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Abstract

Let M be an odd-dimensional Euclidean space endowed with a contact 1-form α. We
investigate the space of symmetric contravariant tensor fields over M as a module
over the Lie algebra of contact vector fields, i.e. over the Lie subalgebra made up of
those vector fields that preserve the contact structure defined by α. If we consider
symmetric tensor fields with coefficients in tensor densities (also called symbols), the
vertical cotangent lift of the contact form α defines a contact invariant operator. We
also extend the classical contact Hamiltonian to the space of symbols. This generalized
Hamiltonian operator on the space of symbols is invariant with respect to the action
of the projective contact algebra sp(2n+2) the algebra of vector fields which preserve
both the contact structure and the projective structure of the Euclidean space. These
two operators lead to a decomposition of the space of symbols, except for some critical
density weights, which generalizes a splitting proposed by V. Ovsienko in [18].

1 Introduction

In a paper of 1997, C. Duval and V. Ovsienko [7] considered the space Dλ(M) of differential
operators acting on λ-densities (λ ∈ R) on a manifold M as modules over the Lie algebra
of vector fields Vect(M). The density weight λ allows to define a one parameter family of
modules. The space of differential operators acting on half densities, which is very popular
in mathematical physics in the context of geometric quantization, lies inside this family
of representations. C. Duval and V. Ovsienko provided a first classification result for
differential operators of order less or equal to two. Differential operators that are allowed
to modify the weight of their arguments also appear in the mathematical literature, for
instance in projective differential geometry (see [19, 22]). Hence the spaces Dλµ(M) (made
of differential operators that map λ-densities into µ-densities) also deserve interest. The
first classification result of [7] was then followed by a series of papers [10, 9, 8, 11, 14]
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where the classification of the spaces Dλµ(M) was finally settled. More recently, in [3],
similar classification results were obtained for spaces of differential operators acting on
differential forms.

The search for Vect(M)-isomorphisms from a space of differential operators to another
one, or more generally the search of Vect(M)-invariant maps between such spaces, can be
made easier by using the so-called projectively equivariant symbol calculus introduced and
developed by P. Lecomte and V. Ovsienko in [12] : On the one hand the space Dλµ(Rm) is
naturally filtered by the order of differential operators. The action of Vect(Rm) preserves
the filtration and the associated graded space Sδ(R

m) (the space of symbols) is identified
to contravariant symmetric tensor fields with coefficients in δ-densities, with δ = µ − λ.

On the other hand the projective group PGL(m + 1, R) acts locally on R
m by lin-

ear fractional transformations. The fundamental vector fields associated to this action
generate a subalgebra of Vect(Rm), the projective algebra sl(m + 1), which is obviously
isomorphic to sl(m + 1, R).

P. Lecomte and V. Ovsienko proved in [12] that the spaces Dλ(Rm) and S0(R
m) are

canonically isomorphic as sl(m + 1)-modules. The canonical bijections are called respec-
tively projectively equivariant quantization and symbol map.

This result was extended in [13] and [6] : the spaces Dλµ(Rm) and Sδ(R
m) are canoni-

cally isomorphic, provided δ does not belong to a set of critical values.

Once the projectively equivariant symbol map exists, the analysis of the filtered sl(m+
1)-module Dλµ(Rm) can be reduced to the study of the graded module Sδ(R

m).

Now, if we consider a contact manifold M of dimension m = 2n + 1, it is sensible to
consider the spaces Dλµ(M) as modules over the algebra of contact vector fields C(M),
i.e. of those vector fields that preserve the contact structure. Using the projectively
equivariant symbol map in order to perform local computations, we are led to consider
the space of symbols over R

2n+1 as a representation of the contact projective algebra
C(R2n+1) ∩ sl(2n + 2) = sp(2n + 2). Note that a similar problem was considered in [20]
where differential forms where studied in the presence of a contact structure.

A first question in the analysis of a representation is to know whether it decomposes
as a direct sum of invariant subspaces or not.

The answer to this question is known for the space S1
0 , that is, the space of vector

fields : in [18], the author shows that the space of vector fields over a contact manifold,
viewed as a module over the Lie algebra of contact vector fields, splits as the direct sum
of contact vector fields and of vector fields which are tangent to the contact distribution :

S1
0 (M) = Vect(M) = C(M) ⊕ TV ect(M). (1.1)

The construction is based on the well-known Hamiltonian operator X, which associates a
contact vector field to every − 1

n+1 -density and is C(M)-invariant.

In the present paper, we will define an extension of the operator X to the whole space
of symbols over the euclidean space R

2n+1 endowed with its standard contact structure.
This extended operator is not invariant with respect to the action of the algebra C(R2n+1)
but only with respect to the action of sp(2n + 2).

However, this operator, together with the contact form viewed as an operator acting on
symbols, allows to define a decomposition of Sδ(R

2n+1) as a sum of sp(2n+2)-submodules,
unless δ belongs to a set of singular values.
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The paper is organised as follows. In section 2 we recall the definition of the basic
material concerning densities, symbols and contact structures. We also recall the definition
of the Lagrange bracket and of the Hamiltonian operator X acting on densities.

In section 3 we show how to view the contact form α as an invariant operator i(α).
We give the definition of the extended operator X on the space of symbols and show its
invariance with respect to the action of the contact projective algebra sp(2n + 2).

We show in the next section that these operators allow to define a representation of
the Lie algebra sl(2, R) on the space of symbols.

In section 5, we show that the contact hamiltonian operator X allows to define an
sp(2n + 2)-invariant right inverse of the operator i(α), except for some singular values
of the density weight. This right inverse allows to show the existence of a direct sum
decomposition of the space of symbols into sp(2n + 2)-invariant subspaces.

In the final sections, we take another point of view and show how to obtain the de-
composition by considering the natural filtration of the space of symbols of a given degree
associated to the operator i(α). We finally use this filtration in order to analyse the
decomposition in the case of singular values.

2 Basic objects

In this section, we recall the definitions of the basic objects that we will use throughout the
paper, and we set our notations. As we continue, we denote by M a smooth, connected,
Hausdorff and second countable manifold of dimension m.

2.1 Tensor densities and symbols

Let us denote by ∆λ(M) → M the line bundle of tensor densities of weight λ over M and
by Fλ(M) of smooth sections of this bundle, i.e. the space Γ(∆λ(M)). The Lie algebra of
vector fields Vect(M) acts on Fλ(M) in a natural way. In local coordinates, any element
F of Fλ(M) as a local expression

F (x) = f(x)|dx1 ∧ · · · ∧ dxm|λ

and the Lie derivative of F in the direction of a vector field X =
∑

i Xi ∂
∂xi is given by

(LXF )(x) = (
∑

i

Xi ∂

∂xi
f + λ(

∑

i

∂

∂xi
Xi)f)|dx1 ∧ · · · ∧ dxm|λ. (2.1)

Note that, as a vector space, Fλ(M) can be identified with the space of smooth functions
on M , and thus formula (2.1) defines a one parameter family of deformations of the natural
representation of Vect(M) on C∞(M).

2.2 Symbols

We call the symbol space of degree k and denote by Sk
δ (M) (or simply Sk

δ ) the space of
contravariant symmetric tensor fields of degree k, with coefficients in δ-densities (δ ∈ R) :

Sk
δ (M) = Γ(SkTM ⊗ ∆δ(M)).
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We also consider the whole symbol space

Sδ(M) =
⊕

k≥0

Sk
δ (M).

As we continue, we will freely identify symbols with functions on T ∗M that are polynomial
along the fibre and we will denote by ξ their generic argument in the fibre of T ∗M .

The action of the algebra Vect(M) on symbols is the natural extension of its action on
densities (2.1) and on symmetric tensor fields. Let us write it down in order to illustrate
the identification of symbols and functions on T ∗M :

LXu(x, ξ) =
∑

i

Xi∂xiu(x, ξ) + δ(
∑

i

∂xiXi)u(x, ξ) −
∑

i,k

(∂xkXi)ξi∂ξk
u(x, ξ). (2.2)

The spaces of symbols appear in a series of recent papers concerning equivariant quanti-
zations [12, 5, 4, 16]. Therefore we will not discuss them in full detail and refer the reader
to these works for more information.

2.3 Contact manifolds

Here we will recall some basic facts about contact manifolds (see for instance [1, 2, 17])
and we set our notation. For the main part, we focus our attention to the Euclidean
space endowed with its standard contact structure since we are only concerned with local
phenomena on contact manifolds.

First recall that in general, a contact manifold is a manifold M of odd dimension
m = 2n + 1 endowed with a distribution of hyperplanes (the contact distribution) in the
tangent space that is maximally non integrable. Locally, the distribution can be defined
as the kernel of a 1-form α and the non-integrability condition means that α∧ (dα)n 6= 0.
A contact manifold M is called coorientable if the contact distribution is the kernel of a
globally defined 1-form α, such that α ∧ dαn 6= 0. In this case, the form α is called a
contact form on M . As we continue, we will always suppose that (M,α) is a coorientable
contact manifold.

Recall also that all contact manifolds of dimension m = 2n + 1 are locally isomorphic
to R

2n+1 : there exist local coordinates (Darboux coordinates) such that the contact form
writes

α =
1

2
(

n∑

k=1

(pkdqk − qkdpk) − dt). (2.3)

Since we are concerned with local computations on coorientable contact manifold, we will
only consider, unless otherwise stated, the Euclidean space M = R

2n+1 with coordinates
(q1, . . . , qn, p1, . . . , pn, t) endowed with the contact form α defined by (2.3).

2.3.1 Contact vector fields

A contact vector field over M is a vector field which preserves the contact structure. The
set of such vector fields forms a subalgebra of Vect(M), denoted by C(M). In other words,
we have

C(M) = {Z ∈ Vect(M) : ∃fZ ∈ Γ(M × R
∗) : LZα = fZα}. (2.4)
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2.3.2 The Lagrange bracket and the operator X on densities

For every contact manifold M there exists a C(M)-invariant bidifferential operator acting
on tensor densities. This is the so-called Lagrange bracket

{, }L : Fλ(M) ×Fµ(M) → Fλ+µ+ 1

n+1

(M),

which is given in Darboux coordinates by the following expression :

{f, g}L =
∑n

k=1(∂pkf∂qkg − ∂qkf∂pkg) − ∂tfEs.g + ∂tgEs.f

+2(n + 1)(λf∂tg − µg∂tf),

(where Es stands for the operator
∑n

k=1(p
k∂pk + qk∂qk)) for every f ∈ Fλ(M) and g ∈

Fµ(M).
Now, the bilinear operator {, }L can be viewed as a linear operator from Fλ(M) to the

space D1
µ,λ+µ+ 1

n+1

(M) made of differential operators of order less or equal to one that map

µ-densities into λ + µ + 1
n+1 -densities. Namely,

{, }L : f 7→ {f, ·}L : g 7→ {f, g}L.

Since the Lagrange bracket is C(M)-invariant, this correspondence is also a C(M)-invariant
operator from Fλ(M) to Dµ,λ+µ+ 1

n+1

(M) (the later space is endowed with the Lie deriva-

tive given by the commutator).
Finally, we consider the principal operator, which associates to every differential oper-

ator its term of highest order. It is well known that it is a Vect(M)-invariant operator

σ : D1
µ,λ+µ+ 1

n+1

(M) → S1
λ+ 1

n+1

(M).

If we compose these operators, we obtain

X : Fλ(M) → S1
λ+ 1

n+1

(M) : f 7→ σ({f, ·}L).

We then have the following immediate result.

Proposition 1. The operator

X : Fλ(M) → S1
λ+ 1

n+1

(M)

is C(M)-invariant.

Using the identification of symbols and polynomials, we can give the expression of X :

X(f)(ξ) =

n∑

k=1

(ξqk∂pkf − ξpk∂qkf)− ∂tf〈Es, ξ〉 + ξt(Es.f + 2(n + 1)λf).

Let us close this section by the following result about contact vector fields.

Proposition 2. The algebra C(R2n+1) is exactly X(F −1

n+1

(R2n+1)).
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2.3.3 The projective and symplectic algebras

We also consider the projective Lie algebra sl(2n + 2). It is the algebra of fundamental
vector fields associated to the (local) action of the projective group PGL(2n + 2, R) on
R

2n+1. This algebra is generated by constant and linear vector fields and quadratic vector
fields of the form ηE for η ∈ R

2n+1∗ , where E is the Euler vector field. Finally, the contact
projective algebra sp(2n + 2) is the intersection C(R2n+1) ∩ sl(2n + 2). Note that the
algebra sp(2n + 2) can be obtained using proposition 2 by applying the operator X to
polynomial functions of degree less or equal to 2. For more details on the structure of this
algebra, we refer the reader to [15].

3 Invariant operators

Here we will define some operators related to the form α. We will then prove in the next
sections that these operators commute with the actions of C(M) or of sp(2n + 2).

3.1 The contact form as an invariant operator

We denote by Ω the volume form defined by α, namely

Ω = α ∧ (dα)n

and by div the divergence associated Ω. We then have for every Z ∈ C(M)

LZΩ = div(Z)Ω = (n + 1)fZΩ,

(where fZ is defined in (2.4)) and therefore

fZ =
1

n + 1
div(Z).

We then introduce a density weight in order to turn the form α into a C(M)- invariant
tensor field : we consider

α ⊗ |Ω|−
1

n+1 ∈ Γ(T ∗M ⊗ ∆− 1

n+1 (M)).

and we can compute that the Lie derivative of this tensor field in the direction of any field
of C(M) is vanishing.

As we continue, we will omit the factor |Ω|−
1

n+1 unless this leads to confusion, and
consider α as an invariant tensor field.

Now, since α is a 1-form, it defines a linear functional on vector fields. This map has a
natural extension to symmetric contravariant tensor fields, which we denote by i(α). But
since we want this map to be C(M)-invariant, we have to take the density weight of α
into account and consider symmetric tensor fields with coefficients in tensor densities. We
then have this first elementary result :

Proposition 3. The map

i(α) : Sk
δ → Sk−1

δ− 1

n+1

commutes with the action of C(M).
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We can give the expression of the operator i(α) in terms of polynomials : for every
S ∈ Sk

δ , there holds

i(α)(S)(ξ) =
1

2
(
∑

i

(pi∂ξ
qi
− qi∂ξ

pi
) − ∂ξt

)(S(ξ)).

Remarks : The expression of the operator i(α) is independent of the density weight.
This weight appears only in order to turn the map i(α) into an invariant map.

3.2 The Hamiltonian operator X

It turns out that the operator X given in section 2.3.2 extends to an operator on the space
of symbols on R

2n+1. We will prove that this operator is sp(2n + 2)-invariant but not
C(R2n+1) equivariant.

Definition 1. We define the Hamiltonian operator X in Darboux coordinates by

X : Sk
δ → Sk+1

δ+ 1

n+1

: S 7→ D(S) + a(k, δ)ξt S,

where

D(S)(ξ) =
∑

i

(ξqi∂pi − ξpi∂qi)S(ξ) + ξtEs(S)(ξ) − 〈Es, ξ〉∂tS(ξ),

Es =
∑

i

(pi∂pi + qi∂qi),

and

a(k, δ) = 2(n + 1)δ − k.

The main result is the following :

Proposition 4. The operator X : Sk
δ → Sk+1

δ+ 1

n+1

commutes with the action of the algebra

sp(2n + 2). It does not commute with the action of C(R2n+1) unless k = 0.

Proof. The result could be checked by hands, and the computations are made easier by
using the structure of the algebra sp(2n + 2), such as the grading of this algebra (see
[15]). However, we will present a few arguments based on the affine symbol map σAff

already used in [11, 4, 3]. Recall that this map transforms a differential operator into a
symmetric contravariant tensor field, just as the principal symbol map does. The map
σAff is equivariant with respect to the actions on differential operators and on symmetric
tensor fields of the affine algebra Aff, spanned by linear and constant vector fields. Hence
the differential operator X is sp(2n+2)∩Aff-invariant iff its affine symbol σAff(X) is. We
now compute

(σAff(X)(η, S))(ξ) = (L1(ξ, η) + a(k, δ)ξt))S,

where

L1(ξ, η) =
∑

i

(ξqiηpi − ξpiηqi) + ξt〈Es, η〉 − 〈Es, ξ〉ηt.
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Moreover, the polynomial L1(ξ, η) is the principal symbol of the Lagrange bracket and is
therefore an invariant polynomial (note that this can also be checked using classical results
of H. Weyl on invariant polynomials, see [21]). It was already mentioned in [15, section
6] that the polynomial P (ξ) = ξt is sp(2n + 2) ∩ Aff-invariant. Therefore the operator X
commutes with the action of the subalgebra sp(2n + 2) ∩ Aff.

Now, it is easy to verify that the algebra sp(2n+ 2) is spanned by sp(2n + 2)∩Aff and
the field

−
1

2
Xt2 = tEs + t2∂t = tE,

where E is the Euler field defined by E = Es + t∂t. The action of this field on Sk
δ is given

by the operator

tE − 〈E, ξ〉∂t + a(k, δ)t,

and it is easy to check that it commutes with X.
For the second part of the result, we check in the same way that the commutator of

X with the Lie derivative in the direction of the vector field Xq3
1

does not vanish unless
k = 0. �

4 Representation of the algebra sl(2, R)

In general, the space of symbols is defined as the graded space

Sδ = ⊕k∈NS
k
δ .

The grading is natural if we see the space of symbols as the graded space associated to
the filtered space of differential operators mapping λ-densities into λ + δ-densities.

However, this grading is not suitable to deal with the operators i(α) and X since they
modify the density weights of their arguments. It is then natural to define the graded
space

Rδ = ⊕k∈NRk
δ

where Rk
δ = Sk

δ+ k
n+1

(and thus Sk
δ = Rk

δ− k
n+1

).

As we continue we will omit the reference to δ and denote Rk instead of Rk
δ . It follows

that from this definition the operators X and i(α) act on Rδ.

4.1 The operator H and the representation of sl(2, R)

We now investigate the relationships between X and i(α). We first compute the restriction
of X to Rk and obtain the following elementary result

Proposition 5. The restriction of the operator X to Rk is given by

X(S)(ξ) = D(S)(ξ) + [2(n + 1)δ + k]ξtS(ξ)

for all S ∈ Rk.
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In order to make the results of this section easier to state, we introduce a new operator
H on Rδ :

Definition 2. The operator H is defined by its restrictions to Rk given by

H|Rk = hkId = −((n + 1)δ + k)Id.

The main result of this section deals with the commutators of the operators X, i(α)
and H on Rδ.

Proposition 6. The operators H, i(α) and X define a representation of the algebra
sl(2, R) on the space Rδ. Specifically, the relations





[i(α),X] = H
[H, i(α)] = i(α)
[H,X] = −X

hold on Rδ.

Proof. The first relation is a simple computation : on Rk
δ , in view of Proposition 5, the

commutator under consideration equals

i(α) ◦ (D + (2(n + 1)δ + k)ξt) − (D + (2(n + 1)δ + k − 1)ξt) ◦ i(α)
= [i(α),D] + (2(n + 1)δ + k)[i(α), ξt] + ξt ◦ i(α)
= −1

2Eξ −
1
2(2(n + 1)δ + k)Id = hkId,

(where Eξ stands for the operator
∑2n+1

i=1 ξi∂ξi) since the commutators in the second line
are given by

[i(α),D] = −
1

2
Eξ − ξt ◦ i(α)

and

[i(α), ξt] = −
1

2
Id.

For the second relation we have on Rk :

[H, i(α)] = H ◦ i(α) − i(α) ◦ H
= (hk−1 − hk)i(α)
= i(α).

The third one is proved in the same way. �

Remark : In this representation of sl(2, R), H corresponds to the action of an element
in a Cartan subalgebra. The operator i(α) can be thought as the action of a generator
of positive root space. In this setting, the elements of ker i(α) could be seen as highest
weight vectors.

We end this section with a technical result.
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Definition 3. We define

r(l, k) = −
l

2
(2(n + 1)δ + 2k + l − 1).

We can now state the result.

Proposition 7. On Rk, we have

{
i(α) ◦ X l − X l ◦ i(α) = r(l, k)X l−1,
X ◦ i(α)l − i(α)l ◦ X = −r(l, k − l + 1)i(α)l−1

Proof. There holds

i(α) ◦ X l − X l ◦ i(α) =

l−1∑

r=0

Xr[i(α),X]X l−r−1 =

l−1∑

r=0

XrHX l−r−1.

On Rk, this operator is

l−1∑

r=0

hk+l−r−1X
l−1.

We then compute

∑l−1
r=0 hk+l−r−1 = −

∑l−1
r=0((n + 1)δ + k + l − r − 1)

= −l((n + 1)δ + k + l − 1) + l(l−1)
2

= − l
2(2(n + 1)δ + 2k + 2l − 2 − l + 1),

hence the first result.

We proceed in the same way for the second part : We simply write

i(α)l ◦ X − X ◦ i(α)l =
∑l−1

r=0 i(α)r[i(α),X]i(α)l−r−1

= (
∑l−1

r=0 hk−l+r+1)i(α)l−1.

The result follows easily by the definition of H :

∑l−1
r=0 hk−l+r+1 = −

∑l−1
r=0((n + 1)δ + k − l + r + 1)

= −
∑l−1

r=0((n + 1)δ + k − r)

= − l
2(2(n + 1)δ + 2k − l + 1).

�

5 Decomposition of the space of symmetric tensors

In this section, we will obtain a decomposition of the space Rk by induction on k. The
idea is that i(α) maps Rk to Rk−1. We will prove that this map is onto, and that there
exist sp(2n + 2)-invariant projectors pk : Rk → Rk ∩ ker i(α), if δ does not belong to a set
of singular values. These two facts will allow us to obtain the decomposition result.
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5.1 Projectors from Rk to Rk ∩ ker i(α)

The Ansatz for the expression of this projector is given by the interpretation of Rδ as an
sl(2, R)-module. More precisely it comes from the following conjecture.

Conjecture 1. The algebra of all the invariant operators for the sp(2n + 2) action on Rδ

is generated by the operators X, i(α) and the projectors onto the spaces Rk
δ .

In particular if we want to build a projector Πk from Rk onto a submodule of itself,
it should be a linear combination of compositions of X and i(α) and all the monomials
in this expression should have the same degree in X and i(α). Moreover we can order
these compositions, using Proposition 7 and the projector should be of the form Πk =∑∞

l=0 bk,lX
l ◦ i(α)l. But since i(α)l

|Rk = 0 for l > k one gets the following Ansatz :

Ansatz 1. The projector pk : Rk → Rk ∩ ker i(α) should be of the form

pk = Id +
k∑

l=1

bk,lX
l ◦ i(α)l. (5.1)

In the following, we will determine the expression of the constants bk,l such that pk has
values in ker i(α). This will allow us to prove that it is actually a projector. It turns out
that there exists a set Ik of values of δ such that no operator of the form (5.1) can be a
projector on Rk ∩ ker i(α). In this situation, if the conjecture is true, the space Rk is not
the direct sum of Rk ∩ ker i(α) and of an sp(2n + 2) invariant subspace.

Definition 4. For every k ≥ 1, we set

Ik = {δ ∈ R : ∃j ∈ {1, . . . , k} : r(j, k − j) = 0}
= {− p

2(n+1) : p ∈ {k − 1, . . . , 2k − 2}}

We then have the following result.

Proposition 8. If δ 6∈ Ik, the operator pk : Rk → Rk defined by

pk : Rk → Rk : pk = Id +

k∑

l=1

bk,lX
l ◦ i(α)l (5.2)

where

bk,l =
(−1)l

Πl
j=1r(j, k − j)

,

is a projector onto Rk ∩ ker i(α).

Proof. The restriction of pk to ker i(α) is the identity mapping, in view of (5.2). It is
then sufficient to prove that Im (pk) ⊂ ker i(α). Then we deduce Im (pk) = ker i(α) and
p2

k = pk.
We actually have the relation

i(α) ◦ pk = 0.
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Indeed, we have

i(α) ◦ pk = i(α) +
∑k

l=1 bk,li(α)X li(α)l

= i(α) +
∑k

l=1 bk,l(X
li(α)l+1 + r(l, k − l)X l−1i(α)l).

The result follows since the constants bk,l fulfill the equations

{
1 + bk,1r(1, k − 1) = 0
bk,l + bk,l+1r(l + 1, k − l − 1) = 0 ∀l = 1, . . . , k − 1,

and since i(α)k+1 ≡ 0 on Rk. �

This proposition suggests to define a new operator from Rk−1 to Rk.

Definition 5. If δ 6∈ Ik, we define

sk−1 : Rk−1 → Rk : S 7→ (−
k∑

l=1

bk,lX
li(α)l−1)(S). (5.3)

We then have the following result that links sk−1 and i(α) :

Lemma 1. If δ 6∈ Ik, then one has i(α) ◦ sk−1 = Id on Rk−1.

Proof. We just compute

i(α) ◦ sk−1 = −
∑k

l=1 bk,li(α)X li(α)l−1

= −
∑k

l=1 bk,l(X
li(α)l + r(l, k − l)X l−1i(α)l−1)

= Id,

by using Proposition 7, and the definition of bk,l. �

From this Lemma, we obtain an important information about i(α).

Corollary 1. For every k and δ, the map i(α) : Rk
δ → Rk−1

δ is surjective.

Proof. If δ 6∈ Ik, the result follows from the existence of a right inverse. Since the
expression of i(α) is independent of δ, the result holds true for every δ. �

We can now state a first decomposition result.

Proposition 9. If δ 6∈ Ik, one has Rk = ker i(α) ⊕ sk−1(R
k−1).

Proof. Since the projector pk is well defined, there is a decomposition

Rk = (ker i(α) ∩ Rk) ⊕ V k,

where V k = Im(Id − pk). It follows that the restriction of i(α) to V k is injective. It is
also surjective by corollary 1. By Lemma 1, sk−1 is the inverse of i(α) and thus V k =
sk−1(R

k−1). �

By applying successively the previous proposition we obtain a second result. We denote
by s the operator on Rδ whose restriction to Rk−1 is sk−1.



264 Y Frégier, P Mathonet and N Poncin

Proposition 10. If δ 6∈ ∪k
j=1Ij , then there holds

Rk = ⊕k
l=0s

l(Rk−l ∩ ker i(α)).

We will now compute the restriction of sl to (Rk−l ∩ ker i(α)) and show that it is a
scalar multiple of X l.

Proposition 11. Suppose that δ 6∈ ∪k
j=1Ij. Then the restriction of sl to Rk−l ∩ ker i(α)

equals c(l, k − l)X l, where

c(l, k − l) = (Πl
i=1r(i, k − l))−1.

Proof. We first prove the existence of the constant c(l, k− l) by showing that the restric-
tion of sj to Rk−l ∩ ker i(α) equals c(j)Xj (c(j) ∈ R), for all j = 1, . . . , l. For j = 1, the
result follows from the very definition of sk−l, and we obtain c(1) = −bk−l+1,1. Suppose
that it holds true for sj. We then have on Rk−l ∩ ker i(α)

sj+1 = s ◦ sj = −

k−l+j+1∑

a=1

bk−l+j+1,aX
ai(α)a−1sj.

The last term is a multiple of Xj+1, by induction, since the composition i(α)a−1sj vanishes
if a − 1 > j and is equal to sj−a+1 if a − 1 ≤ j.

Now, we compute the value of c(j + 1) by analysing the restriction of the operator
i(α) ◦ sj+1 to Rk−l ∩ ker i(α). On the one hand, we have on Rk−l ∩ ker i(α)

i(α) ◦ sj+1 = sj = c(j)Xj ,

by induction. On the other hand, we also have

i(α) ◦ sj+1 = c(j + 1)i(α)Xj+1 = c(j + 1)(Xj+1i(α) + r(j + 1, k − l)Xj),

by Proposition 7.
Finally, we obtain the relation

(c(j) − r(j + 1, k − l)c(j + 1))Xj ≡ 0,

on Rk−l ∩ ker i(α). Since Xj does not vanish identically on this space, this leads to

c(j) = r(j + 1, k − l)c(j + 1),

and the result follows. �

6 Another point of view

In this section we investigate the relations of the maps i(α) and X with the filtration
induced by i(α). We denote by Fk,l the space Rk ∩ ker i(α)l. Since i(α) is a C(M)-
invariant operator, the spaces Fk,l are stable under the action of C(M). Moreover there
is an obvious filtration of Rk defined by

0 = Fk,0 ⊂ Fk,1 ⊂ · · · ⊂ Fk,k+1 = Rk. (6.1)

We first prove that the maps i(α) and X respect this filtration and therefore induce
mappings that deserve special interest on the associated graded spaces.
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Proposition 12. We have

{
i(α)(Fk,l) ⊂ Fk−1,l−1

X(Fk−1,l−1) ⊂ Fk,l

for every k ≥ 1 and every l ∈ {1, . . . , k + 1}.

Proof. The first result is a direct consequence of the definition of the filtration. For the
second one, suppose that v is an element of Fk−1,l−1 and compute, using Proposition 7,

i(α)l ◦ X(v) = X ◦ i(α)l(v) + r(l, k − l)i(α)l−1(v) = 0.

It follows that X(v) is in Fk,l. �

Let us introduce some more notation.

Definition 6. For every l ∈ {1, . . . , k+1} we denote by Gk,l the quotient space Fk,l/Fk,l−1.
This space is naturally endowed with a representation of C(M). In particular we have
Gk,1 ∼= Fk,1. We also set Gk,0 = {0}.

By Proposition 12, the maps i(α) and X induce maps on the graded space ⊕k,lG
k,l.

Namely, for every l ∈ {1, . . . , k + 1}, we set :

{
ĩ(α) : Gk,l → Gk−1,l−1 : [u] 7→ [i(α)(u)]

X̃ : Gk−1,l−1 → Gk,l : [u] 7→ [X(u)]

The main property of these maps is the following.

Proposition 13. For every k ≥ 1 and l ∈ {1, . . . , k + 1}, we have

X̃ ◦ ĩ(α)|Gk,l = r(l − 1, k − l + 1)Id,

and

ĩ(α) ◦ X̃|Gk−1,l−1 = r(l − 1, k − l + 1)Id.

In particular, if r(l−1, k− l+1) does not vanish, the restricted map ĩ(α) : Gk,l → Gk−1,l−1

is invertible and the inverse map is given by 1
r(l−1,k−l+1)X̃.

Proof. We only prove the first identity. The second one can be proved using the same
arguments.

Let u be in Fk,l. By definition, we have

X̃ ◦ ĩ(α)([u]) = [X ◦ i(α)(u)].

By Proposition 7, we have

i(α)l−1 ◦ X ◦ i(α)(u) = X ◦ i(α)l(u) + r(l − 1, k − l + 1)i(α)l−1(u)
= r(l − 1, k − l + 1)i(α)l−1(u),

so that [X ◦ i(α)(u)] = r(l − 1, k − l + 1)[u], by the definition of Gk,l. �
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We get an immediate corollary about the decomposition of the filter Fk,l into stable
subspaces.

Corollary 2. Consider k ≥ 1 and l ∈ {2, . . . , k + 1} and suppose that
∏l−1

j=1 r(j, k − l +
1) 6= 0. There holds

Fk,l = Fk,l−1 ⊕ X l−1(Fk−l+1,1).

Proof. Consider the following short exact sequence of sp(2n + 2)-modules

0 −→ Fk,l−1 −→ Fk,l −→ Gk,l −→ 0.

By the previous proposition the sp(2n + 2)-modules Gk,l and Gk−l+1,1 are isomorphic

through ĩ(α)
l−1

and φ̃ = 1∏l−1

j=1
r(j,k−l+1)

X̃ l−1. Denote by t the trivial isomorphism Gk−l+1,1 →

Fk−l+1,1. It is then easy to check that the map

φ =
1

∏l−1
j=1 r(j, k − l + 1)

X l−1 ◦ t ◦ ĩ(α)
l−1

provides a section of the exact sequence above. �

Note that applying successively this corollary, we recover the results of Proposition 10.

7 The singular situations

As we have seen in section 5, there are some values of the parameter δ such that the space
of symbols does not decompose directly into submodules, by using the maps i(α) and
X. This is due to the fact that the projector pk (see expression (5.2)) is not well defined
for some k. In this section we will briefly discuss the structure of the space Rδ in this
situation. We begin with an obvious description of the set of singular values of the weight
δ (recall Definition 4).

Proposition 14. The set of singular values is given by

I = {−
p

2(n + 1)
: p ∈ Z+}.

Moreover for p ∈ Z+, δ = − p
2(n+1) belongs to Ik iff k ∈ {⌈p+2

2 ⌉, . . . , p + 1}.

In view of the previous proposition, for every singular value of δ, there exists a set of
consecutive degrees k such that the projector pk (see (5.2)) can not be defined. We will
now comment on the structure of the corresponding modules Rk

δ . Of course, these modules
still carry the filtration (6.1) induced by i(α). We will show that in some situations there
exists a richer structure. Indeed, some of the filters (6.1) can be decomposed into the sum
of submodules. Our analysis is based on the following trivial observation.

Observation 1. For 2 ≤ k′ ≤ k the restriction of the projector pk to the filter Fk,k′

is
given by

pk,k′ = Id +

k′−1∑

l=1

bk,lX
l ◦ i(α)l. (7.1)
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In the same way, the restriction of the operator sk−1 (see (5.3)) to Fk−1,k′−1 is given by

sk−1,k′−1 = −
k′−1∑

l=1

bk,lX
li(α)l−1.

The following result is a straightforward adaptation of Propositions 8 and 9 and of
Lemma 1.

Lemma 2. Suppose that for some k′ ∈ {2, . . . , k} the operator pk,k′ (see (7.1)) can be
defined. Then we have the decomposition

Fk,k′

= Fk,1 ⊕ sk−1,k′−1(F
k−1,k′−1).

Now we can come to the final results :

Proposition 15 (Even Case). Suppose that δ = − p
2(n+1) with p even, then

• For k < p+2
2 , the decomposition given in Proposition 10 holds for Rk.

• The module R
p+2

2 only carries the filtration induced by i(α) (no filter of this filtration
can be decomposed into the direct sum of ker i(α) and another submodule, using
projectors of the type (7.1)).

• For every u ∈ {1, . . . , p
2}, and k′ ≤ 2u + 1 the filter F

p+2

2
+u,k′

in R
p+2

2
+u can be

decomposed in

F
p+2

2
+u,k′

= F
p+2

2
+u,1 ⊕ s p

2
+u,k′−1(F

p

2
+u,k′−1).

• For k > p + 1 the decomposition given in Proposition 9 holds for Rk.

Proof. Using Proposition 14, we already know that the projector pk from Rk onto Rk ∩
ker i(α) is well-defined if k < p+2

2 or k > p + 1, so that the decomposition given in
Proposition 9 holds for Rk. Moreover, this implies the existence of the decomposition
given in Proposition 10 for k < p+2

2 , still by induction.

We now analyse the possible decomposition of the filters Fk,k′

for k′ ∈ {2, . . . , k+1} and
k ∈ {p+2

2 , . . . , p + 1}. We first observe that the map pk,k′ is well-defined iff the constants
bk,l are well-defined for 1 ≤ l ≤ k′ − 1, and that bk,l is well-defined iff r(j, k − j) 6= 0 for
1 ≤ j ≤ l. It is easy to see that we have

r(j, k − j) = 0 ⇔ k =
p + j + 1

2
.

Hence, for k = p+2
2 , neither the constant bk,1 nor the projector pk,k′ for k′ ≥ 2 can be

defined.
Finally, if k = p+2

2 + u, u ∈ {1, . . . , p
2}, we have r(j, k− j) = 0 iff j = 2u+ 1. Hence bk,l

is well-defined iff 2u + 1 > l and pk,k′ can be defined iff 2u + 1 > k′ − 1, i.e. k′ ≤ 2u + 1
and the result follows by Lemma 2. �

In the same fashion, we can analyse the odd case.
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Proposition 16 (Odd case). Suppose that δ = − p
2(n+1) with p odd, then

• For k < p+3
2 , the decomposition given in Proposition 10 holds for Rk.

• For every u ∈ {0, . . . , p−1
2 }, and k′ ∈ {2, . . . , 2u + 2} the filter F

p+3

2
+u,k′

in R
p+3

2
+u

can be decomposed in

F
p+3

2
+u,k′

= F
p+3

2
+u,1 ⊕ s p+1

2
+u,k′−1(F

p+1

2
+u,k′−1).

• For k > p + 1 the decomposition given in Proposition 9 holds for Rk.
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