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Abstract 
 

The equations that describe the classical problem of water waves – inviscid, no surface tension and 
constant pressure at the surface – are non-dimensionalised and scaled appropriately, and the two 
examples: traditional gravity waves and edge waves, are introduced. In addition each type of wave is 
allowed to propagate over an existing flow field that is rotational and also admits a shoreline; some 
examples of such background flows are presented. Then, for each problem, a suitable asymptotic 
solution is constructed; for gravity waves, this is chosen to be that which gives a balance between 
nonlinearity and dispersion far from the shore (so that a soliton-type problem is recovered there), 
and then the behaviour of this solution is examined as the shoreline is approached. Sufficiently close 
to the shore, the asymptotic expansion is not valid, resulting in the formulation of a new, scaled 
problem. It is then shown – not surprisingly – that the wave, close inshore, is dominated by 
nonlineaity, with the amplitude of the wave growing according to Green’s law. The problem of edge 
waves is formulated in a similar fashion, although the relevant scales are different; in particular, the 
background flow must be roughly of the same size as the edge wave itself, for a self-consistent 
asymptotic theory of the type presented here. The development follows closely that used in the 
absence of a background flow, but with the background flow now appearing in the solution to 
leading order. This has the effect of distorting, for example, the run-up pattern of the edge waves at 
the shoreline, to the extent that, under certain conditions, the two solutions of the earlier theory can 
now be replaced by one (unique) solution. 

 
 
1. Introduction 
 
The extension of classical, simple models in fluid mechanics to encompass more realistic 
flow scenarios has been an enduring challenge. An example of this, of particular interest 
here, is how the familiar problems that lead to a theory for nonlinear surface gravity waves, 
or for edge waves, can be developed to accommodate a general background flow that is 
described by some distribution of vorticity. Further, in the case of edge waves, any such flow 
must also allow the existence of a shoreline i.e. the free surface and the bottom profile must 
intersect, thereby producing a run-up pattern on the beach. In order to permit a comparison of 
these two types of waves – one incoming towards a shore, say, and the other propagating 
along the shoreline – we shall superimpose each on the same background state: a vortical 
flow-field with a shoreline. 
 
The two wave-types that we discuss here each have a long and worthy history, although we 
shall describe this only in outline in this paper – many texts and research papers give far 
more information for the interested reader. In the first, which was initially analysed in any 
detail by Stokes, we have a plane wave propagating over finite, but constant, depth; in the 
small-amplitude approximation, this is the familiar Stokes wave; see [16]. Following this 
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seminal work, one direction eventually led Korteweg and de Vries, [13], to consider the 
approximation that represented a balance between small amplitude and weak dispersion; to 
leading order (in some sense, which we shall carefully explain later), this produces the now-
very-famous Korteweg-de Vries (KdV)  equation for surface waves. (This work was 
prompted, in part, by the debate in the 1870s – mainly between Rayleigh and Boussinesq – 
over the existence and properties of John Scott Russell’s observations of solitary waves.) In 
the decades since the introduction of the KdV equation, we have seen the developments that 
have become ‘soliton theory’ i.e. inverse scattering transform theory; these have, in turn, led 
to many additional and deep ideas, not to mention the appearance of vastly many equations – 
some with significant practical applications – that can be solved by these soliton techniques. 
Finally, there have been attempts to embed these soliton results within more complete and 
accurate models for wave propagation, even though this is often at the expense of generating 
non-soliton-type problems. Indeed, typically, the end result is an approximate system that can 
be characterised as some perturbation of a standard soliton problem. 
 

In the context of a plane gravity wave, incoming towards a shoreline over an existing 
flow with vorticity, both the background flow and the variable depth will distort any soliton 
or solitary wave (i.e. a solution based on the conventional KdV equation). It is already 
known that a background flow that admits a general distribution of vorticity, but over 
constant depth, does give rise to a suitable KdV equation: only the constant coefficients of 
the equation are affected by the presence of the underlying flow field; see [6]. (We comment 
that we shall not pursue here the possibility of a critical layer appearing in the flow, but this 
can be investigated; see [8].) On the other hand, the inclusion of variable depth does give rise 
to a distortion of the corresponding KdV problem, producing one that, at best, can be 
interpreted as a perturbation of the classical KdV equation. At worst, a  KdV-type equation is 
recovered, but one that contains variable coefficients, and then, for general depth profiles, no 
headway is possible within classical soliton theory; for further general background to these 
types of problems, see [9]. The combination of both a background flow and variable depth, in 
the context of a KdV approximation, is described in [10], where a problem of flow, such as 
that over a weir, is discussed; this has some connection with the results that we shall present 
here. 
 

The second problem, whose study was also initiated by Stokes (see [15]), but which has 
had a slightly more chequered history, is that of edge waves. These are waves that, in the 
shoreline context, propagate along the beach (and for which a non-zero beach slope is an 
essential requirement). For many years, these waves were thought to be merely mathematical 
curiosities (but with many intriguing properties; see, for example, [5, 17, 18] and [12] for an 
overview). However, over the last two decades or so, edge waves have been recognised as 
providing an important mechanism in erosion processes near a shoreline, by contributing to 
the movement of sand and pebbles along the shore. A recent development, [11], based on an 
important presentation, [2], of observations first made in [14, 19], showed that a scaling 
consistent with a transformation of Gerstner’s exact, non-trivial solution of the classical 
water-wave problem, [7], gave a new form of the solution for the edge wave over variable 
depth. This analysis produced, at leading order in a suitable asymptotic formulation, a fully 
nonlinear theory (with an exact solution) for the edge wave; this recovered both the essential 
features of the edge wave, and also the run-up pattern typically seen when such waves are 
present. The inclusion, within this version of the edge-wave problem, of some pre-existing 
background vorticity can be expected to distort the edge-wave profile and, probably, the 
shape of the run-up pattern; we shall explore these possibilities. 
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The plan, therefore, is to present the general equations for the classical water-wave 

problem (expressed in a suitable non-dimensional form), and then the relevant and possible 
background states consistent with these equations. Although for each problem these states 
take the same form, the scalings (and sizes) turn out to be different. Then, in the two cases of 
interest, this background state is appropriately perturbed to produce either the familiar 
gravity wave approaching a shore, or the corresponding problem for edge waves propagating 
along the shoreline. The essential technique that we adopt in order to accomplish all this is 
the familiar one based on the construction of asymptotic expansions in a suitable parameter. 
In the former case, it is to be expected that even a KdV-type theory – and we will arrange for 
this to be the appropriate underlying problem – will not be valid as the depth continues to 
decrease as the beach is reached; the corresponding problem close inshore will carefully 
described. On the other hand, the latter problem (for edge waves) is dominated by the 
existence of a beach and a shoreline, so in this case we might expect only relatively minor 
adjustments due to the presence of the underlying and pre-existing flow field. 
 
 
2. The governing equations 
 
We consider an incompressible, inviscid fluid which is bounded above by the free surface 

( , , )z H x y t= , and below by a fixed, impermeable bed ( )z xβ=  (which is given as a 
function of only x, for simplicity, here); we elect to describe the problem in rectangular 
Cartesian co-ordinates ( ( , , )x y z≡x ), with z measured vertically upwards. In the absence of 
waves, the flat free surface is 0z = , and this intersects the bed profile along 0x = ; the fluid, 
undisturbed by waves, extends into 0x < . (We comment that when an underlying flow field, 
with some prescribed vorticity, is included, the free surface even in the absence of waves is 
not, in general, a flat surface.) Although we assume an inviscid fluid (which is an acceptable 
model for water waves, because it is observed that such waves form and evolve long before 
viscous dissipation can start to have a significant effect), the flow field may be rotational; 
that is, we allow some general vorticity in the flow. Also, in the absence of viscous stresses, 
we can impose no more than a normal stress at the surface; we take this to be simply pressure 
= constant ( = atmospheric pressure) here, because we also ignore surface tension – which is 
relevant only if very short (capillary) waves are to be included in the model. The governing 
equations are therefore: the Euler equation, the equation for incompressible fluids, surface 
and bottom kinematic conditions, and a dynamic condition – constant pressure – at the 
surface. All these together constitute the classical water-wave problem. The equations are 
 

                               

D 1
(where (0,0, ))

D

(2.1)

0,

P g
t ρ

 = − ∇ + ≡ −


∇ ⋅ =
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R S Johnson 136

is the familiar material derivative (and t is time). The boundary conditions are 
 

                              

constant

both on ( , , ) (2.2)
aP P

z H x y t

H H H
w u v

t x y


 = =
 =
 ∂ ∂ ∂
 = + +

∂ ∂ ∂

 

and                                        
d

d
w u

x

β=  on ( )z xβ= ,                                              (2.3) 

 
where constantρ =  is the density of the water, g is the constant acceleration of gravity and 

aP  is the constant air pressure above the water surface. It should be noted that the second 

boundary condition in (2.2), and that in (2.3), ensure that the two appropriate surfaces remain 
boundaries of the fluid. 
 

At this stage, it is convenient to introduce a suitable non-dimensionalisation of these 
equations and boundary conditions (although the versions required for our two problems 
differ slightly). Let λ  be a typical wavelength of the waves that we shall discuss – although 
we are not restricted to this choice in the solution that we describe – and take 0h , 

correspondingly, as a typical or average depth of the water. A suitable speed scale is that 
associated with the (approximate) speed of propagation of waves over the depth 0h , namely, 

0gh ; this, in turn, produces the time scale 0ghλ . Thus far, we have the non-

dimensionalisation represented by the transformation 
 

                  ( )0 0 0( , ) ( , ), , ( , ) ( , ),x y x y z h z u v gh u v t gh tλ λ→ → → → ,           (2.4) 

 
where, for example, x xλ→  is to be read as x (the original, dimensional variable) is replaced 
by xλ , where x is now the non-dimensional version of x. This specification, (2.4), does not 
however complete the process: the non-dimensionalisation of w requires a little care. 
Consider, for simplicity, the two-dimensional equation of mass conservation: 

0
u w

x z

∂ ∂+ =
∂ ∂

, 

 
which implies the existence of a stream function, ( , , )x z tψ , such that 
 

,u w
z x

ψ ψ∂ ∂= = −
∂ ∂

. 

 
The scalings already chosen for u and z show that the non-dimensionalisation for ψ  is 

( )0 0h ghψ ψ→ , and hence that for w becomes ( )0 0w h gh wλ→ . Finally, we define the 

pressure as the sum of that due to the hydrostatic pressure distribution and that due to the 
passage of the wave: 
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                                                   0aP P gz gh pρ ρ= − + ,                                          (2.5)  

 
where p is the non-dimensional pressure perturbation. (In (2.5), z is still in the original, 
dimensional form.)         
 

It is convenient to define H and β , following the scheme just described, as 
 

0 ( , , )H h h x y t=  and 0 ( )h b xβ = , 

 
respectively. The problem represented by equations (2.1)-(2.3), now written in non-
dimensional variables, becomes 
 

                    2D D D
; ; ; 0

D D D

u p v p w p u v w

t x t y t z x y z
δ∂ ∂ ∂ ∂ ∂ ∂= − = − = − + + =

∂ ∂ ∂ ∂ ∂ ∂
,         (2.6) 

 

with                       p h=  and 
h h h

w u v
t x y

∂ ∂ ∂= + +
∂ ∂ ∂

 on ( , , )z h x y t=                       (2.7) 

 

and                                           
db

d
w u

x
=  on ( )z b x= ,                                             (2.8) 

 
where 0hδ λ=  is the shallowness, or long-wavelength, parameter. Of course, a complete 

prescription of the problem involves the inclusion of some appropriate initial data; for the 
purposes of the discussion that we present here, it is sufficient to suppose that initial data 
exist which will give rise to the types of wave that we investigate. 
 

At this stage, we make the final, overall adjustments to this formulation which will 
enable us to discuss, separately, the two problems of interest (and will also lead to the 
specification of the background state). So first, for the wave approaching a shoreline (from 
the deep ocean, say), we restrict the motion to be that of a plane wave approaching the beach; 
thus we choose to suppress the dependence on y, with 0v ≡ . Further, we shall allow the 
bottom profile to evolve on a suitable scale – this will provide the basis for the parameter that 
we use in the developments described here. We introduce ( ) ( )b x B xσ= − , where σ  is a 
parameter (and the minus sign is no more than a convenience). Thus we obtain, from (2.6)-
(2.8), the set 
 

t x z xu uu wu p+ + = − ; ( )2
t x z zw uw ww pδ + + = − ; 0x zu w+ = , 

 
with     p h=  & t xw h uh= +  on ( , )z h x t= , and ( )w B xσ σ′= −  on ( )z B xσ= − , 

 
where we have used subscripts to denote partial derivatives and the prime denotes the 
derivative with respect to the argument of the function. Now we rescale the variables to 

remove 2δ  in favour of a new parameter ε  (which will be defined below). Thus we 
transform according to 
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x x
δ
ε

→ , t t
δ
ε

→ , w w
ε

δ
→ , 

 
and the rest of the variables are unchanged; this is the familiar scaling used in any 
comprehensive derivation of the KdV equation. Thus we obtain 
 

t x z xu uu wu p+ + = − ; ( )t x z zw uw ww pε + + = − ; 0x zu w+ = , 

 
with                            p h=  & t xw h uh= +  on ( , )z h x t= ,  

and                     w B x
σδ σδ

ε ε
 ′= −  
 

 on z B x
σδ

ε
 = −  
 

. 

 
Finally, we choose ε , for given σ  and δ , so that 
 
σδ ε

ε
=  i.e. ( )2 3ε σδ= , 

 
but with the requirement that 0σδ →  (which may be interpreted in any way consistent with 
this condition); this produces the form of the equations that we shall use for our first 
problem: 
                        

 

( ); ; 0,

with & on ( , ) (2.9)

and ( ) on ( ).

t x z x t x z z x z

t x

u uu wu p w uw ww p u w

p h w h uh z h x t

w uB x z B x

ε

ε ε ε

 + + = − + + = − + =


= = + =
 ′= − = −

 

 
For the second problem, involving a study of edge waves, we first choose to use only one 

scale length (which may be anything appropriate) and so 1δ = . However, we make the same 
choice of the depth profile as used above: we set ( ) ( )b x B xε= − , for 0ε → , and in this case 

we shall define ε  as the slope at the beach i.e. (0)b ε′ = . Equations (2.6)-(2.8) therefore 

become 
 

           

D
, 0

D
with & on ( , , ) (2.10)

and ( ) on ( ),

t x y

p
t

p h w h uh vh z h x y t

w uB x z B xε ε ε

 = −∇ ∇ ⋅ =


= = + + =
 ′= − = −


u
u

 

 
where we have reverted to the familiar notation using the operators D Dt  and ∇  (with the 
velocity vector u). 
 

The intention is to construct solutions of each set (2.9) and (2.10), based on suitable 
asymptotic expansions in ε , which represent perturbations of a background state – and this 
state we now describe. 
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3. The background state 
 
The background state is an exact solution of the governing equations that is steady (time 
independent) and, in this context, depends on only X xε=  and z. For the problem given by 
the set (2.9), we write this state as 
 
                     ( , ; ), ( , ; ), ( , ; ), ( ; )u U X z w W X z p P X z h H Xε ε ε ε ε= = = = ,            (3.1) 
 
which therefore satisfies the problem described by 
 

          

( )3; ; 0,

with & on ( ; ) (3.2)

and on ( ).

X z X X z z X zUU WU P UW WW P U W

P H W UH z H X

W UB z B X

ε
ε

 + = − + = − + =
 ′= = =
 ′= − = −


 

 
On the other hand, the problem of edge waves described by (2.10) – for reasons that will 
become evident later – requires a slight adjustment to the system given in (3.2). In this case, 
we must work with a background flow that possesses a suitable weak (in the sense of 0ε → ) 

vorticity; this is defined by a further transformation on (3.2) (but also note that 3ε  there is 

replaced by 2ε  because 1δ = ): 
 

                                    ( , ) ( , ); ( , ) ( , )U W U W P H P Hε ε→ →                            (3.3) 
 
to give the set 
 
             

          

( )2; ; 0,

with & on ( ; ) (3.4)

and on ( ).

X z X X z z X zUU WU P UW WW P U W

P H W UH z H X

W UB z B X

ε
ε ε ε

 + = − + = − + =
 ′= = =
 ′= − = −


 

 

This implies that we can obtain solutions of (3.4), with error 2O( )ε , by rescaling solutions 
of (3.2) according to (3.3). 
 

The possibility, and nature, of solutions of the set (3.2) (and, equivalently, of (3.4)) are 
discussed at some length in [3], where a careful derivation and proofs are presented. In 
particular, it is shown that flow that possesses non-zero vorticity and a shoreline must have a 
non-flat free surface. Although it is possible to describe the general structure, and conditions 
for the existence, of relevant solutions of (3.2) for arbitrary ε , explicit, simple solutions are 
not available. However, we shall be concerned with the case described by 0ε → , and then 

we can write down various solutions of (3.2), with an error 3O( )ε  (and it is straightforward 
to confirm that the higher-order correction terms merely contribute small adjustments in a 
uniformly valid asymptotic description of the background state). The general discussion and 
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underlying principles resulting in the construction of solutions need not be rehearsed here – 
the details can be found in [3] – but we do present three simple, although important and 
illuminating, examples. 
 

From (3.2), with 0ε → , we obtain the reduced problem for the background state as 
              

          

; 0; 0,

with & on ( ; ) (3.5)

and on ( ),

X z X z X zUU WU P P U W

P H W UH z H X

W UB z B X

ε
+ = − = + =

 ′= = =
 ′= − = −

 

 
where the shoreline (in the absence of waves) is at 0z H B= = − = , which we fix to be at 

0X = . We note that the vorticity ω ( ) ( )20, ,0 0, ,0z X zU W Uε≡ − →  as 0ε → . The 

constant-vorticity solution, ω (0,2 ,0)k≡ , of (3.5) is 
 

                   

2
2 2

2 ( ), ( ) ( )

(3.6)

1 1
with 1 2 ,

U kz k B H W k B H z k BH

P H B k B
k k


 ′ ′ ′= + − = − − +




  ≡ = − + + +   

 

 

for given ( )B X . (In this case, the stream function is 2 ( )kz k B H z kBHΨ = + − − , with 

zU = Ψ , XW = −Ψ , [ ],z B H∈ − .) An example of the free surface, and internal streamlines, 

is shown in figure 1 (for a suitable choice of ( )B X ). 
 

A simple example of a flow with variable vorticity is provided by the stream function 
 

            [ ] [ ] [ ] [ ]{ }sinh ( ) sinh ( ) sinh ( )
sinh ( )

H B z B z H
H B

αΨ = + − + + −
+

ℓ ℓ ℓ
ℓ

,   (3.7) 

 
where ℓ  and α  are constants; the free surface is described by the solution of the equation 

                                        
[ ]

[ ]

2
2 2 cosh ( ) 1

2
sinh ( )

H B
H

H B
α

 + −
= −  + 

ℓ
ℓ

ℓ
,                               (3.8) 

 
for given ( )B X . In this case, the vorticity is 
 

                        ω
( )1 1

2 22
1
2

cosh
0, ,0

cosh ( )

z B H

H B
α

  + −
  ≡ −  +   

ℓ

ℓ

ℓ

,  [ ],z B H∈ − .                (3.9) 
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Two examples of the free surface for this variable vorticity are shown in figure 2 (for the 
same choice of ( )B X  as used for figure 1); an associated vorticity distribution is given in 
figure 3. 
 

Although it is of less interest in the context of flow fields – and waves – near a beach, we 
comment that there are also solutions that exhibit isolated regions of vorticity, outside which 
the vorticity is zero. This requires, however, a special topography: a region of finite extent 
between two points of equal depth (at, say, 1X X= , 2X X= ). Further, we require 

1 2 1 2( ) ( ) ( ) ( ) 0B X B X B X B X′ ′ ′′ ′′= = = =  with 1 2 0( ) ( )B X B X B= =  and 0B B>  for 

1 2( , )X X X∈ ; an example of such a stream function is 

[ ] ( )0
0 1 2

0
2 ( ) sin ( ) , ,

(3.10)

0 otherwise,

B
B X B z B X X X X B z H

B

π
π

  
− + ≤ ≤ − ≤ ≤  

 
Ψ = 




 

 
and the corresponding free surface is 
                                    

                                
0 1 2( ),

( ) (3.11)

0, otherwise.

B B X X X X

H X

− ≤ ≤
= 



 

 
In figure 4, we present an example of streamlines for such an isolated region of vorticity, for 
a suitable choice of ( )B X . 
 

Finally, as we have already commented, we may construct solutions of the set (3.4) by 
rescaling solutions of (3.2). Thus, in the case of constant vorticity described in (3.6), we 

choose to write Lε=ℓ  and then, invoking the transformation (3.3), we have a solution of 
(3.2): 
 

     

2 2 21
2 2 2

2 ( ), ( ) ( ) , ,

(3.12)

1 1
where 1 2 and so ~ ,

U Lz L B H W Lz B H L BH P H

H B L B H L B
L L

ε ε ε

ε ε
ε ε


 ′ ′ ′= + − = − − + =




  = − + + + −   

 

 
for given ( )B X , all defined for ( ) ( )B X z H X− ≤ ≤ . The solution that corresponds to (3.7) 

and (3.8), for variable vorticity, is obtained by setting Aα ε=  (with (3.3) and εΨ → Ψ ) 
to yield 
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{ }
2

2 2

2
2 2

sinh[ ( )] sinh[ ( )] sinh[ ( )]
sinh[ ( )]

cosh[ ( )] 1
with 2 (3.13)

sinh[ ( )]

1 cosh( ) 1
and so ~ .

2 sinh( )

A
B H z B z H

B H

B H
A H

B H

B
H A

B

ε ε
ε

ε
ε


Ψ = + − + + − +


 + − = −  + 


 − −    

ℓ ℓ ℓ
ℓ

ℓ
ℓ

ℓ

ℓ
ℓ

ℓ

 

 
With the description of the background state in place, we may proceed to consider 
perturbations of these states that admit wave-like solutions. 
 
 
4. Nonlinear, dispersive waves approaching a shoreline 
 
The first problem that we address is that of a plane gravity wave, moving over a vortical, 
variable-depth flow, which approaches a beach. This problem makes use of the equations 
given in the set (2.9), together with a background state described by a solution to the set (3.2) 

or, with an error 3O( )ε , to the set (3.5). To proceed, we assume that there exists a solution of 
(2.9) for which the perturbation can be expressed in terms of a suitable characteristic variable 
(for waves moving to the right over variable depth) and a corresponding (slow) evolution 
variable; these are conveniently defined by 
 

                                

0

1 d

( )

X

X

X
t

c X
ξ

ε
−

′
= − +

′∫    and our original X xε= ,                     (4.1) 

 
respectively. Here, we have yet to determine ( )c X′ , and we have elected to consider the 
problem in which there is, we shall suppose, constant depth for some 0X < , which is where 
the wave is initiated; 0X X= −  is in this region of constant depth. We now seek a solution of 

(2.9) written in the form, which follows our earlier convention in the use of ' '→ , 
 

          

( )( , ; ) ( , , ; ), ( , ; ) ( , , ; )

( , ; ) ( , , ; ) (4.2)

with ( ; ) ( , ; ).

u U X z u X z w W X z w X z

p P X z p X z

h H X h X

ε ε ξ ε ε ε ξ ε
ε ε ξ ε
ε ε ξ ε

 → + → +


→ +
 → +

  

 
 
We see that u, w, p and h are now used to represent the perturbations of the background state. 
The equations for this perturbation, given the background state, are therefore 
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( )
( ){ }

1 1

21

1

( ) ( ) ;

( ) ( ) ; (4.3)

0

X z X z Xc c

X z X zc

z Xc

u U u u u W w u uU wU p p

w U u w w W w w uW p

u w u

ξ ξ ξ

ξ ξ

ξ

ε ε ε ε ε

ε ε ε ε ε

ε

 − + + + + + + + = − −



− + + + + + = −

 + + =


 

 
with the boundary conditions 
 

      

( )1& ( )

both on (4.4)

and on ( ).

Xc
P p H h W w h U u H h h

z H h

w uB z B X

ξ ξε ε ε ε

ε
ε

 ′+ = + + = + + + +

 = +
 ′= − = −


 

 
The two boundary conditions at the free surface, z H hε= + , are mapped to the 
corresponding conditions on the known surface ( ; )z H X ε= ; this is equivalent to generating 
Taylor expansions about z H= , valid asymptotically as 0ε → . 
 

It is now a routine exercise to seek a solution of the set (4.3), with boundary conditions 
(4.4), in the form of an asymptotic expansion in ε ; we write 
 

                                           
0

( , , ; ) ~ ( , , )n
n

n

q X z q X zξ ε ε ξ
∞

=
∑ ,                                  (4.5) 

 
where q (and correspondingly nq ) represents each of u, w and p; the asymptotic expansion 

for h is then 
 

                                               
0

( , ; ) ~ ( , )n
n

n

h X h Xξ ε ε ξ
∞

=
∑ .                                     (4.6) 

 
At leading order in ε , we find that 

 

           

0 02

0 0 0 02

1 d
( );

( , ) ( ) [ ( , ) ( )]

(4.7)

( , ) d
1 ( ) ; ( ),

( ) [ ( , ) ( )]

z

z
B

z

B

z
u U h X

U X z c X U X z c X

U X z z
w h X p h X

c X U X z c X
ξ

−

−

  ′
  = −

 − ′ − 



′  = − − =  ′ − 

∫

∫

 

 
(for [ , ]z B H∈ − ), with 
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( )

2
( )

d
1

[ ( , ) ( )]

H X

B X

z

U X z c X−

′
=

′ −∫ ,                                      (4.8) 

 
which is a version of the Burns condition, [1]; this determines ( )c X , given ( , )U X z , ( )B X  
and ( )H X . It is convenient to introduce a compact notation for the various integrals that 
appear here, so we define 
 

                        
( )

d
( , )

[ ( , ) ( )]

z

n n
B X

z
I X z

U X z c X−

′
=

′ −∫    (for 2, 3, 4, ...n = )               (4.9) 

 
and ( ) ( , ( ))ns nI X I X H X=  is used to denote evaluation at the surface, ( )z H X= ; the Burns 

condition then becomes 2 1sI = . We note that, at this order of approximation, we have 

interpreted the background state as a solution of the set (3.5), and so there is an error 3O( )ε  
implied here (although we could, formally, elect to use an exact solution of (3.2) e.g. 

( ; )H H X ε= ). At this order, the first approximation to the surface wave, 0( , )h Xξ , is 

unknown. 
 

At the next order, which is considerably more involved (but, nevertheless, fairly routine 
to analyse), we find, for example 
 

1 1 2 0
( , )

1 ( , )d
( )

H

z

U X z
p h I X z z h

c X ξξ
 ′ 
 ′ ′= + −    
∫ , 

 
and eventually we obtain the equation for 0h  (leaving the equation for 1h  to be determined at 

the next order): 
 

                          ( )3 3 0 4 0 0 02
1

2 3 0.s s s sX
c I c I h I h h J h

c
ξ ξξξ− − + + =                 (4.10) 

 
This takes the form of a Korteweg-de Vries (KdV) equation, but with variable coefficients by 
virtue of ( )nsI X  and  

 

     
( ) ( ) 2

2 2
( ) ( )

[ ( , ) ( )]
( ) d d d

[ ( , ) ( )] [ ( , ) ( )]

H X H X z

s
B X z B X

U X z c X
J X z z z

U X z c X U X z c X

′

− −

′ − ′′ ′=
′′− −∫ ∫ ∫ ;   (4.11) 

 
related problems that give rise to similar variants of the KdV equation can be found in [6, 9, 
10]. Thus, as we intended, we have used scales – that is, we have selected an appropriate 
region of physical space defined in terms of the parameters – for which we have a leading-
order balance between nonlinearity and dispersion. Although our KdV-type equation, (4.10), 
cannot be solved in any general sense (because of the variable coefficients), we may surmise 
that waves satisfying this equation will propagate towards the shore, and that these can be 
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expected to exhibit solitary- or soliton-like characteristics. (Certainly, in the case of constant 
depth and zero vorticity, we recover the classical KdV equation for water waves: 
 

1
0 0 0 03

2 3 0Xh h h hξ ξξξ+ + = , 

 
for which the whole panoply of soliton theory is applicable; for example, see [4].) Any such 
solution, we observe, is valid where O(1)ξ =  (a coordinate that follows the wave) and 

O(1)X = ; we are not concerned here with any difficulties that might be encountered as 

X → ∞ , an issue that must be addressed in more conventional KdV applications. Indeed, 

the wave is initiated in a region where O(1)X = , and we are particularly interested in the 
development of a solution – expressed by the asymptotic expansion – as 0X → , which is in 
the neighbourhood of the shoreline (defined more precisely by the region where the local 
depth 0D B H= + → ). 
 

It is an altogether straightforward exercise to provide the details of this problem for the 
simple choices of background flow; for example, the constant-vorticity solution (given in 
(3.6)) yields, first, 
 

                                2 2( )c X D k D= +   ( ( ) ( ) ( )D X B X H X= + )                      (4.12) 
 
from the Burns condition, (4.8), for right-running (incoming) waves. Then the appropriate 
form of the KdV equation, (4.10), becomes 
 

             
3 2 3 2 2 3

0 0 0 01 2 2 2
3 4

2 0
3 ( )X

c c k D D
h h h h

D DD c c kD
ξ ξξξ

     +  + + =              +     
, (4.13) 

 
where ( )c X  is that given in (4.12). An avenue of further exploration might be to construct 
numerical solutions – the only viable approach in this situation – of (4.13), perhaps using 
solitary-wave initial data at 0X X= − , for various choices of k (which represents the given 

constant vorticity) and of ( )B X , with 
 

                            2
2

1
( ) ( ) ( ) 1 1 2 ( )D X B X H X k B X

k

 = + = − + + 
 

;                  (4.14) 

 
see (3.6). However, the main interest here is to examine the nature of the problem for 

0D → , corresponding to the shoreline where 0B → . 
 

It is particularly straightforward to find the asymptotic form of (4.13), as 0D → , 
together with the corresponding results for other terms in the expansion (such as H, U, u, 
etc.). Indeed, we find that  
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3 4

2 21
2

~ , ~ 1 , ~ 1 (as 0)

(4.15)

~ (as 0)

s sc D I D I D D

H k B B

 − →



− →

 

 
so that the KdV equation, (4.13), takes the approximate form as 0D → : 
 

                                   ( )1 4 1 4
0 0 0 0

3
2 0

3X

D
D D h h h h

D ξ ξξξ+ + = ,                        (4.16) 

 

which is more conveniently expressed in terms of 1 4
0 0( , )D h A ξ χ= , with 

7 4( )d
X

D X Xχ − ′ ′= ∫ , to give 

 

                                          9 41
0 0 0 03

2 3 0A A A Aχ ξ ξξξ+ + ∆ = ,                              (4.17) 

 
where [ ]( ) ( )D Xχ χ∆ = . This last form of the KdV equation, (4.17), demonstrates that, as 

0D → , the amplitude of the wave is dominated by the 1 4D−  growth, usually known as 
Green’s law; the dispersion effects, we note, diminish in this same limit. Further, this also 
shows that the asymptotic expansion for the surface wave, for example (and the others follow 
the same pattern), based on the first two terms in the expansion, possesses the property 
 

2 2 1 41
02

~h k B D Aε −− +  

 
as 0D →  (and so 0B → ); this can be recast in terms of D: 
 

                                                 2 2 1 41
02

~h k D D Aε −− + ,                                     (4.18) 

 

because 2 2 2 21 1
2 2

~ ~B D H D k B D k D= − + +  as 0D → . This asymptotic expansion is 

therefore not uniformly valid as 0D →  where 4 9O( )D ε= , which is the region close 
inshore that we shall need to explore in a little more detail. However, this conclusion is based 
on the specific result: a constant-vorticity background state. What is the situation for more 
general background flows?  
 

It is surprisingly straightforward to estimate the behaviour of the various functions and 
integrals in the case: H B D= − + , as 0D → , for any background flow. We find that (on 
noting that 0D →  corresponds to 0B →  and 0H →  near a shoreline) 
 

21
3 4 3

~ , ~ 1 , ~ 1 , ~B s s sc U D I D I D J D+ −  

 
(and all these results agree with the special case quoted above, with BU  being U evaluated 

on z B= − ). Indeed, for an arbitrary vorticity distribution, it is possible to find the general 
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solution of equations (3.5) valid as 0B →  (and hence as 0D → ). To accomplish this, we 
introduce ( )z B Xζ =  and then solve for Ψ , constructing an asymptotic form driven by 

0B → ; this gives 
 

                                       ( )2 2~ Bγ ζ ζΨ +  and 2 21
2

~H Bγ− ,                           (4.19) 

 
where γ  is an arbitrary constant. Then we find that 
 
                                          ~ (1 2 )U Bγ ζ+  and ~W BBγ ζ′− ,                              (4.20) 
 

both expressed in terms of ζ ; thus ~ ~BU B Dγ γ− −  and so ~c D  as 0D → . The 

vorticity in the background flow (at this order) is necessarily constant close to the shoreline: 
 
                                                     ~ 2zU γ  as 0B → .                                           (4.21) 

 
The upshot is that the description of the problem, for 0D → , embodied in equations (4.16)-
(4.18), is the appropriate description for any vorticity (other that zero vorticity, for which 

0Ψ ≡ ). The breakdown of the asymptotic expansion, represented by the condition 

                                                           4 9O( )D ε= ,                                               (4.22) 
 

is therefore generic (and this, we note, corresponds to 4 9O( )B ε= ); this provides the basis 
for a suitably rescaled version of the problem now valid close inshore. (An examination of 
the behaviour of the magnitudes of the next terms in the expansions of each function, as 

0D → , shows that this breakdown encompasses all possible non-uniformities in the 
expansions, for reasonable initial data.) 
 
5. KdV gravity waves very near a shoreline 
 
The behaviour of the solution, as 0D →  (or, equivalently, as 0B → ), both for the 
background state and its perturbation, shows that we must rescale according to the scheme 
 

            

8 9 4 9 4 9 8 9 8 9

2 9 1 9 1 9 1 3 1 9

ˆ ˆ ˆ ˆ ˆ, , , ,

with (5.1)

ˆˆ ˆ ˆ ˆ, , , , ,

H H B B U U W W P P

c c h h p p u u w w

ε ε ε ε ε

ε ε ε ε ε− − − −

 = = = = =




= = = = =

 

 

and 4 9z Zε= . Under this scaling transformation, the free surface becomes ˆˆZ H h= +  (so 
that the background state and its perturbation are the same size), and the bottom is simply 

ˆZ B= − . The full set of equations, with the scaling (5.1), are readily written down, but they 
are lengthy and – it might appear – overly complicated. It is sufficient to outline the main 
results that we obtain here (mainly because there are no surprises); thus we seek an 
asymptotic solution based on expansions of the form 



R S Johnson 148

                                        2 9

0

ˆ ˆ( , , ; ) ~ ( , , )n
n

n

q X Z q X Zξ ε ε ξ
∞

=
∑ ,                               (5.2) 

 

for each of ̂u , ŵ  and p̂  (and likewise for ̂h , with the dependence on Z omitted, and also for 
ˆ( ; )c X ε ). The background is exactly as described earlier, although now rescaled according to 
(5.1). 
 

We find, at leading order, that 
 

                    ( ) ( )0
0 0 0 0 02

0 0

ˆ 1 ˆ ˆˆ ˆˆ ˆ ˆ, , 0 ,
ˆ ˆ

h
u w Z B h p h B Z

c c
ξ= = − + = − ≤ ≤               (5.3) 

 

with 0
ˆˆ ( )c B X= , but 0

ˆ ( , )h Xξ  is undetermined. At the next order (i.e. 2 9ε ), we obtain 

                    ( )1
1 0 1 0 1 1 1

ˆ 1ˆ ˆ ˆ ˆˆˆ ˆ ˆ2 , , ,
ˆˆ ˆ

h
u h w h h Z B p h

BB B
ξ ξ

γγ
 

= − = − + =  
 

            (5.4) 

 

with 1̂ 0c =  and where we have used ˆ 2ZU γ= , the vorticity close inshore. Finally, at 
4 9O( )ε , we generate an equation for 0

ˆ ( , )h Xξ  (leaving 1ĥ  to be determined at the next 

order): 

                                           ( )5 4 1 4
0 0 0
ˆ ˆ ˆˆ ˆ2 3 0,

X
B B h h hξ+ =                                    (5.5) 

 
which corresponds precisely with the first two terms in our KdV equation, (4.16) (when we 

remember that ~D B  as 0B → ). Indeed, when we introduce 1 4
0 0
ˆ ˆB̂ h A=  and 

7 4ˆˆ ( ) d
X

B X Xχ − ′ ′= ∫ , we obtain 

 

                                                      ˆ0 0 0
ˆ ˆ ˆ2 3 0A A Aχ ξ+ = ,                                           (5.6) 

 
which will, in general, represent a breaking wave (in the sense of allowing discontinuous – 
jump – solutions) sufficiently close to the shoreline. Further, it is immediately clear that 
solutions of (5.6) will match to solutions of (4.17) as 0D → , the dispersive effects now 
being dominated by the nonlinearity of the wave. In summary, therefore, we have confirmed 
that a solution of our KdV equation, valid in the region defined by O(1)X =  where 

O(1)D = , will evolve into a purely nonlinear, non-dispersive wave, with an amplitude that 

grows like 1 4D̂−  (with ˆ ˆ~D B ) as the depth decreases. The region where this occurs has also 

been determined: it is where the depth is as small as 4 9O( )ε . 
 
6. Edge waves propagating over a background flow 
 
We now turn to an investigation of our second water-wave example: edge waves. The plan in 
this case is to take the development of this problem as described in [11], which is based on a 
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new choice of scales suggested by the work in [2], and then superimpose this on a suitable 
background state. We start with the situation of an edge wave that is propagating (in the y-
direction) in stationary water; this is described by a solution of equations (2.10), scaled 
according to 
 

( )( , , ) , ,u v w u v wε ε→  and ( , ) ( , )p h p hε→ , 

 
together with the choice of new independent variables 
 

                              
1

, ( ; )d ,
X

y t X X X xξ ω ε θ α ε ε
ε

′ ′= − = =∫ℓ ;                     (6.1) 

 
we leave z unchanged, and α  and ω  (= constant) are to be determined, given the wave 
number ℓ . Now the inclusion of the background state would suggest that we transform 

according to, for example, ( , ; ) ( , , ; )u U X z u Xε ε ξ θ ε→ + , but this implies, at leading 

order as 0ε → , that 0u θ∂ ∂ = ; such a requirement would negate the existence of an 
appropriate edge-wave solution. The only consistent way forward – consistent, that is, with 
the solution in [11] – is to restrict the background flow-field to be no larger than the 
perturbation of it that describes the edge wave; this requires that the stream function 

representing the background state is O( )ε . Then, correspondingly, we see that both p and h 
in the background state must be O( )ε . 
 

With the foregoing observations in mind, we proceed by scaling equations (2.10) 
according to the scheme 
 

                   ( )( , , ) , , ( ) , ( , ) ( , )u v w U u v W w p h P p H hε ε ε→ + + → + + ,          (6.2) 

 
where the set { }( , ; ), ( , ; ), ( , ; ), ( ; )U X z W X z P X z H Xε ε ε ε  represents a solution of the 

background state described by equations (3.4). The equations defining the set (u, v, w, p, h) – 
the perturbation – then become 
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We now seek an asymptotic solution of this set, (6.3), by assuming that a solution exists of 
the form 

0

( , , , ; ) ~ ( , , , )n
n

n

q X z q X zξ θ ε ε ξ θ
∞

=
∑ , 

 
where q, and correspondingly nq , represent each of u, v, w and p; ( , , ; )h Xξ θ ε  is similarly 

expanded. Although we may, in general, also expand both ( )ω ε  and ( ; )Xα ε , this extra 
freedom – and minor complication – is unnecessary here. The procedure follows that 
described in detail in [11] (and given in outline in [12]), with the one adjustment that the 
background state is included here, and given. 
 

At leading order, we generate a nonlinear system of equations: 
 

0 0 0 0 0 0( )u v u U u u pξ ξ θ θω α α− + + + = −ℓ ; 0 0 0 0 0 0( )v v v U u v pξ ξ θ ξω α− + + + = −ℓ ℓ ; 

0 0 0u vθ ξα + =ℓ ; 0 0zp = , with 0 0p h=  on 0z = , 

 
which constitute a version of the nonlinear, shallow-water equations. This set has an exact 
solution, relevant to edge waves: 
           

       

0 0 0 0

2
2 2

0 0 0 0 02

e sin , e cos ,

all defined for 0 (6.5)

1
e cos e ,

2

U u A v A

B z

p h A A C

θ θ

θ θ

ξ ξ
ω ω

ξ
ω


 + = = −

 − ≤ ≤

 = = − +


ℓ ℓ

ℓ

 

 
where we have set α = ℓ , and 0( )A X  and 0( )C X  are yet to be determined. At the next 

order, we recover precisely the problem described in [11], when we choose 0 ( )C H X= ; this 

then represents a uniformly valid asymptotic solution provided that 0( )A X  is a solution of 

                                                  
2

0 0 02A B BA A
ω′ ′+ = −
ℓ

,                                         (6.6) 

 
and so 

                                      
2

0
1 d

( ) exp
2 ( )( )

X
X

A X
B XB X

ω ′ =  ′−   
∫
ℓ

.                              (6.7) 

 

At a beach, we have ( ) ~B X X−  as 0X → , which gives 0 ~ ( )A K X β− , 

( )( )21
2

1β ω= −ℓ , where K is a constant (which is fixed by specifying the amplitude of the 

edge wave for some 0X < ). Further, if we ask that 0( )A X  and all its derivatives exist as 

0X → , then we must choose nβ =  ( 0,1, 2, ...n = ), and then 2 (1 2 )nω = + ℓ , which is the 
classical dispersion relation for edge waves. (All this is developed in [11, 12] – we need only 
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the basic results here – but we do add the observation that a non-uniformity exists in our 
solution as 0B → , unless the case 0n =  is omitted.) Thus we claim that, with relatively 
minor adjustments, the theory of edge waves over a slowly varying depth as presented in 
[11], carries over to the situation where a (weak) background flow is allowed to pre-exist the 
passage of the edge wave – although we should note that both the background flow and its 
perturbation are essentially the same size. 

 
We complete this discussion by examining one intriguing aspect of edge waves: the run-

up pattern on a beach. This is described by the curve 
 
                                                      ( )z B H hε= − = + ,                                             (6.8) 
 

where                            
2

2 2
0 02

1
~ e cos e

2
H h H A Aθ θξ

ω
+ + − ℓ

                               (6.9) 

 
and then, for 0X →  (which is where the beach exists), we may take ( ) ~B X X−  and 

2 21
2

~H Xγ−  (see (4.19)). Using 0 ~ ( )A K X β− , the run-up pattern, (6.8) with (6.9), can be 

written 

                         
2 2

2 2 2 2
2

~ ( ) e cos ( ) e
2 2

x xx X K X K Xβ βγ ξ
ω

− + − − −ℓ ℓℓ
,            (6.10) 

 
which, upon the exclusion of the solution 0x X= =  and electing to set nβ =  ( 1, 2, ...n = ), 
can be expressed in the normalised form 
 

                         
2

1 2 1 21 ( ) e cos ( ) e 0
2(1 2 )

n Y n YX Y Y
n

µν µ ξ− −+ − − + − =
+

.             (6.11) 

 

Here, we have written Y x= ℓ , 1n nKµ ε −= ℓ  and 2 2 2ν ε γ= ℓ ; both Y and µ  relate 
precisely to the equation discussed in [11, 12], and ν  is the new parameter representing the 
presence of any background flow in the vicinity of the beach. This version of the run-up 
pattern can be examined to decide whether this captures the essential features of what is 
observed on beaches; this is therefore no more than an extension of the approach adopted in 
[11]. The solutions of (6.11), with 0ν = , are discussed in the papers already cited; in 
particular, it is shown that there exist, for certain parameter ranges (n and µ ), two possible 
run-up patterns. When such solutions do not exist, the pattern comprises periodic, closed 
regions that either do, or do not, contain water – neither of which is a possible solution. 
(Either there is no water extending seawards, or there is water extending to infinity inland, 
respectively.) An acceptable pair of solutions is shown in figure 5 – and there appears to be 
no mechanism for deciding which may be an appropriate solution for water waves. (Indeed, 
there is some evidence to suggest that either can appear on a beach, under suitable 
conditions.) The inclusion of the term in ν  changes all this; for a given n and µ , for which 
two solutions exist, there is a critical value of ν  above which only one appropriate solution 
exists; below this value, the familiar two appear (corresponding to the pair associated with 

0ν = ). An example of this phenomenon is shown in figure 6. 
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7. Conclusions 
 
The classical problem of water waves has been presented via two different sets of scalings on 
the standard governing equations and boundary conditions. These have been selected to 
enable us to describe both the familiar problem of gravity waves and that of edge-wave 
propagation. In each case, we have shown how these problems can be formulated to allow 
the waves to move over a pre-existing flow field that both possesses non-zero vorticity and 
admits a shoreline. Some examples of such background flows have been presented. 
Furthermore, each problem for the motion of the waves is, even at leading order, 
appropriately nonlinear. In the first case, the scalings have been chosen to recover the 
relevant KdV-type equation for the gravity wave that is approaching a beach; thus the wave 
exhibits, at a reasonable distance from the shore, nonlinearity and dispersion, adapted to 
accommodate the (slow) variation in depth and background flow. The resulting asymptotic 
solution has been shown – not surprisingly – to break down (the expansion is not uniformly 
valid, and this is the case for any non-zero vorticity) as the beach is approached. The problem 
has been suitably rescaled in the neighbourhood of the beach, resulting in the wave now 
being dominated, at leading order, by the nonlinear effects. The solution in this region 
matches to an appropriate solution of the KdV-type equation; in general, the solution will 
now take the form of a ‘breaking’ wave close inshore, with an amplitude that grows 
according to Green’s law. 
 

The corresponding problem for edge waves requires a slightly more careful formulation, 
although the underlying principles are the same. In this case, the background flow had to be 
the same size – in the parametric sense – as the edge wave. However, once this selection is 
incorporated, it was demonstrated that the development of the solution-technique followed 
that of [11] (which presented the problem of the edge wave in the presence of a slowly-
varying depth, but with a zero background state). The leading-order description of the edge 
wave mirrors very closely that already given in [11]: there is an appropriate exact solution 
that recovers all the essential features of the edge wave, but this is now combined with a 
contribution from the background flow. This new ingredient enables a significant re-
interpretation of the edge-wave solution previously obtained, in particular as it relates to the 
run-up pattern, as we shall comment below. 

 
The main results from our analysis can be summarised as follows. For the gravity wave, 

we have derived a variable-coefficient KdV equation 
 

                                   ( )1 4 1 4
0 0 0 0

3
2 0

3X

D
D D h h h h

D ξ ξξξ+ + = ,                          (7.1) 

 
and one avenue of investigation, perhaps worthy of some effort, is to obtain (numerical) 
solutions for 0( , )h Xξ . This would enable the effects of various background flows, and 

choices of variable depth, to be itemised and studied; we comment that the process of 
increasing amplitude as the depth decreases, close to the shoreline, has already been 
discussed in our asymptotic solution. Although this falls a little short of a fundamentally new 
result – something close to this is given in [10] – equation (7.1) does encapsulate a number of 
important properties: nonlinear, dispersive (soliton-type) wave propagation with variable 
depth in a flow with vorticity. Nevertheless, our work has now shown that we can allow the 
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background flow-field to represent depth profiles, and flows, relevant to beaches – a 
possibility not envisaged before. 
 

On the other hand, the equation 
 

                         
2

1 2 1 21 ( ) e cos ( ) e 0
2(1 2 )

n Y n YX Y Y
n

µν µ ξ− −+ − − + − =
+

,               (7.2) 

 
for the run-up pattern produced by an edge wave (and, by implication, other properties of an 
edge wave) is new. This work has built on the equation previously obtained in the case 0ν =  
(which was first reported in [11]) and, for 0ν ≠ , seems to go some way towards addressing a 
problem encountered in this earlier work. Although it was argued (in [11]) that solutions 
corresponding to the observed run-up patterns are recovered for 0ν = , such solutions always 
come in pairs; there is no immediate and obvious mechanism for selecting one rather than the 
other. However, the inclusion of a background flow (and near a shoreline, this is generic) 
offers a way forward: for a given n and µ , there is a critical value of ν  above which only 
one relevant solution exists. Further, if this solution is identified, and traced back as ν  
decreases, then one of the pair is selected. Although, in the work reported here, we have only 
begun the investigation of the problem with a background flow and of the solutions of 
equation (7.2), this would seem to be an area that is worthy of further investigation. 

 
Figure 1: An example of a flow field with constant vorticity, showing the surface streamline 
and bottom topography (heavy lines), and some internal streamlines. The bottom profile is 

( ) 1B X =  in 3X < −  and 2( ) 1 ( 3) 9B X X= − +  in 3 0X− ≤ ≤ . 
 
 
 
 
 
 
 
 
 

Figure 2a 
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Figure 2b 

Figure 2: Two examples of the free surface with variable vorticity, as described by equations 
(3.7)-(3.9) with: (a) 1α = =ℓ ; (b) 3α = , 1=ℓ . The bottom profile is the same as that used 
for figure 1. 
 
 
 
 
 
 
 
 
 
 
Figure 3: An example of the variable vorticity, given in (3.9), for 3α = , 1=ℓ , in the region 
of constant depth (( ) 1B X = ; see figure 2b). 
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Figure 4: An example of an isolated flow field with vorticity, described by equation (3.10); 

the bottom profile is proportional to 3 3(1 )X X− , for 0 1X≤ ≤ . The heavy lines at the top 
and the bottom are the free surface and the bottom profile, respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5: Solution of equation (6.11), for the run-up pattern, displaying the two viable 
solutions in the case 2n = , 25µ =  (and 0ν = ). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6: Solution of equation (6.11), for the run-up pattern in the presence of a background 
flow, in the case 2n = , 25µ = , 0 2ν = ⋅ ; for these values of n and µ , the critical value of ν  
is approximately 0 11855⋅ . 
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