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A method to solve linear fuzzy equations with a symmetric matrix is proposed. Ignoring the symmetry
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1. Introduction

In this paper we search for a proper solution to

systems of linear fuzzy equations. In many applica-

tions a solution to such systems has to be found. For

instance, the finite element method is a well estab-

lished and a widely used technique for the numer-

ical simulation of different processes and phenom-

ena in structures. The method was initially devel-

oped for structural mechanics applications in civil

and mechanical structures. Nowadays the applica-

tions area is however extremely wide with problems

of heat transport, fluid flow, electromagnetism, ...

The classical finite element method is a deterministic

procedure: the structure is characterised by nominal

values of geometrical and material properties. The

two major steps of the method are the construction

of a system of linear equations and solving the ob-

tained system. The result of the analysis is also de-

terministic. In practice however it is very difficult

and in many cases even impossible to define correct

and unique input data. Fuzzy arithmetic may pro-

vide a solution for those cases. So in the finite el-

ement method with fuzzy parameters, a system of

linear fuzzy equations has to be solved. In this pa-

per we search for a solution of the matrix equation:

Ãx̃ = b̃,

for x̃ = [x̃k]n×1 where Ã = [ãij ]n×n is a matrix with

fuzzy numbers as entries and b̃ = [b̃k]n×1 is a vector

of fuzzy numbers. Differently expressed,

n∑

j=1

ãij x̃j = b̃i, for 1 ≤ i ≤ n,

where fuzzy multiplication and addition based on the

extension principle of Zadeh are used. Taking the α-

levels of these equations we obtain systems of linear

interval equations:

n∑

j=1

[(aij)α, (aij)α][(xj)α, (xj)α] = [(bi)α, (bi)α],

for 0 < α ≤ 1 and 1 ≤ i ≤ n,

(x̃e)i(x) = sup{α | α ∈ [0, 1] and x ∈ [(xi)α, (xi)α]},
∀x ∈ R.

International Journal of Computational Intelligence Systems, Vol.1, No. 3 (August, 2008), 248 - 261

Published by Atlantis Press 
Copyright: the authors

248

zegerkarssen
Typewritten Text
Received: 11-01-2008Revised:  30-06-2008



This solution is denoted as x̃e as it is the exact

solution of the system; when it is reentered into the

system the equations are satisfied. However, these

interval equations are hard to solve exactly and of-

ten (xj)α and (xj)α do not generate a fuzzy number.1

This is based on a earlier result that solutions to sys-

tems of linear interval equations are not necessarily

intervals.2 Consequently the exact solution does not

exist and therefore the search for an alternative so-

lution has a solid ground. There are already some

alternative approaches known in literature. Fuller3

considers a system of linear fuzzy equations with Lip-

schitzian fuzzy numbers. He assigns a degree of sat-

isfaction to each equation in the system and then

calculates a measure of consistency for the whole sys-

tem. Abramovich et al.4 try to minimize the devia-

tion of the left hand side from the right hand side of

the system with LR-type fuzzy numbers. Both meth-

ods try to approximate the exact solution, i.e., they

try to minimize the error when one reenters the solu-

tion into the system. In practice however it is more

convenient to base the solution on the ‘United Solu-

tion Set’ used for systems of linear interval equations

[A]x = [b] (see Refs. 5, 6, 7, 8):

[x]∃∃ = {x ∈ R | (∃A ∈ [A])(∃b ∈ [b])(Ax = b)}
= {x ∈ R

n | [A]x ∩ [b] 6= ∅}.
In that way a safety margin for the solution is con-

sidered, because all possible solutions of systems in

the support of the fuzzy parameters of the system

are taken into account. A consequence of using the

algebraic or exact solution is that the solution be-

comes less fuzzy as the coefficients in the matrix be-

come more fuzzy. Moreover, if the support of the left

hand side of the system Ãx̃ is too big, then the alge-

braic or exact solution doesn’t exist. This is counter-

intuitive. If the system becomes more fuzzy, the so-

lution should also be fuzzier. Therefore it is more

natural to base the solution on the ‘United Solution

Set’. As described in Ref. 9 the fuzzy finite element

method is also based on solving all possible systems.

The ‘United Solution Set’ provides a more probabilis-

tic approach of the problem: the result determines

the probability that a certain crisp solution is the

‘right’ solution of the system. Buckley and Qu1 have

based their solution on the ‘United Solution Set’. We

follow their line of reasoning, although the solution

can be adjusted a little bit and we consider the sym-

metry of the matrix. A practical algorithm to obtain

this solution, where we take the symmetry into ac-

count, is proposed here. The original method based

on parametric functions for solving systems of lin-

ear fuzzy equations with non-symmetric matrices is

described in Refs. 10 and 11.

2. Preliminaries

First we recall some definitions concerning fuzzy

numbers.12 Let A be a fuzzy set on R. Then A is

called convex if

A(λx1 + (1 − λ)x2) ≥ min(A(x1), A(x2)),

for all x1, x2 ∈ R and λ ∈ [0, 1]. If for x ∈ R it holds

that A(x) = 1, then we call x a modal value of A.

The support of A is defined as

suppA = {x | x ∈ R and A(x) > 0}.

For all α ∈ [0, 1], the α-level is defined as the set:

Aα =

{
{x | x ∈ R and A(x) ≥ α}, if α > 0,

{x | x ∈ R and A(x) > 0}, if α = 0.

A mapping f : R → R, or in particular f : R →
[0, 1], is called upper-semicontinuous when f is right-

continuous where f is increasing, and left-continuous

where f is decreasing.

Definition 1 A fuzzy number is defined as a convex

upper-semicontinuous fuzzy set on R with a unique

modal value and bounded support.12

From now on fuzzy numbers will be denoted by

a lowercase letter with a tilde, e.g. ã, and a vector

of fuzzy numbers will be denoted as b̃. Sometimes

we will denote the i-th component of b̃ by b̃i. Crisp

numbers will be represented by a lowercase letter,

e.g. a, and vectors of crisp numbers will be denoted

as b = (b1, b2, . . . , bn)T . The notions of support and

α-level are extended componentwise for vectors or

matrices of fuzzy numbers. A triangular fuzzy num-

ber is a special case of a fuzzy number which mem-

bership function contains an increasing and decreas-

ing linear part: let a, b, c in R such that a ≤ b ≤ c,

then we define the triangular fuzzy number A as, for

all x ∈ R,

A(x) =





x − a

b − a
, if x ∈ ]a, b],

c − x

c − b
, if x ∈ [b, c[,

0, else.
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We denote A = (a / b / c). The arithmetic of fuzzy

numbers is based on Zadeh’s extension principle. Let

ã and b̃ be two fuzzy numbers, then the sum of ã and

b̃, denoted by ã ⊕ b̃, is given by, for all z ∈ R,

(ã ⊕ b̃)(z) = sup
z=x+y

min(ã(x), b̃(y)). (1)

Analogous definitions follow for the fuzzy multiplica-

tion, subtraction and division. The fuzzy arithmetic

based on Zadeh’s extension principle (see (1)) can

also be calculated by interval arithmetic applied to

the α-levels.

Definition 2 Given two intervals [x, x] ⊆ R and

[y, y] ⊆ R, the four elementary operations on inter-

vals are defined by13

[x, x] op [y, y] = {x op y | x ∈ [x, x] and y ∈ [y, y]},

for op ∈ {+,×,−,÷}.
It is well-known that (ã ⊕ b̃)α = ãα + b̃α and

similarly for the other operations.

3. Solving systems of linear fuzzy equations

First of all, we require that the matrix Ã of fuzzy

numbers is regular in the sense that the inverse ma-

trix of A exists for all aij ∈ supp(ãij) with aij = aji

for all (i, j) ∈ {1, . . . , n}2.

Buckley and Qu1 proposed to construct a set of

all crisp solutions corresponding to the crisp systems

formed by the elements in a certain α-level. The re-

quirement for their solution is stronger: the matrix Ã

has to be regular so all inverse matrices of A within

the support of the fuzzy coefficients have to exist.

They define the solution by, for all α ∈ [0, 1],

Ω(α) = {x | x ∈ R
n and (∃A = [aij ]n×n ∈ R

n×n)

(∃b = [bk]n×1 ∈ R
n)((∀(i, j, k) ∈ {1, 2, . . . , n}3)

(aij ∈ (ãij)α and bk ∈ (b̃k)α) and Ax = b)}

and for all x ∈ R
n,

x̃B(x) = sup{α | α ∈ [0, 1] and x ∈ Ω(α)}.

We see that x̃B is defined as a fuzzy set on R
n and

not as a vector of fuzzy numbers. The solution x̃B(x)

expresses to what extent the crisp vector x is a solu-

tion of the system of linear fuzzy equations Ãx̃ = b̃.

We prefer to define the solution as a vector of fuzzy

numbers to avoid information loss. Therefore we give

a membership degree to every component of the so-

lution vector and then (x̃B)i(x) expresses the degree

to which x belongs to the fuzzy set (x̃B)i, indepen-

dent of (x̃B)j , for all j 6= i. We thus define for all

x ∈ R and for all i ∈ {1, 2, . . . , n}
(x̃B)i(x) = sup{α | α ∈ [0, 1] and

(∃x ∈ Ω(α))(x = xi)},
where xi denotes the i-th component of x. This

method is purely theoretical: in fact all crisp sys-

tems are solved. When all these systems have to

be solved, the computation time will be large. An

other drawback of this method proposed by Buckley

and Qu is that the symmetry isn’t taken into ac-

count. The symmetry can be taken into account by

instead of considering all possible matrices where the

fuzzy numbers are replaced by real values in their

support, considering only the symmetric matrices.

When the symmetry isn’t considered in the solution

of systems of linear equations, the solution is overes-

timated. There is artificial uncertainty added to the

solution. Moreover, when the symmetry is ignored

the chance is much greater that there are singular

matrices in the matrix Ã. This is illustrated in Ex-

ample 1. Example 2 illustrates that the solution ob-

tained when the symmetry is taken into account is a

subset of (and therefore more precise than) the so-

lution obtained when the symmetry isn’t taken into

account.

Example 1 Assume

Ã =

(
2 (−1 / 0 / 2)

(−1 / 0 / 2) −1

)

and

b =

(
1
1

)
.

The matrix Ã contains singular matrices: the matrix

A =

(
2 −1
2 −1

)
and the matrix A =

(
2 2
−1 −1

)
for

example. With the first matrix the solution of the real

system is the straight line 2x1 − x2 = 1. The system

corresponding to the second matrix has no solution.

This system of linear fuzzy equations doesn’t satisfy

the requirement for a solution to exist. The fuzzy

matrix Ã is however symmetric and when only sym-

metric matrices are considered if the fuzzy numbers

are replaced by real values in its supports, there are

no singular matrices, because |A| = −2 − k2 ≤ −2

with k ∈ supp(−1 / 0 / 2).
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Example 2 Assume

Ã =

(
5 (−1 / 0 / 2)

(−1 / 0 / 2) 3

)

and

b =

(
1
1

)
.

We see that Ak,l =

(
5 k
l 3

)
for k, l ∈ supp(−1 / 0 /

2) has no singular matrices because the determinant

is 15 − kl 6= 0.

When the symmetry isn’t taken into account the
set of all possible solutions S is equal to:

=

�
1

|Ak,l|
adj(Ak,l)

�
1
1

����� k, l ∈ supp(−1 / 0 / 2)

�
=

�
1

15 − kl

�
3 −k
−l 5

��
1
1

����� k, l ∈ supp(−1 / 0 / 2)

�
=

�
1

15 − kl

�
3 − k
5 − l

����� k, l ∈ [−1, 2]

�
.

The solution of the system where the symmetry is not

taken into account is then:

supp x̃ =




[
1

17
,
2

7

]

[
3

17
,
3

7

]




,

x̃0.5 =




[
4

31
,
14

59

]

[
8

31
,
22

59

]




,

x̃1 =




1

5

1

3


 .

When we take the symmetry into account the set
of all possible solutions Ssym is equal to:

=

�
1

15 − k2

�
3 −k
−k 5

��
1
1

����� k ∈ supp(−1 / 0 / 2)

�
=

�
1

15 − k2

�
3 − k
5 − k

����� k ∈ [−1, 2]

�
.

The solution of the system of linear fuzzy equations

with a symmetric coefficient matrix is then

supp x̃sym =




[
1

11
,
2

7

]

[
1

−2
√

10 + 10
,
3

7

]




,

(x̃sym)0.5 =




[
1

7
,
14

59

]

[
2

7
,
22

59

]




,

(x̃sym)1 =




1

5

1

3


 .

When the symmetry isn’t taken into account, an

overestimation is made:

x̃sym ⊆ x̃.

This overestimation due to not considering the

symmetry of the matrix is clear for systems of linear

interval equations when the ‘United Solution Set’ is

calculated:

[x]sym

∃∃

= {x ∈ R
n | (∃As ∈ [A]sym)(∃b ∈ [b])(Asx = b)}

= {x ∈ R
n | [A]symx ∩ [b] 6= ∅}

⊆

[x]∃∃

= {x ∈ R
n | (∃A ∈ [A])(∃b ∈ [b])(Ax = b)}

= {x ∈ R
n | [A]x ∩ [b] 6= ∅},

where [A]sym only considers the symmetric matrices

and all these matrices are contained in the interval

matrix [A].

For systems of linear fuzzy equations, there is an

overestimation when the symmetry isn’t considered

because for every considered α-level the solution set
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is an overestimation:

Ω(α)sym

= {x | x ∈ R
n and (∃As = [aij ]n×n ∈ R

n×n)

(∃b = [bk]n×1 ∈ R
n)((∀(i, j, k) ∈ {1, 2, ..., n}3)

(aij ∈ (ãij)α and bk ∈ (b̃k)α and aij = aji)

and Asx = b)}
⊆
Ω(α)

= {x | x ∈ R
n and (∃A = [aij ]n×n ∈ R

n×n)

(∃b = [bk]n×1 ∈ R
n)((∀(i, j, k) ∈ {1, 2, ..., n}3)

(aij ∈ (ãij)α and bk ∈ (b̃k)α) and Ax = b)}.

In this paper we propose a practical algorithm

to compute the solution where the symmetry is also

taken into account. Instead of solving all these

crisp systems with a symmetric matrix, we determine

parametric functions with elements of the support of

the fuzzy numbers as variables.

3.1. Systems with one fuzzy coefficient

We first consider the case that we have to solve

a system of linear fuzzy equations in which exactly

one of the coefficients is a fuzzy number and the other

coefficients are crisp. The approach is different for

a fuzzy non-diagonal or a fuzzy diagonal element of

the matrix or a fuzzy component of the vector b̃.

3.1.1. The fuzzy coefficient is a diagonal element of

the matrix Ã

We first consider the case that we have to solve

a system of linear fuzzy equations in which exactly

one of the coefficients on the diagonal of the matrix

is a fuzzy number and the other coefficients are crisp.

Without loss of generality we may assume that ã11 is

a fuzzy number. So we consider the following matrix

equation:




ã11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

an1 an2 . . . ann







x̃1

x̃2

...
x̃n


 =




b1

b2

...
bn


 , (2)

where ã11 is a fuzzy number and aij ∈ R, for all

(i, j) ∈ {1, . . . , n}2 \ {(1, 1)}, and bk ∈ R, for all

k ∈ {1, . . . , n}. In order to obtain the solution x̃sym

of (2), we have to solve the crisp systems

As(a11)x = b,

where

As(a11) =




a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

an1 an2 . . . ann


 ,

x =




x1

x2

...
xn


 ,

b =




b1

b2

...
bn


 ,

for all a11 ∈ [a11, a11] = supp(ã11). We can solve

all of these systems through Cramer’s rule thanks to

the non-singularity of every crisp matrix A(a11), for

all a11 ∈ supp(ã11). So we can write the solution for

every component as a quotient of two determinants:

xj =

j
↓∣∣∣∣∣∣∣

a11 · · · b1 · · · a1n

...
. . .

...
. . .

...
an1 · · · bn · · · ann

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣

a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

an1 an2 . . . ann

∣∣∣∣∣∣∣∣∣

.

The determinant of a matrix A is denoted as |A|. By

expanding the determinants in the numerator and

the denominator along the first row, we can write

each component of the solution using parameters c1j ,

c2j , c3 and c4:

xj = fj(a11) =
a11c1j + c2j

a11c3 + c4
. (3)

Due to this result, every solution can be written us-

ing parametric functions with variable a11. Note that

c1j and c2j are dependent of j due to the fact that

the j-th column in the numerator contains the com-

ponents of b. On the other hand, the denominator

is the same for all j ∈ {1, . . . , n}, so c3 and c4 are

independent of j.

So we propose the following method to solve (2).

First we compute the determinants of the matrices
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A(a11) and A(a11). The parameters c3 and c4 are ob-

tained by solving the following system of linear crisp

equations:
{
|A(a11)| = a11c3 + c4

|A(a11)| = a11c3 + c4.

We find




c3 =
|A(a11)| − |A(a11)|

a11 − a11

,

c4 = |A(a11)| − a11c3.

(4)

We solve the crisp systems

A(a11)x = b, (5)

A(a11)x = b, (6)

and denote by x = (x1, . . . , xn)T and x =

(x1, . . . , xn)T the solutions of (5) and (6) respec-

tively. Then, for all j ∈ {1, . . . , n}, we obtain c1j and

c2j by solving the following system of crisp equations:
{

xj |A(a11)| = a11c1j + c2j ,

xj |A(a11)| = a11c1j + c2j .

We obtain



c1j =
xj |A(a11)| − xj |A(a11)|

a11 − a11

,

c2j = xj |A(a11)| − a11c1j .

(7)

Note that fj is continuous as the denominator is

never 0 because of the regularity of the matrix Ã.

As a consequence (x̃j)α = fj((a11)α) (see Ref. 14)

and therefore ã11 is a fuzzy number so x̃j is a fuzzy

number. Note also that it is possible that fj(a11) =

fj(a
′
11) for two different a11, a

′
11 ∈ supp(ã11); this

happens e.g. when a12 = a13 = . . . = a1n = b1 = 0,

since then fj(a11) =
c1j

c3

, for all a11 ∈ supp(ã11).

Finally we define x̃sym = (x̃1, . . . , x̃n)T and we call

x̃sym the solution of the system (2).

Consequently, all possible solutions for the crisp

systems As(a11)x = b, for all a11 ∈ supp(ã11),

can be obtained using (3). We define for all j ∈
{1, . . . , n} the fuzzy number x̃sym

j as:

x̃sym
j (x)

= sup{ã11(a11) | a11 ∈ supp(ã11) and x = fj(a11)},
for all x ∈ fj(supp(ã11)), and

x̃sym
j (x) = 0,

for all x ∈ R \ fj(supp(ã11)).

Note 1 Assume we want to obtain an approxima-

tion of the solution by computing the solution for m

elements of supp(ã11). Our method requires only the

calculation of two crisp (n × n)-determinants, the

solving of two crisp (n × n)-systems, n evaluations

of (7), one evaluation of (4) and m − 2 evaluations

of (3). For large n and m we have much less compu-

tational effort than the method of Buckley and Qu,

since they need to solve m crisp (n × n)-systems.

For these two algorithms the total operation count

can be calculated. Therefore the total amount of ad-

ditions, subtractions, multiplications and divisions

is counted. To solve a system of linear equations,

Gaussian elimination and back substitution are usu-

ally applied. First of all for the Gaussian elimina-

tion, there are (n − i + 1)(n − i) subtractions, n − i

divisions and (n − i)(n − i + 1) multiplications in

the i-th step∗. So the operation count for Gaussian

elimination is:

n−1∑

i=1

(n − i)(2n − 2i + 3) =
4n3 + 3n2 − 7n

6
.

For back substitution, there are n − i additions and

subtractions, (n− i)+1 multiplications and divisions

in the i-th step. So the operation count for back sub-

stitution is:

n∑

i=1

(2n − 2i + 1) = n2.

To solve a (n×n)-system, Gaussian elimination and

back substitution are applied. The operation count is

then 4n3+9n2−7n
6 . The method obtained above for one

fuzzy coefficient computes 2 determinants of (n×n)-

matrices. The operation cost for calculating a deter-

minant is equal to the operation cost for Gaussian

elimination and n− 1 multiplications (the product of

the diagonal elements after Gaussian elimination).

2 determinants 4n3+3n2−n−6
3

of (n × n)-matrices

solving 2 (n × n)-systems 2n2

n evaluations of (7) 8n

1 evaluation of (4) 5

m − 2 evaluations of (3) 5(m − 2)n

∗Recall:
Pn

i=1 1 = n,
Pn

i=1 i = n(n+1)
2

,
Pn

i=1 i
2 = n(n+1)(2n+1)

6
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The total operation cost is then 4
3n3 + 3n2 − 7

3n +

5mn − 3. The total operation cost for the method of

Buckley and Qu, since they need to solve m crisp

(n × n)-systems is m(4n3+9n2−7n)
6 . It is easy to

see that for large n and m the method described

above needs less computation time than the method

of Buckley and Qu.

3.1.2. The fuzzy coefficient is a component of the

vector b̃

When the fuzzy number is located in the right-

hand side of the system of linear fuzzy equations, i.e.

when we have for instance that b̃ = (b̃1, b2, . . . , bn),

one sees immediately that c3 = 0 and c4 = |A|. So

we only have to solve the systems

Ax = b(b1),

Ax = b(b1),

with b(b1) and b(b1) a crisp vector obtained by re-

placing the fuzzy number b̃1 by the lower and upper

bound resp. of its support, and

{
xj |A| = b1c1j + c2j ,

xj |A| = b1c1j + c2j

to find c1j and c2j for j ∈ {1, . . . , n}. The function

fj is then given by, for all j ∈ {1, . . . , n},

fj(b1) =
b1c1j + c2j

|A| ,

and the solution x̃sym = (x̃1, . . . , x̃n)T is given by,

for all j ∈ {1, . . . , n},

x̃sym
j (x)

= sup{b̃1(b1) | b1 ∈ supp(b̃1) and x = fj(b1)},

for all x ∈ f(supp(b̃1)), and

x̃sym
j (x) = 0,

for all x ∈ R \ f(supp(b̃1)).

3.1.3. The fuzzy coefficient is a non-diagonal element

of the matrix Ã

Now we assume that the fuzzy coefficient is a non-

diagonal element of the matrix Ãsym. Without loss

of generality, we may assume that the element on the

second column and the first row and consequently

on the first column and the second row is the fuzzy

number in Ã:


a11 ã12 · · · a1n

ã12 a22 · · · a2n

...
...

. . .
...

a1n a2n . . . ann







x̃1

x̃2

...
x̃n


 =




b1

b2

...
bn


 . (8)

To find the solution considering the symmetry of

the matrix, we have to solve

As(a12)x = b,

where

As(a12) =




a11 a12 · · · a1n

a12 a22 · · · a2n

...
...

. . .
...

a1n a2n . . . ann




is symmetric for all a12 ∈ ]a12, a12[ = supp(ã12).

Analogous to the previous case, all these crisp

systems can be solved by Cramer’s rule because

each real symmetric matrix As(a12) for all a12 ∈
supp(ã12) is regular. So we can write each compo-

nent as the quotient of two determinants:

xj =

j
↓∣∣∣∣∣∣∣

a11 · · · b1 · · · a1n

...
. . .

...
. . .

...
a1n · · · bn · · · ann

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣

a11 a12 · · · a1n

a12 a22 · · · a2n

...
...

. . .
...

a1n a2n . . . ann

∣∣∣∣∣∣∣∣∣

.

By expanding these determinants along the first row,

each component of the solution can be written using

6 parameters c1j , c2j , c3j , c4, c5 and c6:

xj = fsym
j (a12) =

a2
12c1j + a12c2j + c3j

a2
12c4 + a12c5 + c6

. (9)

Each solution of As(a12)x = b can be expressed

using the parametric functions with a12 as vari-

able. First the determinants of the matrices As(a12),

As((ã12)1) and As(a12) are calculated. The values of

the parameters c4, c5 and c6 can be found through

the following system of linear equations:




|As(a12)| = a2
12c4 + a12c5 + c6,

|As((ã12)1)| = (ã12)
2
1c4 + (ã12)1c5 + c6,

|As(a12)| = a2
12c4 + a12c5 + c6.

(10)
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So the following formulas can be used:8>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>:
c4 =

1

D

�
a12(|A

s((ã12)1)| − |As(a12)|)

+ a12(|A
s(a12)| − |As((ã12)1)|)

+ (ã12)1(|A
s(a12)| − |As(a12)|)

�
,

c5 = −
1

D

�
a2
12(|A

s((ã12)1)| − |As(a12)|)

+ a2
12(|A

s(a12)| − |As((ã12)1)|)

+ (ã12)
2
1(|A

s(a12)| − |As(a12)|)
�
,

c6 =
1

D

�
|As(a12)|(a

2
12(ã12)1 − a12(ã12)

2
1)

+ |As((ã12)1)|(a
2
12a12 − a12a

2
12)

+ |As(a12)|((ã12)
2
1a12 − (ã12)1a

2
12)
�
,

(11)

with D = a2
12(a12 − (ã12)1) + (ã12)

2
1(a12 − a12) +

a2
12((ã12)1 − a12). Thereafter the crisp systems:

As(a12)x = b, (12)

As((ã12)1)x = b, (13)

As(a12)x = b, (14)

are solved with for example Gaussian elimination.

The solutions of (12), (13) and (14) are denoted as

x = (x1, . . . , xn)T ,

(x)1 = ((x1)1, . . . , (xn)1)
T

and

x = (x1, . . . , xn)T

respectively. The values of the parameters c1j , c2j

and c3j are obtained as the solution of the following

system of linear equations:




xj |As(a12)| = a2
12c1j + a12c2j + c3j ,

(xj)1|As((ã12)1)| = (ã12)
2
1c1j + (ã12)1c2j + c3j ,

xj |As(a12)| = a2
12c1j + a12c2j + c3j .

(15)
We obtain:8>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>:

c1j =
1

D

�
a12((x̃j)1|A

s((ã12)1)| − xj |A
s(a12)|)

+ a12(xj |A
s(a12)| − (x̃j)1|A

s((ã12)1)|)

+ (ã12)1(xj |A
s(a12)| − xj |A

s(a12)|)
�
,

c2j = −
1

D

�
a2
12((x̃j)1|A

s((ã12)1)| − xj |A
s(a12)|)

+ a2
12(xj |A

s(a12)| − (x̃j)1|A
s((ã12)1)|)

+ (ã12)
2
1(x|A

s(a12)| − xj |A
s(a12)|)

�
,

c3j =
1

D

�
xj |A

s(a12)|(a
2
12(ã12)1 − a12(ã12)

2
1)

+ (x̃j)1|A
s((ã12)1)|(a

2
12a12 − a12a

2
12)

+ xj |A
s(a12)|((ã12)

2
1a12 − (ã12)1a

2
12)
�
,

(16)

with D = a2
12(a12 − (ã12)1) + (ã12)

2
1(a12 − a12) +

a2
12((ã12)1 − a12). In that way, the values of the

parameters are calculated so all the possible solu-

tions of the linear systems As(a12)x = b, for all

a12 ∈ supp(ã12) can be calculated by (9). We de-

fine for all j ∈ {1, . . . , n} the fuzzy number x̃sym
j as:

x̃sym
j (x) = sup{ã12(a12) | a12 ∈ supp(ã12)

and x = fsym
j (a12)},

(17)

for all x ∈ fsym
j (supp(ã12)), and

x̃sym
j (x) = 0,

for all x ∈ R \ fsym
j (supp(ã12)).

Note 2 The operation count for this method for

solving a system of linear fuzzy equations with one

fuzzy number as non-diagonal element in Ã where

the symmetry is taken into account, can be calculated

as follows:

3 determinants 2n3 + 3
2n2 − n

2 − 3

of (n × n)-matrices

3 (n × n)-systems 3n2

n evaluations of (16) 91n

1 evaluation of (11) 76

m − 3 evaluations of (9) 11n(m − 3)

The total cost is then 2n3 + 9
2n2 + 115

2 n+11mn+73.

3.2. Systems with two fuzzy coefficients

In this section we consider a system with two

fuzzy coefficients F̃ n1 and F̃ n2. The approach differs

for a fuzzy diagonal or fuzzy non-diagonal element of

the matrix Ã or a fuzzy component of the vector b̃.

3.2.1. The second fuzzy coefficient is a diagonal ele-

ment in Ã

Assume the second fuzzy number is a diagonal el-

ement of the matrix Ã. We first fix the second fuzzy

number on the lower bound of its support. In that

way we can find the solutions for the systems corre-

sponding to the lower line of the rectangle in Figure

1 by the method described in Section 1. Analogously

we fix the second fuzzy number on the upper bound

of its support and find the solutions for the upper

line in Figure 1.
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Fn1

Fn2

Fn1 Fn1

Fn2

Fn2

(Fn∗
1, Fn2)

(Fn∗
1, Fn2)

(Fn∗
1, Fn2)

Fig. 1. Solving systems with two fuzzy coef-
ficients where the second fuzzy number is a
diagonal element in Ã.

Thereafter we fix arbitrarily the first fuzzy num-

ber on Fn∗
1 ∈ supp(F̃ n1) and let Fn2 ∈ supp(F̃ n2)

vary. So, again, we obtain a system with only one

fuzzy number, but this time the fuzzy number is

F̃ n2. Thus we are looking for the solution of the

crisp systems corresponding to the points on the ver-

tical thin line in Figure 1. Similarly as we did be-

fore, we can obtain the solution of the crisp system

As(Fn∗
1, Fn2)x = b as

xj = f∗
j (Fn2) =

Fn2c
∗
1j + c∗2j

Fn2c∗3 + c∗4
, (18)

for all j ∈ {1, . . . , n} and Fn2 ∈ supp(F̃ n2). We find

the parameters c∗3 and c∗4 by solving the system

{
f l

denom(Fn∗
1) = Fn2c

∗
3 + c∗4,

fu
denom(Fn∗

1) = Fn2c
∗
3 + c∗4,

(19)

where f l
denom(Fn∗

1) and fu
denom(Fn∗

1) are the denom-

inators of the parametric functions for respectively

the lower (l) and the upper (u) bound of the sup-

port of F̃ n2, with the first fuzzy number as variable

and evaluated in the fixed value Fn∗
1. Then, for all

j ∈ {1, . . . , n}, we obtain c∗1j and c∗2j by solving the

following system:

{
f l

num,j(Fn∗
1) = Fn2c

∗
1j + c∗2j ,

fu
num,j(Fn∗

1) = Fn2c
∗
1j + c∗2j ,

where f l
num,j(Fn∗

1) and fu
num,j(Fn∗

1) are the nu-

merators of the j-th component of the paramet-

ric functions for respectively the lower (l) and the

upper (u) bound of the support of F̃ n2, with the

first fuzzy number as variable and evaluated in the

fixed value Fn∗
1. Consequently, all possible solu-

tions for the crisp systems A(Fn∗
1, Fn2)x = b, for all

Fn2 ∈ supp(F̃ n2), can be obtained using (18). This

approach can be used independently of the place of

the first fuzzy number; it doesn’t matter if the first

fuzzy number is a diagonal or non-diagonal element

of the matrix Ã or a component of the vector b̃.

3.2.2. The second fuzzy number is a non-diagonal

element of the matrix Ã

Let us assume that the second fuzzy number is a

non-diagonal element of the matrix Ã. We first fix

the second fuzzy number on the lower and the upper

bound of its support, but also on the modal value.

In that way we can find the solutions for the lower,

middle and upper line of Figure 1. Thereafter the

parametric functions with the second fuzzy number

as variable and a fixed first fuzzy number are calcu-

lated by using the earlier obtained parametric func-

tions. We first solve the following system of linear

equations:





f l
denom(Fn∗

1) = Fn2
2c∗4 + Fn2c

∗
5 + c∗6,

fm
denom(Fn∗

1) = (F̃ n2)
2
1c

∗
4 + (F̃ n2)1c

∗
5 + c∗6,

fu
denom(Fn∗

1) = Fn2
2
c∗4 + Fn2c

∗
5 + c∗6,

where f l
denom(Fn∗

1), fm
denom(Fn∗

1) and f l
denom(Fn∗

1)

are the denominators of the parametric functions for

respectively the lower (l) bound of the support, the

modal value (m) and the upper (u) bound of the sup-

port of F̃ n2, with the first fuzzy number as variable

and evaluated in the fixed value Fn∗
1. Thereafter we

calculate the parameters c∗1j , c∗2j and c∗3j by solving

the following system:





f l
num,j(Fn∗

1) = Fn2c∗1j + Fnc∗2j + c∗3j ,

fm
num,j(Fn∗

1) = (F̃ n)21c
∗
1j + (F̃ n)1c

∗
2j + c∗3j ,

fu
num,j(Fn∗

1) = Fn
2
c∗1j + Fnc∗2j + c∗3j ,

(20)

where f l
num,j(Fn∗

1), fm
num,j(Fn∗

1) and f l
num,j(Fn∗

1)

are the numerators of the j-th component of the

parametric functions for respectively the lower (l)

bound of the support, the modal value (m) and the

upper (u) bound of the support of F̃ n2, with the first

fuzzy number as variable and evaluated in the fixed

value Fn∗
1. The function (f∗)sym

j is then given by,
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for all j ∈ {1, . . . , n},

(f∗)sym
j (Fn2) =

(Fn2)
2c∗1j + Fn2c

∗
2j + c∗3j

(Fn2)2c∗4 + Fn2c∗5 + c∗6
,

for all Fn2 ∈ supp(F̃ n2).

We define for all j ∈ {1, . . . , n} the fuzzy number

x̃sym
j as:

x̃sym
j (x) = sup{min(F̃ n1(Fn∗

1), F̃ n2(Fn2)) |
Fn∗

1 ∈ supp(F̃ n1) and

Fn2 ∈ supp(F̃ n2) and

x = (f∗)sym
j (Fn2)}, (21)

for all x ∈ (f∗)sym
j (supp(F̃ n2)), and

x̃sym
j (x) = 0,

for all x ∈ R \ (f∗)sym
j (supp(F̃ n2)).

Fn1

Fn2

Fn1 Fn1

Fn2

Fn2

(Fn2)1

(Fn∗
1, Fn2)

(Fn∗
1, Fn2)

(Fn∗
1, Fn2)

(Fn∗
1, (Fn2)1)

Fig. 2. Solving systems with two fuzzy coef-
ficients where the second fuzzy number is a
non-diagonal element of the matrix Ã.

3.2.3. The second fuzzy number is a component of

the vector b̃

When the second fuzzy number is located in

the right-hand side of the system of linear fuzzy

equations, i.e. when we have for instance that b̃ =

(b̃1, b2, . . . , bn), one sees immediately that c∗3 = 0 and

c∗4 = |A| = f l
denom(Fn∗

1) = fu
denom(Fn∗

1). Then we

have to calculate the values for the parameters c∗1j

and c∗2j by using the numerators of the parametric

functions for the first fuzzy coefficient:
{

f l
num,j(Fn∗

1) = Fn2c
∗
1j + c∗2j ,

fu
num,j(Fn∗

1) = Fn2c
∗
1j + c∗2j ,

for j ∈ {1, . . . , n}. The function f∗
j is then given by,

for all j ∈ {1, . . . , n},

f∗
j (Fn2) =

Fn2c
∗
1j + c∗2j

f l
denom(Fn∗

1)
,

for all Fn2 ∈ supp(F̃ n2).

The solution x̃sym
j is obtained similarly as in (21)

in all the three cases (Subsection 3.2.1, 3.2.2 and

3.2.3).

3.3. Systems with more than two fuzzy coef-

ficients

Clearly, the procedure proposed in Subsection 3.2

can be extended to systems with more than two fuzzy

coefficients. In Figure 3 the method is illustrated for

3 fuzzy coefficients. First we calculate all the para-

metric functions and solutions for the front and the

back face of the cube. Thereafter we obtain the para-

metric functions and solutions corresponding to the

lines between the front and the back face of the cube

by using the parameters obtained earlier.

Fn1

Fn2

Fn3

Fn1 Fn1

Fn3

Fn3
Fn2

Fn2

(Fn∗
1, Fn2, Fn3)

(Fn∗
1, Fn∗

2, Fn3)

(Fn∗
1, Fn2, Fn3)

(Fn∗
1, Fn2, Fn3)

(Fn∗
1, Fn2, Fn3)

(Fn∗
1, Fn∗

2, Fn3)

Fig. 3. Solving systems with three fuzzy co-
efficients

Example 3 Let

Ã =

(
1 (0 / 1 / 2)

(0 / 1 / 2) −2

)
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and

b =

(
2
3

)
.

First we obtain the determinants in which the fuzzy

number is replaced by the lower bound of its support,

its modal value and the upper bound of its support

respectively:

|As(a12)| =

∣∣∣∣
1 0
0 −2

∣∣∣∣ = −2,

|As((ã12)1)| =

∣∣∣∣
1 1
1 −2

∣∣∣∣ = −3,

|As(a12)| =

∣∣∣∣
1 2
2 −2

∣∣∣∣ = −6.

Using (10) we can deduce the parameters c4, c5 and

c6:




−2 = c6,

−3 = c4 + c5 + c6,

−6 = 4c4 + 2c5 + c6

⇐⇒





c4 = −1,

c5 = 0,

c6 = −2.

Then we solve the systems in which the fuzzy num-

ber is replaced by the lower bound of its support, its

modal value and the upper bound of its support re-

spectively:

(
1 0
0 −2

) (
x1

x2

)
=

(
2
3

)
⇐⇒

{
x1 = 2,

x2 = − 3
2 ,

(
1 1
1 −2

) (
x1

x2

)
=

(
2
3

)
⇐⇒

{
x1 = 7

3 ,

x2 = − 1
3 ,

(
1 2
2 −2

) (
x1

x2

)
=

(
2
3

)
⇐⇒

{
x1 = 5

3 ,

x2 = 1
6 .

Thus we calculate the values of the parameters c11,

c21, c31 and c12, c22, c32 by solving (15):





2(−2) = c31,
7
3 (−3) = c11 + c21 + c31,
5
3 (−6) = 4c11 + 2c21 + c31

⇐⇒





c11 = 0,

c21 = −3,

c31 = −4,




− 3
2 (−2) = c31,

− 1
3 (−3) = c12 + c22 + c32,
1
6 (−6) = 4c12 + 2c22 + c32

⇐⇒





c12 = 0,

c22 = −2,

c32 = 3.

The parametric functions are then given by

x1 = fsym
1 (a) =

−4 − 3a

−2 − a2
,

x2 = fsym
2 (a) =

3 − 2a

−2 − a2
,

where a varies in ]0, 2[ = supp(0 / 1 / 2). The

parametric function of the first component reaches

its maximum for −4
3 +

√
34
3 ∈ ]0, 2[ (see Figure 4).

Hence the parametric function of this system is not

monotonous. The first component of the solution is

given by

x̃1(x) = sup
(
{0} ∪

{
ã(a) | a ∈ supp(ã) = ]0, 2[

and x = −4−3a
−2−a2

})
.

We have that

x =
−4 − 3a

−2 − a2
⇐⇒ −xa2 + 3a − 2x + 4 = 0

⇐⇒ a =
−3 ±

√
−8x2 + 16x + 9

−2x

and

a ∈ ]0, 2[

=⇒ x ∈
]
min(fsym

1 (0), fsym
1 (2)), fsym

1

(−4
3 +

√
34
3

)[

=
]

5
3 , −9

√
34

−68+8
√

34

[
.

So we obtain (see Figure 4):

x̃1(x)

=





max{ã(3+
√
−8x2+16x+9

2x
), ã(3−

√
−8x2+16x+9

2x
)},

if x ∈ ]2, −9
√

34
−68+8

√
34

],

ã(3+
√
−8x2+16x+9

2x
), if x ∈ ]53 , 2],

0, else

=





2 − 3+
√
−8x2+16x+9

2x
, if x ∈ ]53 , 2]

(⇒ a ∈ [32 , 2[),

max{ 3−
√
−8x2+16x+9

2x
, 2 − 3+

√
−8x2+16x+9

2x
},

if x ∈ ]2, 7
3 ] (⇒ a ∈ [1, 3

2 [ ∪ ]0, 2
7 ]),

max{ 3−
√
−8x2+16x+9

2x
, 3+

√
−8x2+16x+9

2x
},

if x ∈ ]73 , −9
√

34
−68+8

√
34

] (⇒ a ∈ ]27 , 1[),

0, else

=





4x−3−
√
−8x2+16x+9
2x

, if x ∈ ]53 , 7
3 ],

3+
√
−8x2+16x+9

2x
, if x ∈ ]73 , −9

√
34

−68+8
√

34
],

0, else

using the fact that

3 −
√
−8x2 + 16x + 9

2x
> 2 − 3 +

√
−8x2 + 16x + 9

2x

⇐⇒ 0 < x <
3

2
.

International Journal of Computational Intelligence Systems, Vol.1, No. 3 (August, 2008), 248 - 261

Published by Atlantis Press 
Copyright: the authors

258



The membership function for the first component of

the solution is shown in Figure 6. The second com-

ponent of the solution is:

x̃2(x) = sup
(
{0} ∪

{
ã(a) | a ∈ supp(ã) = ]0, 2[

and x = 3−2a
−2−a2

})
.

Here we have that

x =
3 − 2a

−2 − a2
⇐⇒ −xa2 + 2a − 2x − 3 = 0

⇐⇒ a =
2 ±

√
−8x2 − 12x + 4

2x

and

a ∈ ]0, 2[ =⇒ x ∈ ]fsym
2 (0), fsym

2 (2)[ =
]
− 3

2 , 1
6

[
.

So we obtain (see Figure 5):

x̃2(x) =





2−
√
−8x2−12x+4

2x
, if x ∈ ] − 3

2 ,− 1
3 ],

2 − 2−
√
−8x2−12x+4

2x
, if x ∈ ] − 1

3 , 1
6 [,

0, else

=





2−
√
−8x2−12x+4

2x
, if x ∈ ] − 3

2 ,− 1
3 ],

4x−2+
√
−8x2−12x+4
2x

, if x ∈ ] − 1
3 , 1

6 [,

0, else.

The membership degree of the second component is

shown in Figure 7.

a

fsym
1 (a)

0 2
7

−4+
√

34
3

1 3
2

2

5
3

2

7
3

−9
√

34
−68+8

√
34

Fig. 4. The first parametric function, fsym
1 .

a

fsym
2 (a)

1
3
2

2

− 3
2

− 1
3

1
6

Fig. 5. The second parametric function,
fsym
2 .

x

x̃sym
1 (x)

5
3

2 7
3

−9
√

34
−68+8

√
34

−
√

34(−17+2
√

34)
51

1

Fig. 6. The first component of the solution,
x̃sym

1 .

x

x̃sym
2 (x)

− 3
2 − 1

3
1
6

0.5

1

Fig. 7. The second component of the solution,
x̃sym

2 .
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Example 4 Consider the following system of linear

fuzzy equations:

Ãx̃ = b̃,

where Ã =0BB� 1 (3 / 4 / 5) (4 / 5 / 6) 0
(3 / 4 / 5) −4 (1 / 4 / 6) (0 / 1 / 3)
(4 / 5 / 6) (1 / 4 / 6) 2 5

0 (0 / 1 / 3) 5 3

1CCA ,

b̃ =




1
1
1
1


 .

This system has a symmetric matrix Ã. The so-

lution for this system is obtained on the one hand

without taking the symmetry into account and on the

other hand taking the symmetry into account. The

difference in solution for both approaches is shown

in Figure 8. When the symmetry is not taken into

account, the solution is an overestimation.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.5

1

x
1

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15
0

0.5

1

x
2

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

0.5

1

x
3

−0.3 −0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15
0

0.5

1

x
4

Fig. 8. Solutions for the system of Example
4 with the symmetry of the matrix Ã taken
into account (full line) and without taking the
symmetry into account (interrupted line).

Now we can calculate the total operation count

for systems of linear fuzzy equations where only non-

diagonal elements of the matrix Ã are fuzzy numbers.

First the number of parametric functions has to be

calculated. We denote the number of fuzzy numbers

in the system as K. For K = 1 only one paramet-

ric function, for which the only fuzzy number varies

in its support, has to be calculated. For K = 2 we

first calculate the parametric functions for the three

lines, the lower, middle and upper line of the rec-

tangle (that indicates the cartesian product of the

supports of the two fuzzy numbers) where the sec-

ond fuzzy number is replaced by the lower bound of

its support, the modal value and the upper bound of

its support respectively. Thereafter the parametric

functions for the perpendicular lines where the first

fuzzy number is replaced by a discrete value in its

support, are calculated. In total m + 3 parametric

functions are calculated. For K = 3 we calculate the

parametric functions for the front, middle and back

face of the cube and thereafter the parametric func-

tions for the perpendicular lines where the first and

second fuzzy number are fixed on a discrete value

of their supports supp(F̃ n1)× supp(F̃ n2), are calcu-

lated. The total number of parametric functions we

obtain is m2 + 3(m + 3) = m2 + 3m + 9 = m3−33

m−3 .

For K fuzzy numbers, the parametric functions cor-

responding to the front, middle and back (K − 1)-

dimensional hypercube are calculated and thereafter

we calculate the parametric functions for the perpen-

dicular lines corresponding to the discrete values in

the (K − 1)-dimensional hypercube. In total we cal-

culate 3(mK−1−3K−1

m−3 ) + mK−1 = mK−3K

m−3 parametric

functions.

The total cost to solve a system of linear fuzzy

equations with K fuzzy numbers as non-diagonal el-

ements in the matrix Ã where the symmetry is taken

into account, can then be calculated as follows:

3K determinants of 3K 4n3+3n2−n−6
6

of (n × n)-matrices

3K (n × n)-systems 3Kn2

mK−3K

m−3 (n + 1) evaluations mK−3K

m−3 (n + 1)76

equivalent to (20)

n(mK − 3K) evaluations 11n(mK − 3K)

equivalent to (9)

The total operation cost is 3K−1(4n3+3n2−n−6)
2 +

3Kn2 +76mK−3K

m−3 (n+1)+11n(mK −3K). The total

operation cost for the method of Buckley and Qu is
mK(4n3+9n2−7n)

6 , since mK (n × n)-systems have to

be solved. It is easy to see that for large n, m and K

the method described above needs less computation

time than the method of Buckley and Qu.
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4. Conclusion

In this paper we have proposed a method to solve

linear (n × n)-systems in which some (or all) coeffi-

cients are fuzzy and in which we take the symmetry

of the matrix Ã into account. While in the method of

Buckley and Qu for every element in the support of

each fuzzy number the corresponding crisp (n × n)-

system is solved, in our method only the crisp (n×n)-

systems corresponding to the bounds of each support

and the modal value of each fuzzy number must be

solved, and the other necessary solutions for the com-

binations of the lower and the upper bounds of the

considered α-level are obtained by evaluating para-

metric functions. By considering the symmetry of

the matrix Ã, the obtained solution is a better solu-

tion, as there is no overestimation. By applying the

parametric functions to find all possible solutions,

we see that the computation time is considerably re-

duced w.r.t. the method of Buckley and Qu.

Acknowledgment

Annelies Vroman would like to thank the Fund for

Scientific Research-Flanders for funding the research

project G.0476.04 elaborated on in this paper.

1. J. J. Buckley and Y. Qu. Solving systems of linear
fuzzy equations. Fuzzy Sets and Systems, 43:33–43,
1991.

2. D. M. Gay. Solving interval linear equations. SIAM
Journal on Numerical Analysis, 19:858–870, 1982.

3. R. Fuller. On stability in possibilistic linear equality
systems with lipschitzian fuzzy numbers. Fuzzy Sets
and Systems, 34:347–353, 1990.

4. F. Abramovich, M. Wagenknecht, and Y. I. Khurgin.
Solution of LR-type fuzzy systems of linear algebraic
equations. Busefal, 35:86–99, 1988.

5. A. Neumaier. Interval methods for systems of equa-
tions, volume 37 of Encyclopedia of Mathematics and
its Applications. Cambridge University Press, 1990.

6. T. Ohta, T. Ogita, S. M. Rump, and S. Oishi. Numer-
ical verification method for arbitrarily ill-conditioned
linear systems. Transactions on the Japan Soci-
ety for Industrial and Applied Mathematics (Trans.
JSIAM), 15:269287, 2005.

7. S. M. Rump and T. Ogita. Super-fast validated solu-
tion of linear systems. Journal of Computational and
Applied Mathematics (JCAM), 199:199–206, 2007.

8. S. M. Rump. Verified solution of large linear and
nonlinear systems. In H. Bulgak and C. Zenger, edi-
tors, Error Control and adaptivity in Scientific Com-
puting, page 279298. Kluwer Academic Publishers,
1999.

9. D. Moens and D. Vandepitte. Fuzzy finite element
method for frequency response function analysis of
uncertain structures. AIAA Journal, 40:126–136,
2002.

10. A. Vroman, G. Deschrijver, and E. E. Kerre. Solv-
ing systems of linear fuzzy equations by paramet-
ric functions. IEEE Transactions on Fuzzy Systems,
15:370–384, 2007.

11. A. Vroman, G. Deschrijver, and E. E. Kerre. Solv-
ing systems of linear fuzzy equations by parametric
functions - An improved algorithm. Fuzzy Sets and
Systems, 158:1515–1534, 2007.

12. E. E. Kerre. Fuzzy Sets and Approximate Reason-
ing. Xian Jiaotong University Press, Xian, People’s
Republic of China, 1999.

13. R. Moore. Interval Arithmetic. Prentice-Hall, Engle-
wood Cliffs, NJ, USA, 1966.

14. H. T. Nguyen. A note on the extension principle
for fuzzy sets. Journal Mathematical Analysis and
Applications, 64:369–380, 1978.

International Journal of Computational Intelligence Systems, Vol.1, No. 3 (August, 2008), 248 - 261

Published by Atlantis Press 
Copyright: the authors

261




