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Abstract

The symmetry classification and reduction of a non–stationary spherically symmetric
energy–transport model for semiconductors was investigated by Molati and Wafo Soh
(2005). In this work the exact solutions of the reduced model in the stationary case
are constructed.

1 Introduction

Semiconductors are solid-state materials which possess the properties of both insulators
and conductors. They have conductivities lying between those of insulators and conduc-
tors. Semiconductors can be elemental, compound and alloy. They have a number of
applications which dominate our every day life in electrical, electronic and information
engineering. Recently a technology of spherically shaped semiconductor integrated circuit
[1, 16] has been discovered and has some advantages over the commonly known semicon-
ductor devices. The main advantage is that of having a larger available surface area which
leads to a device being used for longer periods before it gets overheated.

The motion of charge carriers (negatively charged particles, electrons and positively
charged particles, holes) in semiconductors under the effect of an electric field and a
carrier concentration gradient is an important phenomenon. This introduces an important
parameter, mobility, which characterizes the motion of the charge carriers due to drift
(charged-particle motion under the influence of the electric field) and also the efficiency of
many devices. The numerical value of the mobility depends on a given doping (addition of
controlled amounts of specific impurity atoms with the aim of increasing the concentration
of the charge carriers) and temperature for the charge carriers [12, 15].

The energy-transport (ET) model is a macroscopic model derived from the Boltzmann
equation [2]. This model comprises a system of diffusion equations for the electron density
and temperature, together with the Poisson equation for electric potential.
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In the ET model for semiconductors, there are two groups of unknowns. The first group
is made of the electron density, the electron temperature and the electric potential. The
second group is formed by the energy production, the mobilities and the doping profile.
Traditionally, the latter is obtained experimentally. This work employs the symmetry
principle [3, 5, 6, 9, 10, 11] to obtain the elements of the second group of the unknowns, that
is, the forms of the energy production, the mobilities and the doping profile are obtained
for which the model is maximally symmetric. The stationary solutions are constructed
after obtaining the unknown parameters and the symmetries of the governing system of
ET model for semiconductors.

A symmetry analysis approach to the ET model was first performed on a non–stationary
one dimensional ET model in [13]. The complete symmetry classification was performed
and classes of exact solutions were obtained. The work done in [13] was extended in [8]
by considering the non–stationary spherically symmetric case and two dimensional case.
The complete symmetry classification and reduction was performed, but since the reduced
systems were still highly non–linear and difficult to solve analytically, the exact solutions
were not constructed.

The outline of this work is as follows. In Section 2 the model to be investigated is
presented. In Section 3 the symmetry classification of the model is performed. In Section
4 the exact solutions of the model are constructed.

2 ET model for semiconductors

On coupling the Poisson’s equation for the electric potential to the diffusion equations for
the electron density and temperature, we have the following equations [13, 14]

∂n

∂t
+∇ · J = 0,

∂(nW )
∂t

+∇ · S − J · ∇φ− nCW = 0, (2.1)

λ2∇2φ− n + c(x) = 0,

where n is the electron density, J the electron momentum density, W the electron energy,
S the energy flux density, nCW the energy production, λ2 the dielectric constant, φ the
electric potential, c(x) the doping profile that is a given function of the position x and
the nabla symbol

∇ =
(

∂

∂x1
,

∂

∂x2
, · · · ,

∂

∂xn

)
. (2.2)

The known quantities in (2.1) are

J = −∇(µ(1)Tn) + µ(1)n∇φ, (2.3a)

S = −∇(µ(2)T 2n) + µ(2)Tn∇φ, (2.3b)

W =
3
2
T, (2.3c)

CW =
−3

2(T − TL)
τW (T )

, (2.3d)
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where T is the electron temperature, TL is the lattice temperature (taken as constant), µ(i)

are the electron mobilities and τW is the energy relaxation time. In general the mobilities
are temperature-dependent. The system (2.1) and (2.3a–2.3d) must be solved subject to
appropriate initial and boundary conditions.

Some special cases considered in the literature are:
• the Chen et al [4] model with

J = −µ0

(
∇n− n

T
∇φ

)
, (2.4a)

S = −3
2
µ0 [∇(nT )− n∇φ] , (2.4b)

CW =
−3

2(T − TL)
τ0

, (2.4c)

where µ0 and τ0 are positive constants,
• the Lyumkis et al [7] model in which

J = −2µ0√
π

[
∇(nT

1
2 )− n

T
1
2

∇φ

]
, (2.5a)

S = −4µ0√
π

[
∇(nT

3
2 )− nT

1
2∇φ

]
, (2.5b)

CW = − 2√
π

(T − TL)

τ0T
1
2

· (2.5c)

3 Symmetry classification of the spherically symmetric ET
model for semiconductors

In this section we focus on the symmetry analysis of the spherically symmetric ET model
for semiconductors in the stationary case. By spherically symmetric we mean that the
spatial dependence of the model is through the radial coordinate

r =
√

(x1)2 + (x2)2 + · · · (xd)2 ,

where d is the spatial dimension. We arrive at the following spherically symmetric equa-
tions for r 6= 0

Jr +
k

r
J = 0,

Sr +
k

r
S − Jφr +

3
2
n

(T − TL)
τW (T )

= 0, (3.1)

λ2(φrr +
k

r
φr)− n + c(r) = 0,

where k = d− 1 and the subscript denotes differentiation with respect to r:

J = −
(
µ(1)Tn

)
r
+ µ(1)nφr,

S = −
(
µ(2)T 2n

)
r
+ µ(2)Tnφr.
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The cases of interest are d = 1, 2, 3; i.e. k = 0, 1, 2. In the case k = 0 one would expect to
recover the stationary solutions of the one–dimensional model obtained in [13]. But this is
yet to be proved. For instance, the three dimensional model in the stationary case cannot
be recovered by simply substituting k = 2 in the model (3.1).

From now on we will use τ(T ) to mean τW (T ). According to Lie’s algorithm, the vector
field

X = ξ(r, n, T, φ)
∂

∂r
+ η1(r, n, T, φ)

∂

∂n
+ η2(r, n, T, φ)

∂

∂T
+ η3(r, n, T, φ)

∂

∂φ

is a symmetry generator of (3.1) if and only if

X [2]

(
Jr +

k

r
J

) ∣∣∣∣
(3.1)

= 0,

X [2]

(
Sr +

k

r
S − Jφr +

3
2
n

(T − TL)
τ(T )

) ∣∣∣∣
(3.1)

= 0, (3.2)

X [2]

(
λ2

[
φrr +

k

r
φr

]
+ c(r)− n

) ∣∣∣∣
(3.1)

= 0,

where

X [2] = X + ζ1
1

∂

∂nr
+ ζ2

1

∂

∂Tr
+ ζ3

1

∂

∂φr
+ ζ1

2

∂

∂nrr
+ ζ2

2

∂

∂Trr
+ ζ3

2

∂

∂φrr

is the second prolongation of X. The coefficients ζi
j (i = 1, 2, 3; j = 1, 2) are given by the

prolongation formulae

ζi
1 = Dr(ηi)− ui

rDr(ξ), (3.3a)

ζi
2 = Dr(ζi

1)− ui
rrDr(ξ), (3.3b)

where

(u1, u2, u3) ≡ (n, T, φ),

Dr =
∂

∂r
+ nr

∂

∂n
+ Tr

∂

∂T
+ φr

∂

∂φ
·

When expanded and separated, the determining equations (3.2) span many pages, hence
only the final step in the analysis of the determining equations is presented. The symme-
try analysis is performed for cases k = 0 and k 6= 0.

Case (i) k = 0

ξ =
a1q

2
r + a0, (3.4a)

η1 = a1(1− q)n, (3.4b)

η2 = a1T, (3.4c)

η3 = a1φ, (3.4d)

µ(1)(T ) = µ
(1)
0 T q−1, (3.4e)
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µ(2)(T ) = µ
(2)
0 T q−1, (3.4f)

T (T − TL)τT − TLτ = 0, (3.4g)
(2a0 + a1q r)cr + 2a1(q − 1)c = 0. (3.4h)

In the above equations (3.4a)–(3.4h), a0, a1, µ
(1)
0 , µ

(2)
0 and q are the arbitrary constants.

The case k 6= 0 corresponds to a0 = 0.

Equations (3.4g) and (3.4h) give the forms of the energy relaxation time τ(T ) and the
doping profile c(r) respectively.
Since equation (3.4g) does not contain the constants a0 and/or a1, its solution is the same
for both cases and is given by

τ(T ) = τ0(T − TL)T−1, (3.5)

where τ0 is an arbitrary constant.
When k = 0, equation (3.4h) prompts the consideration of the cases a1q = 0 and

a1q 6= 0. In the first case, Eq. (3.4h) simplifies to

a0cr − a1c = 0; a0 6= 0. (3.6)

Solving Eq. (3.6) we obtain

c(r) = c0 eαr, (3.7)

where α =
a1

a0
and c0 are the arbitrary constants. Thus,

X =
∂

∂r
+ αn

∂

∂n
+ αT

∂

∂T
+ αφ

∂

∂φ
· (3.8)

In the second case, we obtain

c(r) = c0(2 + αqr)
2(1−q)

q ; q 6= 0, (3.9)

where c̄0 and α =
a1

a0
are the arbitrary constants. Hence,

X =
1
2
(2 + αqr)

∂

∂r
+ α(1− q)n

∂

∂n
+ αT

∂

∂T
+ αφ

∂

∂φ
· (3.10)

Case (ii) k 6= 0
Then a0 = 0 and equations (3.4a)–(3.4h) hold with a0 = 0. Equation (3.4h) reduces to

a1q rcr + 2a1(q − 1)c = 0. (3.11)

Equation (3.11) prompts the consideration of the cases a1 = 0 and a1 6= 0. In the first
case there are no symmetries and the second case gives rise to the subcases: q = 0 and
q 6= 0. In the first subcase there is no doping profile, that is c(r) = 0 and the second
subcase yields

c(r) = c1 r
2(1−q)

q ; q 6= 0, (3.12)
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for arbitrary constant c1. Therefore,

X =
q r

2
∂

∂r
+ (1− q)n

∂

∂n
+ T

∂

∂T
+ φ

∂

∂φ
· (3.13)

Remark 1: For q = 0 and q = 1
2 we obtain the forms of J and S for the Chen et al [4]

model and the Lyumkis et al [7] model respectively.

4 Exact solutions of the spherically symmetric ET model
for semiconductors in the stationary case

Case (a) k = 0

(i) µ(1)(T ) = µ
(1)
0 T q−1, µ(2)(T ) = µ

(2)
0 T q−1, τ(T ) = τ0(T − TL)T−1, c(r) = c0 eαr,

X =
∂

∂r
+ αn

∂

∂n
+ αT

∂

∂T
+ αφ

∂

∂φ
·

The characteristic equations for the invariants of X are

dr

1
=

dn

αn
=

dT

αT
=

dφ

αφ
· (4.1)

The invariant solutions for α 6= 0 assume the form

n = n0 eαr, (4.2a)
T = T0 eαr, (4.2b)
φ = φ0 eαr, (4.2c)

where n0, T0 and φ0 are the arbitrary constants. Substituting the invariant solutions
(4.2a)–(4.2c) into the governing system (3.1) yields the reduced system which is solved for
the arbitrary constants. Thus, the exact solutions are

n = c0 eαr +
[

3

2α2(q + 2)µ(2)
0 τ0

] 1
q

, (4.3a)

T =
[

3

2α2(q + 2)µ(2)
0 τ0

] 1
q

, (4.3b)

φ = (q + 1)
[

3

2α2(q + 2)µ(2)
0 τ0

] 1
q

, (4.3c)

provided q 6= −1,−2, 0. The case q = −1 results in a reduced system which is inconsistent.
The reduced system is identically satisfied when q = −2.
The case q = 0 (corresponding to the Chen et al model) yields two sets of solutions:

n = c0, T = φ = 0

and

n = 0, T = φ = − c0

α2λ2
·
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These solutions are discarded because we require non–zero solutions for the system under
consideration.

(ii) q 6= 0, µ(1)(T ) = µ
(1)
0 T q−1, µ(2)(T ) = µ

(2)
0 T q−1, τ(T ) = τ0(T − TL)T−1,

c(r) = c0(2 + αqr)
2(1−q)

q , X =
1
2
(2 + αqr)

∂

∂r
+ α(1− q)n

∂

∂n
+ αT

∂

∂T
+ αφ

∂

∂φ
·

The characteristic equations for the invariants of X are

2 dr

2 + αqr
=

1
α(1− q)

dn

n
=

dT

αT
=

dφ

αφ
· (4.4)

Solving the above characteristic equations for q 6= 1 and α 6= 0 yields

n = n0(2 + αqr)
2(1−q)

q , (4.5a)

T = T 0(2 + αqr)
2
q , (4.5b)

φ = φ0(2 + αqr)
2
q , (4.5c)

where n0, T 0 and φ0 are the arbitrary constants. The invariant solutions (4.5a)–(4.5c) are
substituted into the original system (3.1) to yield the reduced system which is solved for
the arbitrary constants. Therefore, a class of exact solutions with q 6= 4 assumes the form

n =
[
c0 − 2α2λ2(q − 2)

(
3

4α2µ
(2)
0 τ0(4− q)

) 1
q
]
(2 + αqr)

2(1−q)
q , (4.6a)

T =
[

3

4α2µ
(2)
0 τ0(4− q)

] 1
q

(2 + αqr)
2
q , (4.6b)

φ =
[

3

4α2µ
(2)
0 τ0(4− q)

] 1
q

(2 + αqr)
2
q . (4.6c)

The original system (3.1) is not satisfied when q = 4. Hence, the case q 6= 4 is discarded.

Case (b) k 6= 0

(i) q 6= 0, µ(1)(T ) = µ
(1)
0 T q−1, µ(2)(T ) = µ

(2)
0 T q−1, τ(T ) = τ0(T − TL)T−1,

c(r) = c1 r
2(1−q)

q , X =
q r

2
∂

∂r
+ (1− q)n

∂

∂n
+ T

∂

∂T
+ φ

∂

∂φ
·

The characteristic equations for the invariants of X are

2
q

dr

r
=

1
(1− q)

dn

n
=

dT

T
=

dφ

φ
· (4.7)

The invariant solutions for q 6= 1 assume the form

n = n1 r
2(1−q)

q , (4.8a)
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T = T1 r
2
q , (4.8b)

φ = φ1 r
2
q , (4.8c)

where n1, T1 and φ1 are the arbitrary constants. The substitution of the invariant solutions
(4.8a)–(4.8c) into the underlying system (3.1) yields the reduced system from which the
arbitrary constants are obtained. Therefore, the exact solutions are

n =
[
c1 +

2λ2[2 + (k − 1)q]
q2

(
3q2

4µ
(2)
0 τ0[4 + (k − 1)q]

) 1
q
]
r

2(1−q)
q , (4.9a)

T =
(

3q2

4µ
(2)
0 τ0[4 + (k − 1)q]

) 1
q

r
2
q , (4.9b)

φ =
(

3q2

4µ
(2)
0 τ0[4 + (k − 1)q]

) 1
q

r
2
q , (4.9c)

provided 4 + (k − 1)q 6= 0.

(ii) The condition 4 + (k− 1)q = 0 requires k 6= 1. Hence, with q =
4

1− k
in Eq. (4.7) the

invariant solutions have the form

n = n1 r−
k+3
2 , (4.10a)

T = T 1 r
1−k
2 , (4.10b)

φ = φ1 r
1−k
2 , (4.10c)

where n1, T 1 and φ1 are the arbitrary constants. The substitution of the invariant solutions
(4.10a)–(4.10c) into the system under consideration, (3.1), yields the exact solutions

n =
[
c1 +

λ2(1 + 2k − k2)
k+3
4

4

(
µ

(1)
0 τ0(k + 3)
6(k − 1)

) k−1
4

]
r−

k+3
2 , (4.11a)

T =
[
µ

(1)
0 τ0(k + 3)(1 + 2k − k2)

6(k − 1)

] k−1
4

r
1−k
2 , (4.11b)

φ =
[
µ

(1)
0 τ0(k + 3)(1 + 2k − k2)

6(k − 1)

] k−1
4

r
1−k
2 . (4.11c)

Remark 2: The case k = 1 corresponding to a two dimensional stationary model does not
satisfy the underlying model (3.1). Hence, the two dimensional stationary case treated
in [14] cannot be recovered by simply substituting k = 1 in the stationary spherically
symmetric model (3.1). Now, with k 6= 1 the cases of interest are k = 0 and k = 2.

Remark 3: The graphs of the solutions (4.2a)–(4.2c) and (4.10a)–(4.10c) corresponding
to k = 0 and k = 2 respectively are presented below. These are the graphs of the electron
density n in cm−3, electron energy W in eV and electric potential φ in V/micron against
r (micron). After setting T0 = φ0 = T 1 = φ1 = 1 and α = −1 for n0 = n1 = 1017 cm−3,
the following graphs are obtained
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Figure 1: Plot of the solutions (4.2a)–(4.2c) and (4.10a)–(4.10c).

5 Conclusion

Four classes of exact solutions of a spherically symmetric ET model for semiconductors
in the stationary case have been constructed. The solutions provide benchmarks useful
for testing numerical codes for the stationary spherically symmetric ET models. The
graphical solutions of these exact solutions can be constructed provided a relevant data
for the model parameters is at hand.
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