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Abstract  
The hybrid Monte Carlo (HMC) algorithm is used for 
Bayesian analysis of the generalized autoregressive 
conditional heteroscedasticity (GARCH) model. The 
HMC algorithm is one of Markov chain Monte Carlo 
(MCMC) algorithms and it updates all parameters at 
once. We demonstrate that how the HMC reproduces 
the GARCH parameters correctly. The algorithm is 
rather general and it can be applied to other models 
like stochastic volatility models. 
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1. Introduction  
In order to incorporate the time-vary volatility in 
financial time series the autoregressive conditional 
heteroscedasticity (ARCH) model[1] and its 
generalized version, the GARCH model[2] have been 
proposed. Usually parameters in the models are 
inferred by the maximum likelihood estimation or the 
generalized method of moments [3]. Bayesian 
inference can be also applied to the GARCH model [4]. 

Bayesian inference is commonly performed by 
MCMC algorithms which sample model parameters. 
The estimates of the model parameters are given by 
averaging over the sampled parameters.   

Popular MCMC algorithms in the Bayesian 
estimations are the Gibbs sampler ( or heatbath ) and 
the Metropolis-Hastings algorithm. In updating both 
algorithms update single parameter each or a block of 
parameters. Since these algorithms are local updating 
ones, it is difficult to update all parameters of the 
model at once.  

The HMC algorithm [5] is a global one that can   
update all parameters at once. Originally the HMC 
algorithm is proposed for the lattice quantum chromo 
dynamics (QCD) simulations.  The algorithm is, 
however, not specialized for the lattice QCD 
simulations but rather general. Here we apply the 
HMC algorithm to the Bayesian estimation of the 

GARCH model and demonstrate the HMC estimation 
of the GARCH parameters.  

2. Hybrid Monte Carlo  
The HMC algorithm [5] consists of molecular 
dynamics (MD) simulations and Metropolis test. In 
updating, candidate parameters are given by solving 
the Hamilton’s equations of motion, i.e. MD 
simulations are performed.  During the MD 
simulations the energy or Hamiltonian H is preserved 
if the integration is exact. In general the integration is 
performed approximately which introduces a small 
energy violation ΔH. This error is corrected at the 
Metropolis test.  If accepted in the Metropolis test, the 
candidate parameters are kept. Otherwise they are 
rejected. 

Let f(x) be a function proportional to the 
probability distribution P(x) which we would like to 
simulate.  
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where Z is a normalization constant: 
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With this probability distribution the average value of 
g(x) is given by  
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Now we introduce p called momentum as  
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where )(ln2/),( 2 xfppxH != is called 
Hamiltonian. We update x with this joint system of p 
and x. Since the momentum p has no dynamics, the 
average value of  g(x)  is unchanged. 

The integrator to integrate the Hamilton’s 
equations of motion must satisfy two conditions to 
maintain detailed balance: (i) simplecticity and (ii) 
time reversibility. The simplest such integrator is the 
second order leap frog integrator.  Recently a more 
effective second order integrator for the HMC was 
found [6]. There is also a possibility to use higher 



order integrators [7]. In this study we used the 
simplest one, the second order leap frog integrator. 

3. GARCH model  
The GARCH(m,n) model is given by  
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Here we use GARCH(1,1) model for which 
t
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given by 
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known  a priori. 
 

 
Fig.1: GARCH(1,1) time series withα=0.3,β=0.5 and ω
=0.1, generated up to t=5000. 

4. Bayesian inference 
Let  ),,( !"#$ =  be the GARCH parameters to be 
determined. In the framework of the Bayesian 
inference the posterior density  )|( y!"  with the input 
data y  is given by 
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where )|( !yf is the likelihood function given by 
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We assume that the prior density )(!" is constant. 
 In the HMC sampling, we introduce momenta 

which are conjugate to ),,( !"#$ = . Then the 
Hamiltonian is defined as 
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where we dropped the irrelevant constant terms.  

5. HMC Simulations 
We generated the GARCH(1,1) time series up to  
t=5000 with α=0.3,β=0.5 and ω=0.1. Fig.1 shows 
the time series generated. We prepared 3 sets of data : 
(1)N=500(t=1 to 500),(2)N=1000(t=1 to 1000) and 
(3)N=5000(t=1 to 5000), and using these data sets as 
input we performed  HMC simulations to determine 
the values of  α,βand ω. 
 

 true N=500 N=1000 N=5000 
α 0.3 0.370(4) 0.330(2) 0.2892(3) 
β 0.5 0.460(4) 0.500(2) 0.4928(5) 
ω 0.1  0.0887(8) 0.0982(5) 0.1055(2) 
Δt  0.0002 0.0002 0.0002 
τ  0.04 0.04 0.04 
Acceptance  0.82 0.69 0.61 

Table 1: Summary of results. 
 

The results are summarized in Table 1.  Δt is the 
step-size of the leap frog integrator and τ is the 
length of the MD trajectory.  The acceptance is tuned 
by the step-size. We do not need to tune the 
acceptance to a very high value. The optimal 
acceptance for the second order integrator is about 0.6 
to 0.7[7].   

The averages of  α,βand ω are taken over 
20000 sampled data. The first 3000 are discarded as 
thermalization or burn-in period. For N=500, the 
average values are away from the true values.  For 
N=1000 and 5000, they come close to the true ones. 

Fig.2-4 show the time history of sampled α for 
N=500,1000 and 5000 respectively. The fluctuation 
reduces as the number of the input data increases.  

 

 
Fig.2:  History of sampled α for N=500. 



 
Fig.3:  History of α for N=1000. 
 

 
Fig.4:  History of α for N=5000. 
 

 
Fig.5: Histogram of sampled α. 
 

Fig.5-7 show the histograms of  sampled α,β 
and ω respectively.  For N=500 the histograms are 
broad and those peaks are away from the true values. 
As the number of input data increases the peak moves 
to the true value.  

6. Correlations 
Fig.8-10 show the scatter plots among the parameters 
for N=50000. We plotted all data including 
thermalization. The initial values of the parameters 

were set to 0.2.  We see that starting from 0.2 the 
parameters move to the thermalized state. There seems 
to be negative correlation between α and β, and also 
β and ω. No visible correlation is observed between 
α and ω. 

Fig.11 shows the autocorrelation time of  the 
parameters for N=5000. All the parameters show the 
similar exponential decay behavior.  If we define the 
correlation time 
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Fig.12 shows the autocorrelation time of α  for 
N=500,1000 and 5000. The correlation time seems to 
increase as the number of input data decreases.   

 
Fig.6: Histogram of sampled β 
 

 
Fig.7: Histogram of sampled ω. 
 

 
Fig.8: Scatter plot of  β versus α. 



 
Fig.9: Scatter plot of  ω versus β. 
 

 
Fig.10: Scatter plot of  ω versus α. 
 

 
Fig.11: Autocorrelation times of α, βand  ω for N=5000. 

7. Summary 
We applied the HMC algorithm to the Bayesian 

analysis of the GARCH model. In the HMC 
simulations three parameters of the GARCH model 
considered here are updated at once. After averaging 
over the sampled data, we obtain the values close to 
the true ones. The deviation from the true values 
decreases for the large number of input data.  

 
Fig.12:Autocorrelation time of α for N=500,1000 and 
5000. 
 

The HMC algorithm is a general method and its 
implementation is rather simple. It is possible to apply 
the HMC to other models like stochastic volatility 
models which have more parameters to be sampled. 
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