1, Y2, Y3, Y4 >,

(ΘL′
5) E0 :< Y1, Y3, Y4, Y5, Y6 >, E1 :< Y2, Y3, Y4, Y5, Y6 >,

E2c1 :< Y2 + c1Y3, Y1, Y4, Y5, Y6 >,

Subalgebra A5c is a crucial for studying scaling laws in the statistical theory of turbu-
lence. A5c generates the two-parametric Lie group Gac of symmetry transformations of
the Navier-Stokes equations

x̄i = eaxi, t̄ = eact, ūi = ea−acui, p̄ = e2a(1−c)p, ν̄ = ea(2−c)ν. (4.3)

For c = 1 this subalgebra coincides with X6. In the next section we show how this group
of scaling symmetries Gac can be applied to derive certain scaling laws. As an example,
we rediscovery the so-called universal logarithmic law by von Kármán and Prandtl for
distributions of the mean velocity profile for a steady-state planar turbulent flow (or for
turbulent flow in a pipe) using the symmetries obtained.

5 Symmetry groups in turbulence

Traditional models of turbulence use the Reynolds decomposition to separate the fluid
velocity ~u at a point ~x into its mean and fluctuating components as ~u = 〈~u〉 + ~u′, where
〈~u′〉 = 0 and the bracket 〈·〉 denotes an Eulerian mean which is defined by the formula [20]

〈~f〉 =

∫

~fP (~f)d~f ≡M1 ~f,

where P (~f) denotes the so-called density probability distribution function. This function
is normalized according to the equality

M0 ~f =

∫

P (~f)d~f = 1.

We recall that

Mn ~f =

∫

~fnP (~f)d~f

is called by the n-order moment of a stochastic quantity ~f(~x, t). Mathematically, Eule-
rian averaging commutes with the partial derivatives in space and time, but it does not
commute with the time derivative

D

Dt
=

∂

∂t
+ ~u · ~∇.
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This lack of commutivity between Eulerian averaging and the material time derivative
leads to the unknown Reynolds stresses in the motion equations for the Eulerian mean
velocity 〈~u〉 and, subsequently, to the well-known closure problem [20]). The Reynolds
equations governing the mean velocity field are

∂〈ui〉

∂t
+ 〈uj〉

∂〈ui〉

∂xj
+
∂〈p〉

∂xi
= ν

∂2〈ui〉

∂x2
jj

−
∂〈u′iu

′
j〉

∂xj

∂〈uk〉

∂xk
= 0,

where Rij = −〈u′iu
′
j〉 is the new unknown additional functions in the Reynolds equations.

To find the evolution equations for this term we can apply again Eulerian averaging and
as a result, the equations for 〈u′iu

′
j〉 are

∂〈u′iu
′
j〉

∂t
+ 〈uk〉

∂〈u′iu
′
j〉

∂xk
+

(

〈u′iu
′
k〉
∂〈uj〉

∂xk
+ 〈u′ju

′
k〉
∂〈ui〉

∂xk

)

+
∂〈u′iu

′
ju

′
k〉

∂xk
=

−ρ−1

(

〈ui
∂p′

∂xj
〉 + 〈uj

∂p′

∂xi
〉

)

− ν

(

〈ui
∂2uj
∂x2

kk

〉 + 〈uj
∂2ui
∂x2

kk

〉

)

,

where 〈u′iu
′
ju

′
k〉 is the third-order moment (or the so-called correlation tensor). The pro-

cedure to write equations for the new correlation functions may be continued for finding
higher-order correlation tensors and the infinite system obtained is called by the Keller-
Friedman chain. The Reynolds equations admit the Lie group of symmetries Gac in the
following modified form

x̄i = eaxi, t̄ = eact, 〈ūi〉 = ea−ac〈ui〉, ν̄ = ea(2−c)ν,

〈p̄〉 = e2a(1−c)〈p〉, 〈u′ju
′
i〉 = e2(a−ac)〈u′ju

′
i〉.

As the first application of the results from the previous section, we derive the rela-
tionship between mean velocity distribution 〈u〉 and the the distance y from the wall in
the case of a steady-state planar turbulent flow using the Reynolds equations. We recall
that scaling laws (invariants of the corresponding symmetry groups) are the cornerstones
of the statistical theory of turbulence, the best known self-similar states are found in the
intermediate region in wall-bounded turbulence, whose mean structure has been widely
thought to be well described by the von Kármán–Prandtl universal logarithmic law of the
wall. This law have been put to use in applications, for practical reasons it is important
to know how the time averaged velocity varies as the distance y from the wall increases.
During the last sixty years two contrasting laws for mean velocity distribution in the
so-called intermediate region (where viscosity is small but finite) could be found in the
literature: the first is the power law. Engineers determined empirically (in the early years
of turbulent research) that

〈u1〉 = Axn2 (5.1)

where the power n and the coefficient A are depend slightly on Re and were determined
from experiment. Here the planar wall-bounded shear steady-state flow is considered where
all statistical quantities depend only on the wall-normal coordinates x2. The second law
found in the literature is the universal logarithmic law

〈u1〉 = u∗

(

κ−1 ln
u∗x2

ν
+ C

)

, (5.2)



244 V N Grebenev, M Oberlack and A N Grishkov

where u∗ is a given external parameter (friction velocity), κ and C are ”universal” con-
stants, independent of the Reynolds number. The friction velocity is defined by the in-
tegrated form of the leading order of the momentum equation in stream-wise direction
according to

ν
∂〈u1〉

∂x2
− 〈u′1u

′
2〉 =

τw
ρ

= u2
∗. (5.3)

u2
∗ may be considered as a given external parameter, such as a boundary condition. The

von Kármán assumed that the close to the wall right outside the viscous sub-layer the wall
shear u∗ (friction) velocity is only parameter determining the flow.

In the case when the evolution of a flow is fixed by the averaged Euler equations
these laws were unified [13] in the framework of Symmetry Analysis. The following four
symmetries consisting of two scaling symmetries

Xs1 = x2
∂

∂x2
+ 〈u1〉

∂

∂〈u1〉
+ 2Rij

∂

∂Rij
, Xs2 = −〈u1〉

∂

∂〈u1〉
− 2Rij

∂

∂Rij
,

the Galilei transformation in x1 and the translation invariance in x2 directions

Xu1 =
∂

∂〈u1〉
, Xx2 =

∂

∂x2

are admitted by the two-point correlation equations for plane shear flows in the so-called
outer region of a boundary layer which is obtained by taking the limit ν → 0 in the equa-
tions (see [13]). Using the superposition principle for the above-mentioned symmetries,
we consider the symmetry operator

X = ks1Xs1 + ks2Xs2 + ku1Xu1 + kx2Xx2 (5.4)

where ksi
are constant and repeating the results [13], we can find easily invariants of the

symmetry operator (5.4).
Indeed, in the case of a planar shear flow, the characteristic equations to determine

invariants are

dx2

ks1x2 + kx2

=
d〈u1〉

(ks1 − ks2)〈u1〉 + ku1

= . . . . (5.5)

For the different combination of parameter ks1 and ks2 a variety of scaling laws for the
flow can be written as follows:
a) ks1 = ks2 .
Then we obtain from (5.5) that

〈u1〉 =
ku1

ks1
ln

(

x2 +
kx2

ks1

)

+ C (5.6)

where C is a constant. Therefore (5.6) takes the form of a logarithmic law of the von
Kármán–Prandtl type for kx2 = 0 and the function (5.6) is invariant under the symmetry
transformation

x̄2 = eks1 (x2 + kx2/ks1) − kx2/ks1 , 〈ū1〉 = 〈u1〉 + kū1 .
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b) ks1 6= ks2 .
This leads us to an algebraic velocity law of the following form

〈u1〉 = C

(

x2 +
kx2

ks1

)1−ks2/ks1

+
ku1

ks2 − ks1
. (5.7)

This function is invariant under the symmetry transformation

x̄2 = eks1 (x2 + kx2/ks1) − kx2/ks1 ,

〈ū1〉 = eks1−ks2 (〈u1〉 − kū1/(ks2 − ks1)) + ku1/(ks2 − ks1) .

Therefore (5.7) takes the form of an algebraic law but differ from the law suggested
in [14], [16] by their derivation and application area. The constants involve into these
formulas may be determined from numerical experiments [13].

Since the algebraic law was characterized by a maximum of symmetry transformation,
a new one can be obtained from the following assumption
c) ks1 = 0.
Implementation this expression into the invariant surface condition leads to a new expo-
nential velocity profile

〈u1〉 = C exp

(

−
ks2
kx2

x2

)

+
ku1

ks2
. (5.8)

The function obtained is invariant under the symmetry transformation

x̄2 = x2 + kx2 ,

〈ū1〉 = e−ks2 (〈u1〉 − ku1/ks2) + ku1/ks2 .

In normalized and nondimensional form, (5.8) can be rewritten in the boundary layer form

〈u∞〉 − 〈u1〉

u∗
= c∗ exp

(

−β
x2

∆

)

, (5.9)

where ∆ = δ1〈u∞〉/u∗ is the Rotta-Causer length scale, 〈u∞〉 is the stream mean velocity
in the limit x2 → ∞. The assumption c) characterizes a violation of symmetry according to
the scale transformation generated by the infinitesimal operator X suppresing scalability
of the length scale.

The penultimate case of a turbulent shear flow results from the violation of symmetries
by the assumptions
d) ks1 = 0 and ks2 = 0.

For this case we obtain the linear scaling law

〈u1〉 =
ku1

kx2

x2 + C. (5.10)

This equation is invariant under the symmetry transformation

x̄2 = x2 + kx2 , 〈ū1〉 = 〈u1〉 + ku1 .

The Couette flow is a well documented example for a plane turbulent flow with a linear
velocity law. This flow is determined by an external velocity scale as well as by an external
velocity law.
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Therefore, we demonstrated (in a compressed form) how to derive a family of scaling
laws (invariants) by the knowledge of symmetries, see for details [11]-[13]. Moreover, this
analysis showed us what kind of scaling laws may be obtained. Verification of the scaling
laws by using experimental and DNS data are discussed in details in [11]-[13].

The next step is to include the Reynolds number dependence into consideration. The
above scaling laws symmetries were obtained by using the symmetries of the Euler equa-
tions. We note that the use of symmetries of the Navier-Stokes equations do not enables
us to introduce the Reynolds number dependence into scaling laws. Moreover, these sym-
metries cannot be used to derive the so-called algebraic scaling law which is realized in
experiments. The crucial point for understanding of Reynolds number dependence is that
viscosity is only significant for small scale turbulence at the order of the Kolmogorov length
scale i.e. into the inner region (wall region) of a turbulent flow.

To involve the Reynolds number dependence into the scaling laws we rewrite the
Reynolds equations in the following form

∂〈ui〉

∂t
+ 〈uj〉

∂〈ui〉

∂xj
+
∂〈p〉

∂xi
= 2ν

∂

∂xj
Sij +

∂

∂xj
Rij (5.11)

∂〈uk〉

∂xk
= 0, (5.12)

where Sij is the strain rate of the mean velocity field which is defined by

Sij =
1

2

(

∂〈ui〉

∂xj
+
∂〈uj〉

∂xi

)

.

In the case of a planar steady-state shear flow (i.e. it solely depends on the x2 coordinate)
equations (5.11),(5.12) admit again the Lie group of symmetries Gac in the following
modified form

x̄2 = eax2, 〈ū1〉 = ea−ac〈u1〉, ν̄ = ea(2−c)ν,

R12 = e2(a−ac)R12, S12 = eacS12.

The group Gac generates the one-parametric groups

Ga : x̄2 = eax2, 〈ū1〉 = ea〈u1〉, ν̄ = e2aν,

R12 = e2aR12, S12 = eaS12.

and

Gs : x̄2 = x2, 〈ū1〉 = e−s〈u1〉, ν̄ = e−sν,

R12 = e−2sR12, S12 = e−sS12,

These groups are realized as a closer of the orbits [9] of Gac for c → 0, c = −s/a and
a→ 0 respectively and generate the infinitesimal operators

Zs1 = x2
∂

∂x2
+ 〈u1〉

∂

∂〈u1〉
+ 2R12

∂

∂R12
+ S12

∂

∂S12
+ 2ν

∂

∂ν
(5.13)

and

Zs2 = −〈u1〉
∂

∂〈u1〉
− 2R12

∂

∂R12
− S12

∂

∂S12
− ν

∂

∂ν
. (5.14)
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The infinitesimal operator Xu1 is extended to (considering R12 as a new dependent vari-
able)

Z3 =
∂

∂〈u1〉
+

∂

∂R12
(5.15)

and the operator Xx2 is admitted in the same form.

The first case to be analyzed is that of the classical logarithmic-law-of-the-wall. We
recall that von Kármán’s key assumption was, that close to the wall, just beyond the vis-
cous sub-layer, the friction velocity u∗ (see, the formula (5.2) is the only flow determining
parameter. We show how to use the symmetries admitted by the Reynolds equations to de-
rive that u∗ is a really flow determining parameter and the above-mentioned von Kármán’s
assumption is fulfilled. For this aim, it will be convenient to rewrite the Reynolds equa-
tions (5.11), (5.12) in the form

∂〈ui〉

∂t
+ 〈uj〉

∂〈ui〉

∂xj
+
∂〈p〉

∂xi
=

∂

∂xj
wij (5.16)

∂〈uk〉

∂xk
= 0, (5.17)

where wij = Rij+2νSij . Further, for the present case of shear planar steady-state flows for
which all statistical variables only depends on the x2-coordinate, the infinitesimal operator
Z3 can be rewritten in ∂/∂〈u1〉, ∂/∂w12 variables and as a result, Z3 is transformed to

Zu1,w12 =
∂

∂〈u1〉
+

∂

∂w12
. (5.18)

The operators Zs1 and Zs2 take the form (at the same definitions)

Zs1 = x2
∂

∂x2
+ 〈u1〉

∂

∂〈u1〉
+ 2w12

∂

∂w12
+ ν

∂

∂ν
(5.19)

and

Zs2 = −〈u1〉
∂

∂〈u1〉
− 2w12

∂

∂w12
. (5.20)

Here we use that

∂

∂R12
=

∂

∂w12
,

∂

∂S12
= 2ν

∂

∂w12
,

∂

∂ν
= 2S12

∂

∂w12

due to the formula w12 = R12 + νS12 and that the viscosity ν can be considered as a
transformed parameter.

Let us consider the symmetry operator of the flow under consideration

Z = ks1Zs1 + ks2Zs2 + ku1,w12Zu1,w12 + kx2Xx2 (5.21)

and suppose that

a1) ks1 = ks2 .
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Then (5.21) determines the following invariants

I1 = 〈u1〉 − κ̄1 ln

(

x2 +
kx2

ks1

)

, I2 =

(

x2 +
kx2
ks1

)

ν
, I3 = κ̄1 ln ν − w12 − a,

where κ̄1 = ku1,w12/ks1 , a is an arbitrary constant and we can find the representation for
a mean velocity 〈u1〉 in the following invariant form

I1 + I3 = 〈u1〉 − κ̄1 ln eκ̄
−1
1 (w12+a)I2 ≡ 〈u1〉 − κ̄1 ln eκ̄

−1
1 (u2

∗
+a)I2. (5.22)

This formula shows that u∗ is the flow determining parameter and the above-mentioned
von Kármán’s assumption is fulfilled. Moreover, since I1 + I3 is an invariant of the group
transformation generated by the infinitesimal operator (5.21) the function

Ia1 = 〈u1〉 − κ̄1 ln eκ̄
−1
1 (u2

∗
+a)I2 (5.23)

gives us a scaling law for the mean velocity 〈u1〉 under the action of the infinitesimal
operator (5.21).

Let us fix the value of this parameter u∗, assume that κ̄1 = u∗ and apply the Taylor
formula for

eκ̄
−1
1 (w12+a) = 1 + κ̄−1

1 w12 + κ̄−1
1 a+ o(w12).

Then we can calculate the value of this function of the first-order of approximation for
w12 = u2

∗ and a = −κ̄1. As a result, we obtain that

I1 + I3 ≈ 〈u1〉 − u∗ ln

[

u∗

(

x2 +
kx2

ks1

)

ν−1

]

,

where the right-hand part is similar to the classical logarithmic law of the wall.
b1) ks1 6= ks2 .

As above we can calculate the following invariants of the operator (5.21) under the
specifications b1)

〈u1〉 = I1κ̄2

(

x2 +
kx2

ks1

)1−
kx2
ks1

+
ku1,w12

ks2 − ks1
,

I2 =

(

x2 +
kx2

ks1

)

ν−1,

I3 =
ν

w12 +
ku1,w12

2(ks1−ks2 )

(

w12 +
ku1,w12

2(ks1 − ks2)

)1−
ks1

2(ks1−ks2 )

.

where κ̄2 =
(

k
(ks1−ks2 )/ks2
s1

)

/ (ks1 − ks2). Using the invariants I2, I3 and assuming w12 =

u2
∗, we can write the following

〈u1〉 = I1κ̄2ν
1−

kx2
ks1





x2 +
kx2
ks1

ν





1−
kx2
ks1

+
ku1,w12

ks2 − ks1
,

I3 =
ν

u2
∗ +

ku1,w12
2(ks1−ks2)

(

u2
∗ +

ku1,w12

2(ks1 − ks2)

)1−
ks1

2(ks1−ks2 )

.
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or

〈u1〉 = B(ν, u∗, ks1 , ks2 , ku1,w12)





x2 +
kx2
ks1

ν





1−
kx2
ks1

+
ku1,w12

ks2 − ks1
, (5.24)

where B is a function dependent on the variable ν, the external parameter u∗ and ks1 ,
ks2 , ku1,w12. Since the present case is identified by a maximum of symmetries, it may be
localized in regions where any symmetry breaking influence, such as a wall, is negligible.
Hence we propose the algebraic law to be located in the center of a pressure of a pres-
sure driven turbulent channel flow. Since the flow configuration between the two parallel
walls admits a reflection symmetry with respect to the center-line we find that the term
ku1,w12/(ks2 − ks1) may only represent a maximum value of the velocity 〈u1〉 on the center
line, see for details [13].

c1) ks1 = 0.

In this case the infinitesimal operator (5.21) generates the following invariants

〈u1〉 = I1 exp

(

−
ks2
kx2

x2

)

+
ku1,w12

ks2
, I2 =

〈u1〉 −
ku1,w12
ks2

2w12 −
ku1,w12
ks2

,

where I2 is a function dependent on x2. In order to find a functional form of the invariant
I1, we use that

〈u1〉 −
ku1,w12

ks2
= I2(x2)

(

2w12 −
ku1,w12

ks2

)

= I1 exp

(

−
ks2
kx2

x2

)

(5.25)

Let us fix the value of the parameter u∗, we can obtain that

I1 = 2u2
∗ −

ku1,w12

ks2
or I1 = Cu∗,

where C depends on u∗, ks2 and ku1,w12. The assumption c1) imposes symmetry breaking
on the scaling transformation such that the length-scale may not be scaled. In a boundary
layer flow the symmetry breaking length-scale may only be the boundary layer thickness
itself. We can account that for positive value ks2/kx2 the velocity law (5.25) convergence
for x2 → ∞ to a constant velocity 〈u∞〉 and ku1,w12/ks2 is specified by

ku1,w12

ks2
= 〈u∞〉.

This may be applicable to an infinite or semi-infinite domain such as a boundary-layer
type of flow, see [13]. Therefore we obtain an exponential velocity profile in the following
form

〈u1〉 −
ku1,w12

ks2
= u∗C(u∗, ks2 , ku1,w12) exp

(

−
ks2
kx2

x2

)

(5.26)

d1) ks1 = 0 and ks2 = 0.
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A classical shear flow is given by the symmetry breaking assumptions ks1 = 0 and
ks2 = 0. It appears that the present case applies to the turbulent plane Couette flow.

For this case the following invariants are generated by the infinitesimal operator Z

I1 = 〈u1〉 −
ku1,w12

kx2

x2, I2 = 〈u1〉 − w12.

Invariant I2 depends on x2 and realizes an obvious functional relation between 〈u1〉 and
u2
∗. Hence, comparing to the case d), the mean velocity may be written as

〈u1〉 = D
uwx2

h
+ I1, (5.27)

where h and uw are the channel width and the the velocity of the pulled wall respectively.
Verification of the linear mean velocity profile (5.27) by experimental and DNS data can
be found in [13].

To close this section, we make the following conclusion remarks that knowledge of sym-
metries of a shear planar steady-state flow allows to derive from the various combination
of the infinitesimal operators Zs1, Zs2 , Zu1,w12 and Xx2 the so-called invariant represen-
tations (scaling laws) of the mean velocity 〈u1〉, and to introduce the viscosity and the
friction velocity dependence into the scaling laws for the mean velocity 〈u1〉 explicitly.

Acknowledgments

The authors wish to thank Dr. G. Khujadze for additional checking the calculations using
the DESOLV.5R(c) software.

References

[1] Baikov V A, Gazizov R K and Ibragimov N H, Approximate symmetries of equations
with a small parameter, Mat. USSR Sb. 64 (1989) 427–441.

[2] Baikov V A, Gazizov R K and Ibragimov N H, Approximate transformation groups
and deformations of symmetry Lie algebras, Chapter 2 In: CRC Handbook of Lie

groups analysis of differential equations, Vol. 3. New trends in theoretical developments

and computational methods, edited by N.H. Ibragimov. CRC Press, Boca Raton,
Florida, 1996.

[3] Euler N, Shulga M and Steeb W, Approximate symmetries and approximate solutions
for a multi-dimensional Landau-Ginzburg equation, J. Phys. A.: Mat. Gen. 25 (1992)
L1095–L1103.

[4] Euler M, Euler N and K ohler A, On the construction of approximate solutions for
a multidimensional nonlinear heat equation J. Phys. A.: Mat. Gen. 27 (1994) 2083–
2092.

[5] Fushchich W, Shtelen W, On approximate symmetries and approximate solutions of
the non-linear wave equation with a small parameter, J. Phys. A.: Mat. Gen. 22
(1989) L887–L890.



Lie algebra methods for the statistical theory of turbulence 251

[6] Gazizov R K, Symmetries of differential equations with a small parameters: a com-
parison of two approaches, Modern Group Anal. 7 (1997) 107–113.

[7] Grebenev V N, Oberlack M, Approximate Lie symmetries of the Navier-Stokes equa-
tion, J. Nonl. Math. Phys. 14(2) (2007) 157–163.

[8] Ibragimov N H, CRC Handbook of Lie groups analysis of differential equations, Vol. 2.

Applications in engineering and physical sciences, CRC Press, 1995.

[9] Ovsyannikov L V, Group methods of differential equations, Academic Press, New
York, 1982.

[10] Olver P J, Applications of Lie groups to differential equations, Graduate Texts in
Mathematics, Springer-Verlag, 1986.

[11] Oberlack M, Symmetries, invariance and scaling-laws in inhomogeneous turbulent
shear flows, Flow, Turbulence and Combustion. 62 (1999) 111–135.

[12] Oberlack M, Unified approach for symmetries in plane parallel turbulent shear flows,
J. Fluid Dynamics. 427 (2001) 299–328.

[13] Oberlack M, Busse F H, Theories of turbulence, Springer, Wienn, New York, 2002.

[14] Barenblatt G, Chorin A, New perspective in turbulence, scaling laws, asymptotics,
and intermittency, SIAM Rev. 40(2) (1998) 265–291.

[15] Barenblatt G, Scaling laws for turbulent wall-bounded shear flow at very large
Reynolds number, J. Eng. Math. 36(4) (1999) 361–384.

[16] Barenblatt G, Chorin A, Scaling laws for turbulent at very large Reynolds number,
Proc. Est. Acad. Sci., Phys. Math. 48(3-4) (1999) 199–205.
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