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Abstract

We construct all partial Noether operators corresponding to a partial Lagrangian for a
system with two degrees of freedom. Then all the first integrals are obtained explicitly
by utilizing a Noether-like theorem with the help of the partial Noether operators. We
show how the first integrals can be constructed for the system without the need of a
variational principle although the Lagrangian L = y′2/2 + z′2/2 − v(y, z) does exist
for the system. Our objective is twofold: one is to see the effectiveness of the partial
Noether approach and the other to determine all the first integrals of the system under
study which have not been reported before. Thus, we deduce a complete classification
of the potentials v(y, z) for which first integrals exist. This can give rise to further
studies on systems which are not Hamiltonian via partial Noether operators and the
construction of first integrals from a partial Lagrangian viewpoint.

1 Introduction

The notion of partial Noether operators and partial Lagrangians are important in the
construction of first integrals for ordinary differential equations that in general do not
admit a Lagrangian. Most of the equations that arise in applications do not have a
Lagrangian, e.g. in y′′ = y2 + z2, z′′ = y, no variational problem exists (Douglas [3]).
Similarly for y′′ = y2 + z2, z′′ = 0, the family is non-extremal. So the question is how one
can construct first integrals for equations without a variational principle. The objective
of this paper is to classify all the partial Noether operators and to construct all first
integrals for a system with two degrees of freedom which is Hamiltonian in order to see
the effectiveness of using the partial Noether approach. Moreover, we obtain all the first
integrals of the Hamiltonian system under consideration. These have not been obtained
before in [6].

Hamiltonian systems frequently arise in classical mechanics, in non-linear oscillations
and non-linear dynamics [2, 7, 12]. In classical mechanics Hamiltonian systems appear as
physical systems. There are some important papers dealing with Hamiltonian systems.
The point symmetries of a Hamiltonian system for two degrees of freedom were obtained by
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Damianou and Sophocleous [4]. The point symmetry properties of a Lagrangian system for
two degrees of freedom were also considered by Sen [16]. Symmetry group classification of
a three dimensional Hamiltonian system was investigated by Damianou and Sophocleous
[5]. Classification of Noether symmetries for Lagrangian systems with three degrees of
freedom were also attempted (Damianou and Sophocleous [6]). Herein, the two degrees of
freedom system Noether symmetries are reported.

Noether’s theorem [13] provides the relationship between symmetries and the conserved
quantities for Euler-Lagrange differential equations once their Noether symmetries are
known and is indeed a powerful method to construct conservation laws. However, there
are some direct methods ([1, 8, 11, 15, 17, 18]) as well. In [9, 10] a Noether-like theorem
is invoked, which gives the first integrals for the differential equations without the use
of a Lagrangian. In [14], the authors showed that the first integrals corresponding to
the Noether and partial Noether operators of a variable coefficient linear system of two
equations are the same. The difference occurs in the guage terms.

In this paper, we obtain all the partial Noether operators and first integrals for the two
dimensional system that has been studied before via a standard Lagrangian in [6]. The
previous works [6] did not present the first integrals for the Lagrangian system of two de-
grees of freedom L = 1

2y′2 + 1
2z′2−v(y, z). Here we take an alternative viewpoint. We first

obtain the partial Noether operators and then construct the corresponding first integrals
of such a system. This, hopefully, will give rise to further studies in the classification of
the partial Noether operators for more general systems of two, three and four degrees of
freedom and the construction of first integrals from a partial Lagrangian viewpoint.

Suppose that a particle is moving in the (y, z) plane with potential v(y, z). The Hamil-
tonian system in two dimensions is given by

H(p1, p2, x, y) =
1

2
p2
1 +

1

2
p2
2 + v(y, z), (1.1)

where p1 = ∂L/∂y′ = y′, p2 = ∂L/∂z′ = z′.

In Newton’s form one has
{

y′′ + vy = 0,

z′′ + vz = 0,
(1.2)

corresponding to Lagrangian

L =
1

2
y′2 +

1

2
z′2 − v(y, z). (1.3)

We start with the known definition [14].

Definition. Let

X = ξ(x, u)
∂

∂x
+ ηα(x, u)

∂

∂uα
. (1.4)

be a generator in (x, u) space, where u = (u1, u2) = (y, z), be the dependent variable and
x be the independent variable. The operator X is said to be a partial Noether operator
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corresponding to a partial Lagrangian L(x, u, u′) of

u′′ = M(x, u, u′), (1.5)

if it can be calculated from

X [1]L + (Dxξ)L = (ηα − ξuα
x)

δL

δuα
+ Dx(B), (1.6)

for some function B(x, u). In the above equation Dx is the total derivative operator with
respect to x given as

Dx =
∂

∂x
+ uα

x

∂

∂uα
+ uα

xx

∂

∂uα
x

+, ..., . (1.7)

The summation convention is adopted for repeated indices and the derivative of uα with
respect to x is defined as

uα
x = uα

1 = Dx(uα), α = 1, 2. (1.8)

Now we recall the Noether-like theorem [10].

Theorem. If X in (1.4) is a partial Noether operator corresponding to a partial La-
grangian L(x, u, u′) of (1.5), then a first integral of (1.5) associated with X can be deter-
mined from

I = B − [ξL + (ηα − ξuα
x)

∂L

∂uα
x

]. (1.9)

2 Partial Noether operators of (1.2)

The operator X in (1.4) is a partial Noether operator for the system (1.2) with respect to
the partial Lagrangian

L =
1

2
y′2 +

1

2
z′2 (2.1)

if and only if it satisfies the system

ξy = 0, ξz = 0, (2.2)

η1
y −

1

2
ξx = 0, η2

z −
1

2
ξx = 0, η1

z + η2
y = 0, (2.3)

η1
x = −ξvy + By, (2.4)

η2
x = −ξvz + Bz, (2.5)

η1vy + η2vz + Bx = 0. (2.6)

From equations (2.2) and (2.3), we find that

ξ = α(x), (2.7)
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η1 =
1

2
α′y − C(x)z + S(x), (2.8)

η2 =
1

2
α′z + C(x)y + F (x). (2.9)

The substitution of these expressions into (2.4) and (2.5) results in

B =
1

4
α′′y2 − C ′(x)yz + yS′(x) + α(x)v + T (x, z), (2.10)

where

T =
1

4
α′′z2 + F ′(x)z + U(x), C(x) = A. (2.11)

The replacement of η1, η2 and B in (2.6) leads to the following equation

(
1

2
α′y − Az + S(x))vy + (

1

2
α′z + Ay + F (x))vz

+
1

4
α′′′(y2 + z2) + yS′′(x) + α′(x)v + F ′′(x)z + U ′(x) = 0. (2.12)

First of all if v is arbitrary, then we get the translation in x partial Noether operator
with B = v and obvious integral which is the Hamiltonian itself.

The differentiation of (2.12) with respect to x yields

(
1

2
α′′y + S′(x))vy + (

1

2
α′′z + F ′(x))vz +

1

4
α′′′′(y2 + z2)

+yS′′′(x) + α′′(x)v + F ′′′(x)z + U ′′(x) = 0. (2.13)

In order to solve (2.13), two cases arise, viz. α′′ 6= 0 and α′′ = 0.

Case 1: α′′ 6= 0.
The division of equation (2.13) with α′′ and then differentiation with respect to x gives

(
S′

α′′ )
′vy + (

F ′

α′′ )
′vz +

1

4
(
α′′′

α′′ )
′(y2 + z2) + (

S′′′

α′′ )
′y + (

F ′′′

α′′ )′z + (
U ′′

α′′ )
′ = 0. (2.14)

In equation (2.14) v satisfies the first order partial differential equation of the following
form

λ1vy + λ2vz + λ3(y
2 + z2) + λ4y + λ5z + λ6 = 0. (2.15)

For case 1 (when α′′ 6= 0), there are three subcases

Case 1.1: λ1 6= 0, λ2 6= 0.
Case 1.2: λ1 6= 0, λ2 = 0.
Case 1.3: λ1 = 0, λ2 6= 0.
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For case 2 (when α′′ = 0), we obtain

S′(x)vy + F ′(x)vz + yS′′′(x) + F ′′′(x)z + U ′′(x) = 0. (2.16)

or

λ1vy + λ2vz + λ3y + λ4z + λ5 = 0. (2.17)

In order to solve (2.17) the following three subcases are considered.

Case 2.1: λ1 6= 0, λ2 6= 0.
Case 2.2: λ1 6= 0, λ2 = 0.
Case 2.3: λ1 = 0, λ2 6= 0.

We provide details of the calculations for the subcase 1.1.1 of case 1.1. All the possi-
bilities are summarized in a table (see below).

Case 1.1: λ1 6= 0, λ2 6= 0.
The following subcass arise.

Case 1.1.1: A 6= 0, S(x) 6= 0, F (x) 6= 0, U(x) 6= 0.
The equation (2.15) gives

v = −
λ2

1λ3z
3

3λ3
2

−
λ3y

2z

λ2
+

λ1λ3yz2

λ2
2

−
λ3z

3

3λ2
+

λ1λ4z
2

2λ2
2

−
λ4yz

λ2
−

λ5z
2

2λ2

−
λ6

λ2
z + f(λ2y − λ1z), (2.18)

where

λ2y − λ1z = φ or y =
λ1z

λ2
+

φ

λ2
. (2.19)

The substitution of v (in terms of y from (2.19)) in equation (2.13) and then separation
with respect to powers of z gives

λ3 = 0, −
α′λ1λ4

λ2
2

+
Aλ4

λ2
−

α′λ5

λ2
−

Aλ1λ5

λ2
2

+
1

4
α′′′ +

α′′′λ2
1

4λ2
2

= 0, (2.20)

(
α′λ1

2λ2
− A)(λ2f

′(φ)) −
λ4

λ2
(
α′φ

2λ2
+ S(x)) + (

α′

2
+

Aλ1

λ2
)(−

λ4φ

λ2
2

−
λ6

λ2
− λ1f

′(φ))

−
λ5

λ2
(
Aφ

λ2
+ F (x)) +

α′′′λ1φ

2λ2
2

+
λ1

λ2
S′′(x) −

α′λ4φ

λ2
2

−
α′λ6

λ2
+ F ′′(x) = 0, (2.21)

(
α′φ

2λ2
+ S(x))(λ2f

′(φ)) + (
Aφ

λ2
+ F (x))(−

λ4φ

λ2
2

−
λ6

λ2
− λ1f

′(φ))

+
α′′′φ2

4λ2
2

+
φ

λ2
S′′(x) + α′f(φ) + U ′(x) = 0. (2.22)
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Routine but lengthy calculations lead to

v = −
λ6

λ2
z + f(φ), (2.23)

where

f(φ) = d4 + d5φ and φ = λ2y − λ1z. (2.24)

In this case we find that λ4 = 0, λ5 = 0 and

α = d1 + d2x + d3x
2, (2.25)

S(x) = −
3d5λ2

2
(
d2x

2

2
+

d3x
3

3
) +

Aλ6x
2

2λ2
+

Aλ1d5x
2

2
+ d6x + d7, (2.26)

F (x) =
d5

2
(Aλ2 +

Aλ2
1

λ2
)x2 +

3λ6

2λ2
(
d2x

2

2
+

d3x
3

3
) +

Aλ1λ6x
2

2λ2
2

−
λ1

λ2
[−

3

2
d5λ2(

d2x
2

2
+

d3x
3

3
) +

Aλ6x
2

2λ2
+

Aλ1d5x
2

2
] + d8x + d9, (2.27)

U(x) = −d5λ2[−
3

2
d5λ2(

d2x
3

6
+

d3x
4

12
) +

Aλ6x
3

6λ2
+

Aλ1d5x
3

6
+

d6x
2

2

+d7x] + (
λ6

λ2
+ λ1d5)[

d5

6
(Aλ2 +

Aλ2
1

λ2
)x3 +

3λ6

2λ2
(
d2x

3

6
+

d3x
4

12
)

+
Aλ1λ6x

3

6λ2
2

−
λ1

λ2
(−

3

2
d5λ2(

d2x
3

6
+

d3x
4

12
) +

Aλ6x
3

6λ2

+
Aλ1d5x

3

6
) +

d8x
2

2
+ d9x] − d4(d2x + d3x

2) + d10. (2.28)

The potential function for cases (1.1.2-2.3), as listed in the table in section 3 are

Case 1.1.2: A = 0, S(x) = 0, F (x) = 0.

v = −
λ4

2λ1
(y2 + z2) +

1

y2
f(

z

y
). (2.29)

Case 1.1.3: A = 0, F (x) = λ2

λ1
S(x).

v = −
λ4

2λ1
(y2 + z2) +

ν

(z − λ2

λ1
y)2

. (2.30)

Case 1.1.4: A 6= 0, S(x) 6= 0, F (x) 6= 0, U(x) = 0.

v = −
λ4

2λ1
(y2 + z2). (2.31)

Case 1.2: λ1 6= 0, λ2 = 0.
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At this point, the following cases should be considered.

Case 1.2.1: A 6= 0, S(x) 6= 0, F (x) 6= 0, U(x) 6= 0.

v = −
λ4

2λ1
(y2 + z2) −

λ6

λ1
y + e1z + e2. (2.32)

Case 1.2.2: A 6= 0, S(x) = 0, F (x) = 0.

v = −
λ4

2λ1
(y2 + z2) +

µ

y2 + z2
. (2.33)

Case 1.3: λ1 = 0, λ2 6= 0.

v = −
λ5

2λ2
(y2 + z2) −

λ6

λ2
z + f1y + f2. (2.34)

Case 2.1: λ1 6= 0, λ2 6= 0.

The subcases of case 2.1:

Case 2.1.1: A 6= 0, S(x) 6= 0, F (x) 6= 0, U(x) 6= 0.

v = −
λ5

λ2
z + g1(λ2y − λ1z) + g2. (2.35)

Case 2.1.2: A 6= 0, d2 = 0, S(x) = 0, F (x) = 0.

v =
U ′(x)

A
arcsin

y
√

y2 + z2
+ f(y2 + z2). (2.36)

Case 2.1.3: A 6= 0, d2 6= 0, S(x) = 0, F (x) = 0.

v =
1

y2 + z2
f((y2 + z2)A exp (−d2 arctan

z

y
)). (2.37)

Case 2.1.4: A = 0, d2 = 0, F (x) = λ2

λ1
S(x).

v = −
λ3

2λ1
(y2 + z2) + f(λ2y − λ1z). (2.38)

Case 2.2: λ1 6= 0, λ2 = 0.

The following cases need to be considered.

Case 2.2.1: A 6= 0, d2 6= 0, λ3 = 0.

v = −
λ5

λ1
y + h1z + h2. (2.39)

Case 2.2.2: A 6= 0, d2 6= 0, λ3 6= 0.

v = −
λ3

2λ1
(y2 + z2) −

λ5

λ1
y + h1z + h2. (2.40)
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Case 2.3: λ1 = 0, λ2 6= 0.

v = −
λ5

λ2
z + k1y + k2.

where λis, eis, fis, gis, his and kis are constants.

Comparison of Lagrangian and partial Lagrangian approaches.

In [6], Damianou and Sophocleous have obtained the Noether point symmetries for a
two degrees of freedom Lagrangian system and the results for one degree of freedom sys-
tem were also reviewed in their paper. They did not provide the complete classification
for the Noether symmetries as all the higher dimensional symmetry cases are missing for
the two-dimensional Lagrangian system. Moreover, the first integrals corresponding to
Noether symmetries for the system under study were also not given in their paper.

In this paper we have provided the complete classification for the partial Noether oper-
ators and first integrals are constructed by means of a partial Lagrangian approach with
the help of partial Noether operators for a system with two degrees of freedom. For partial
Noether operators obtained herein we have recovered all the cases as given in the case of
Noether symmetries and we have got some new results summarized in the table that have
not been obtained in the earlier work [6]. The system of determining equations obtained
for partial Noether operators are similar to the case of Noether symmetries [6]. The rea-
son being that δL/δy and δL/δz are independent of derivatives and the algebras for both
cases are isomorphic. We give an alternative viewpoint to construct potential functions
using the notion of a partial Lagrangian. In fact, a Lagrangian exists for the system under
consideration but we wanted to see the effectiveness of a partial Lagrangian approach.
We used a similar classification criteria for partial Noether operators as the authors in [6]
have performed for the case of Noether symmetries. Then the first integrals are obtained
by utilizing a partial Noether’s theorem with the help of partial Noether operators via a
partial Lagrangian.

The authors in [6] could also have provide the complete classification for a two degrees
of freedom Lagrangian system and the first integrals could have been constructed by using
a classical Noether’s theorem but they did not do so.

The partial Noether operators and B in each case are given in the following table
(section 3) by choosing each constant equal to one and the rest equal to zero.

3 First Integrals

If X in (1.4) is a partial Noether operator corresponding to the partial Lagrangian (2.1)
for the system (1.2), then a first integral of (1.2) associated with X is constructed from
the formula (1.9).

For each case, the first integrals are given in the following table. Precisely, the partial
Noether operators and the first integrals of the two cases that arise are listed in the table.
Note that there are three subcases in the first case and three subcases in the second case
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as given in the table.
Partial Operators Xi Guage Terms B First Integrals Ii

Case 1.1.1 (A 6= 0, S(x) 6= 0, F (x) 6= 0, U(x) 6= 0)

X1 = (−z + λ6

2λ2
x2) ∂

∂y
B = λ6

λ2
xy, I1 = y′z − yz′ + λ6

λ2
xy

+y ∂
∂z

, − λ6

2λ2
x2y′,

X2 = ∂
∂x

, B = −λ6

λ2
z, I2 = −λ6

λ2
z + 1

2 (y′2 + z′2),

X3 = x ∂
∂x

+ y
2

∂
∂y

B = λ6

2λ2
xz +

λ2

6

4λ2

2

x3, I3 = λ6

2λ2
xz +

λ2

6

4λ2

2

x3 − 3λ6

4λ2
x2z′

+(z
2 + 3λ6

4λ2
x2) ∂

∂z
, +x

2 (y′2 + z2) − 1
2(yy′ + zz′),

X4 = x2 ∂
∂x

+ xy ∂
∂y

B = 1
2 (y2 + z2) I4 = 1

2 (y2 + z2) + λ6

2λ2
x2z

+(xz + λ6

2λ2
x3) ∂

∂z
, + λ6

2λ2
x2z +

λ2

6

8λ2

2

x4, +
λ2

6

8λ2

2

x4 − λ6

2λ2
x3z′

+x2

2 (y′2 + z2) − x(yy′ + zz′),

X5 = x ∂
∂y

, B = y, I5 = y − xy′,

X6 = ∂
∂y

, B = 0, I6 = −y′,

X7 = x ∂
∂z

, B = z + λ6

2λ2
x2, I7 = z − xz′ + λ6

2λ2
x2,

X8 = ∂
∂z

. B = λ6

λ2
x. I8 = −z′ + λ6

λ2
x.

Case 1.1.2 (A = 0, S(x) = 0, F (x) = 0)

X1 = − λ1

4λ4

∂
∂x

, B = 1
8 (y2 + z2) I1 = 1

8 (y2 + z2) − λ1

4λ4y2 f( z
y
)

− λ1

4λ4y2 f( z
y
), − λ1

8λ4
(y′2 + z′2),

X2 = exp (2
√

λ4

λ1
x)× B = exp (2

√

λ4

λ1
x)× I2 = exp (2

√

λ4

λ1
x)×

[ ∂
∂x

+
√

λ4

λ1
(y ∂

∂y
+ z ∂

∂z
)], [ λ4

2λ1
(y2 + z2) + 1

y2 f( z
y
)], [ λ4

2λ1
(y2 + z2) + 1

y2 f( z
y
)

+1
2(y′2 + z′2) −

√

λ4

λ1
(yy′ + zz′)],

X3 = exp (−2
√

λ4

λ1
x)× B = exp (−2

√

λ4

λ1
x)× I3 = exp (−2

√

λ4

λ1
x)×

[ ∂
∂x

−
√

λ4

λ1
(y ∂

∂y
+ z ∂

∂z
)]. [ λ4

2λ1
(y2 + z2) + 1

y2 f( z
y
)]. [ λ4

2λ1
(y2 + z2) + 1

y2 f( z
y
)

+1
2(y′2 + z′2) +

√

λ4

λ1
(yy′ + zz′)].

Case 1.1.3 (A = 0, F (x) = λ2

λ1
S(x))

X1 = − λ1

4λ4

∂
∂x

, B = 1
8 (y2 + z2) I1 = 1

8(y2 + z2) − λ1ν

4λ4(z−λ2

λ1
y)2

− λ1ν

4λ4(z−λ2

λ1
y)2

, − λ1

8λ4
(y′2 + z′2),

X2 = exp (2
√

λ4

λ1
x)× B = exp (2

√

λ4

λ1
x)× I2 = exp (2

√

λ4

λ1
x)×

[ ∂
∂x

+
√

λ4

λ1
(y ∂

∂y
+ z ∂

∂z
)], [ λ4

2λ1
(y2 + z2) + ν

(z−λ2

λ1
y)2

], [ λ4

2λ1
(y2 + z2) + ν

(z−λ2

λ1
y)2

+1
2(y′2 + z′2) −

√

λ4

λ1
(yy′ + zz′)],

X3 = exp (−2
√

λ4

λ1
x)× B = exp (−2

√

λ4

λ1
x)× I3 = exp−(2

√

λ4

λ1
x)×

[ ∂
∂x

−
√

λ4

λ1
(y ∂

∂y
+ z ∂

∂z
)], [ λ4

2λ1
(y2 + z2) + ν

(z−λ2

λ1
y)2

], [ λ4

2λ1
(y2 + z2) + ν

(z−λ2

λ1
y)2

+1
2(y′2 + z′2) +

√

λ4

λ1
(yy′ + zz′)],
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X4 = exp (
√

λ4

λ1
x)× B =

√

λ4

λ1
exp (

√

λ4

λ1
x)× I4 = exp (

√

λ4

λ1
x)×

[ ∂
∂y

+ λ2

λ1

∂
∂z

], [y + λ2

λ1
z], [

√

λ4

λ1
(y + λ2

λ1
z) − y′ − λ2

λ1
z′],

X5 = exp (−
√

λ4

λ1
x)× B = −

√

λ4

λ1
exp (−

√

λ4

λ1
x)× I5 = − exp (−

√

λ4

λ1
x)×

[ ∂
∂y

+ λ2

λ1

∂
∂z

]. [y + λ2

λ1
z]. [

√

λ4

λ1
(y + λ2

λ1
z) + y′ + λ2

λ1
z′].

Case 1.1.4 (A 6= 0, S(x) 6= 0, F (x) 6= 0, U(x) = 0)

X1 = − λ1

4λ4

∂
∂x

, B = 1
8(y2 + z2), I1 = 1

8 (y2 + z2) − λ1

8λ4
(y′2 + z′2),

X2 = exp (2
√

λ4

λ1
x)× B = exp (2

√

λ4

λ1
x)× I2 = exp (2

√

λ4

λ1
x)×

[ ∂
∂x

+
√

λ4

λ1
(y ∂

∂y
+ z ∂

∂z
)], [ λ4

2λ1
(y2 + z2)], [ λ4

2λ1
(y2 + z2) + 1

2 (y′2 + z′2)

−
√

λ4

λ1
(yy′ + zz′)],

X3 = exp (−2
√

λ4

λ1
x)× B = exp (−2

√

λ4

λ1
x)× I3 = exp (−2

√

λ4

λ1
x)×

[ ∂
∂x

−
√

λ4

λ1
(y ∂

∂y
+ z ∂

∂z
)], [ λ4

2λ1
(y2 + z2)], [ λ4

2λ1
(y2 + z2) + 1

2 (y′2 + z′2)

+
√

λ4

λ1
(yy′ + zz′)],

X4 = exp (
√

λ4

λ1
x) ∂

∂y
, B = y

√

λ4

λ1
exp (

√

λ4

λ1
x), I4 = exp (

√

λ4

λ1
x)×

[
√

λ4

λ1
y − y′],

X5 = exp (−
√

λ4

λ1
x) ∂

∂y
, B = −y

√

λ4

λ1
exp (−

√

λ4

λ1
x), I5 = − exp (−

√

λ4

λ1
x)×

[
√

λ4

λ1
y + y′],

X6 = exp (
√

λ4

λ1
x) ∂

∂z
, B = z

√

λ4

λ1
exp (

√

λ4

λ1
x), I6 = exp (

√

λ4

λ1
x)×

[
√

λ4

λ1
z − z′],

X7 = exp (−
√

λ4

λ1
x) ∂

∂z
, B = −z

√

λ4

λ1
exp (−

√

λ4

λ1
x), I7 = − exp (−

√

λ4

λ1
x)×

[
√

λ4

λ1
z + z′],

X8 = −z ∂
∂y

+ y ∂
∂z

. B = 0. I8 = zy′ − yz′.

Case 1.2.1 (A 6= 0, S(x) 6= 0, F (x) 6= 0, U(x) 6= 0)

X1 = −z ∂
∂y

+ (y + λ6

λ4
) ∂

∂z
, B = 0, I1 = y′z − yz′ − λ6

λ4
z′,

X2 = ∂
∂x

, B = − λ4

2λ1
(y2 + z2) I2 = − λ4

2λ1
(y2 + z2) − λ6

λ1
y

−λ6

λ1
y, +1

2(y′2 + z′2),

X3 = exp(2
√

λ4

λ1
x)× B = exp(2

√

λ4

λ1
x)× I3 = exp(2

√

λ4

λ1
x)×

[ ∂
∂x

+ (
√

λ4

λ1
y + λ6√

λ1λ4

) ∂
∂y

[ λ4

2λ1
(y2 + z2) + λ6

λ1
y [ λ4

2λ1
(y2 + z2) + λ6

λ1
y

+
√

λ4

λ1
z ∂

∂z
], +

λ2

6

2λ1λ4
], +

λ2

6

2λ1λ4
+ 1

2(y′2 + z′2)

−
√

λ4

λ1
(yy′ + zz′) − λ6√

λ1λ4

y′],

X4 = exp(−2
√

λ4

λ1
x)× B = exp(−2

√

λ4

λ1
x)× I4 = exp(−2

√

λ4

λ1
x)×

[ ∂
∂x

− (
√

λ4

λ1
y + λ6√

λ1λ4

) ∂
∂y

[ λ4

2λ1
(y2 + z2) + λ6

λ1
y [ λ4

2λ1
(y2 + z2) + λ6

λ1
y

−
√

λ4

λ1
z ∂

∂z
], +

λ2

6

2λ1λ4
], +

λ2

6

2λ1λ4
+ 1

2(y′2 + z′2)

+
√

λ4

λ1
(yy′ + zz′) + λ6√

λ1λ4

y′],

X5 = exp(
√

λ4

λ1
x) ∂

∂y
, B = exp(

√

λ4

λ1
x)[

√

λ4

λ1
y I5 = exp(

√

λ4

λ1
x)×

+ λ6√
λ1λ4

], [
√

λ4

λ1
y + λ6√

λ1λ4

− y′],
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X6 = exp(−
√

λ4

λ1
x) ∂

∂y
, B = exp(−

√

λ4

λ1
x)× I6 = − exp(−

√

λ4

λ1
x)×

[−
√

λ4

λ1
y − λ6√

λ1λ4

], [
√

λ4

λ1
y + λ6√

λ1λ4

+ y′],

X7 = exp(
√

λ4

λ1
x) ∂

∂z
, B =

√

λ4

λ1
z exp(

√

λ4

λ1
x), I7 = exp(

√

λ4

λ1
x)[

√

λ4

λ1
z − z′],

X8 = exp(−
√

λ4

λ1
x) ∂

∂z
. B = −

√

λ4

λ1
z exp(−

√

λ4

λ1
x). I8 = − exp(−

√

λ4

λ1
x)×

[
√

λ4

λ1
z + z′].

Case 1.2.2 (A 6= 0, S(x) = 0, F (x) = 0)

X1 = − λ1

4λ4

∂
∂x

, B = 1
8(y2 + z2) I1 = 1

8(y2 + z2) − λ1µ
4λ4(y2+z2)

−λ1µ
4λ4

(y2 + z2), − λ1

8λ4
(y′2 + z′2),

X2 = exp(2
√

λ4

λ1
x)× B = exp(2

√

λ4

λ1
x)× I2 = exp(2

√

λ4

λ1
x)×

[ ∂
∂x

+
√

λ4

λ1
(y ∂

∂y
+ z ∂

∂z
)], [ λ4

2λ1
(y2 + z2) + µ

y2+z2 ], [ λ4

2λ1
(y2 + z2) + µ

y2+z2

+1
2(y′2 + z′2) −

√

λ4

λ1
(yy′ + zz′)],

X3 = exp(−2
√

λ4

λ1
x)× B = exp(−2

√

λ4

λ1
x)× I3 = exp(−2

√

λ4

λ1
x)×

[ ∂
∂x

−
√

λ4

λ1
(y ∂

∂y
+ z ∂

∂z
)], [ λ4

2λ1
(y2 + z2) + µ

y2+z2 ], [ λ4

2λ1
(y2 + z2) + µ

y2+z2

+1
2(y′2 + z′2) +

√

λ4

λ1
(yy′ + zz′)],

X4 = −z ∂
∂y

+ y ∂
∂z

. B = 0. I4 = zy′ − yz′.

Case 1.3 (λ1 = 0, λ2 6= 0)

X1 = −(z + λ6

λ5
) ∂

∂y
+ y ∂

∂z
, B = 0, I1 = y′z − yz′ + λ6

λ5
y′,

X2 = ∂
∂x

, B = − λ5

2λ2
(y2 + z2) I2 = − λ5

2λ2
(y2 + z2)

−λ6

λ2
z, −λ6

λ2
z + 1

2(y′2 + z′2),

X3 = exp(2
√

λ5

λ2
x)× B = exp(2

√

λ5

λ2
x)× I3 = exp(2

√

λ5

λ2
x)×

[ ∂
∂x

+
√

λ5

λ2
y ∂

∂y
[ λ5

2λ2
(y2 + z2) + λ6

λ2
z [ λ5

2λ2
(y2 + z2) + λ6

λ2
z

+(
√

λ5

λ2
z + λ6√

λ2λ5

) ∂
∂z

], +
λ2

6

2λ2λ5
], +

λ2

6

2λ2λ5
+ 1

2(y′2 + z′2)

−
√

λ5

λ2
(yy′ + zz′) − λ6√

λ2λ5

z′],

X4 = exp(−2
√

λ5

λ2
x)× B = exp(−2

√

λ5

λ2
x)× I4 = exp(−2

√

λ5

λ2
x)×

[ ∂
∂x

−
√

λ5

λ2
y ∂

∂y
[ λ5

2λ2
(y2 + z2) + λ6

λ2
z [ λ5

2λ2
(y2 + z2) + λ6

λ2
z

−(
√

λ5

λ2
z + λ6√

λ2λ5

) ∂
∂z

], +
λ2

6

2λ2λ5
], +

λ2

6

2λ2λ5
+ 1

2(y′2 + z′2)

+
√

λ5

λ2
(yy′ + zz′) + λ6√

λ2λ5

z′],

X5 = exp(
√

λ5

λ2
x) ∂

∂z
, B = exp(

√

λ5

λ2
x)× I5 = exp(

√

λ5

λ2
x)×

[
√

λ5

λ2
z + λ6√

λ2λ5

], [
√

λ5

λ2
z + λ6√

λ2λ5

− z′],

X6 = exp(−
√

λ5

λ2
x) ∂

∂z
, B = − exp(−

√

λ5

λ2
x)× I6 = − exp(−

√

λ5

λ2
x)×

[
√

λ5

λ2
z + λ6√

λ2λ5

], [
√

λ5

λ2
z + λ6√

λ2λ5

+ z′],

X7 = exp(
√

λ5

λ2
x) ∂

∂y
, B =

√

λ5

λ2
y exp(

√

λ5

λ2
x), I7 = exp(

√

λ5

λ2
x)[

√

λ5

λ2
y − y′],

X8 = exp(−
√

λ5

λ2
x) ∂

∂y
. B = −

√

λ5

λ2
y exp(−

√

λ5

λ2
x). I8 = − exp(−

√

λ5

λ2
x)×

[
√

λ5

λ2
y + y′].
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Case 2.1.1 (A 6= 0, S(x) 6= 0, F (x) 6= 0, U(x) 6= 0)

X1 = (−z + λ5

2λ2
x2) ∂

∂y
B = λ5

λ2
xy, I1 = y′z − yz′ + λ5

λ2
xy

+y ∂
∂z

, − λ5

2λ2
x2y′,

X2 = ∂
∂x

, B = −λ5

λ2
z, I2 = −λ5

λ2
z + 1

2(y′2 + z′2),

X3 = x ∂
∂x

+ y
2

∂
∂y

B = λ5

2λ2
xz +

λ2

5

4λ2

2

x3, I3 = λ5

2λ2
xz +

λ2

5

4λ2

2

x3

+(z
2 + 3λ5

4λ2
x2) ∂

∂z
, −3λ5

4λ2
x2z′ + x

2 (y′2 + z2)

−1
2(yy′ + zz′),

X4 = x ∂
∂y

, B = y, I4 = y − xy′,

X5 = ∂
∂y

, B = 0, I5 = −y′,

X6 = x ∂
∂z

, B = z + λ5

2λ2
x2, I6 = z − xz′ + λ5

2λ2
x2,

X7 = ∂
∂z

. B = λ5

λ2
x. I7 = −z′ + λ5

λ2
x.

Case 2.1.2 (A 6= 0, d2 = 0, S(x) = 0, F (x) = 0)

X1 = −z ∂
∂y

+ y ∂
∂z

, B = U(x), I1 = U(x) + zy′ − yz′,

X2 = ∂
∂x

. B = v. I2 = v + 1
2 (y′2 + z′2).

Case 2.1.3 (A 6= 0, d2 6= 0, S(x) = 0, F (x) = 0)

X1 = ∂
∂x

, B = v, I1 = v + 1
2 (y′2 + z′2),

X2 = x ∂
∂x

+ y
2

∂
∂y

+ z
2

∂
∂z

, B = xv, I2 = xv + x
2 (y′2 + z′2)

−1
2(yy′ + zz′),

X3 = −z ∂
∂y

+ y ∂
∂z

. B = 0. I3 = zy′ − yz′.

Case 2.1.4 (A = 0, d2 = 0, F (x) = λ2

λ1
S(x))

X1 = ∂
∂x

, B = v, I1 = v + 1
2 (y′2 + z′2),

X2 = exp(
√

λ3

λ1
x)( ∂

∂y
+ λ2

λ1

∂
∂z

), B =
√

λ3

λ1
exp(

√

λ3

λ1
x)× I2 = exp(

√

λ3

λ1
x)[

√

λ3

λ1
(y + λ2

λ1
z)

(y + λ2

λ1
z), −y′ − z′],

X3 = exp(−
√

λ3

λ1
x)( ∂

∂y
+ λ2

λ1

∂
∂z

). B = −
√

λ3

λ1
exp(−

√

λ3

λ1
x)× I3 = − exp(−

√

λ3

λ1
x)[

√

λ3

λ1
(y + λ2

λ1
z)

(y + λ2

λ1
z). +y′ + z′].

Case 2.2.1 (λ1 6= 0, λ2 = 0, λ3 = 0)

X1 = −z ∂
∂y

+ (y − λ5

2λ1
x2) ∂

∂z
, B = −λ5

λ1
xz, I1 = y′z − yz′ − λ5

λ1
xz

+ λ5

2λ1
x2z′,

X2 = ∂
∂x

, B = −λ5

λ1
y, I2 = −λ5

λ1
y + 1

2(y′2 + z′2),

X3 = x ∂
∂x

+ (y
2 + 3λ5

4λ1
x2) ∂

∂y
B = λ5

2λ1
xy +

λ2

5

4λ2

1

x3, I3 = λ5

2λ1
xy +

λ2

5

4λ2

1

x3 − 3λ5

4λ1
x2y′

+ z
2

∂
∂z

, +x
2 (y′2 + z2) − 1

2(yy′ + zz′),

X4 = x ∂
∂y

, B = y + λ5

2λ1
x2, I4 = y − xy′ + λ5

2λ1
x2,

X5 = ∂
∂y

, B = λ5

λ1
x, I5 = λ5

λ1
x − y′,

X6 = x ∂
∂z

, B = z, I6 = z − xz′,

X7 = ∂
∂z

. B = 0. I7 = −z′.
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Case 2.2.2 (λ1 6= 0, λ2 = 0, λ3 6= 0)

X1 = −z ∂
∂y

+ (y + λ5

λ3
) ∂

∂z
, B = 0, I1 = −y′z + yz′ + λ5

λ3
z′,

X2 = ∂
∂x

, B = − λ3

2λ1
(y2 + z2) − λ5

λ1
y, I2 = − λ3

2λ1
(y2 + z2) − λ5

λ1
y

+1
2(y′2 + z′2),

X3 = exp(
√

λ3

λ1
x) ∂

∂y
, B = exp(

√

λ3

λ1
x)(y

√

λ3

λ1
I3 = exp(

√

λ3

λ1
x)(y

√

λ3

λ1

+ λ5√
λ1λ3

), + λ5√
λ1λ3

− y′),

X4 = exp(−
√

λ3

λ1
x) ∂

∂y
, B = − exp(−

√

λ3

λ1
x)(y

√

λ3

λ1
I4 = − exp(−

√

λ3

λ1
x)(y

√

λ3

λ1

+ λ5√
λ1λ3

), + λ5√
λ1λ3

+ y′),

X5 = exp(
√

λ3

λ1
x) ∂

∂z
, B = z

√

λ3

λ1
exp(

√

λ3

λ1
x), I5 = exp(

√

λ3

λ1
x)(z

√

λ3

λ1
− z′),

X6 = exp(−
√

λ3

λ1
x) ∂

∂z
. B = −z

√

λ3

λ1
exp(−

√

λ3

λ1
x). I6 = − exp(−

√

λ3

λ1
x)(z

√

λ3

λ1
+ z′).

Case 2.3 (λ1 = 0, λ2 6= 0)

X1 = (−z + λ5

2λ2
x2) ∂

∂y
+ y ∂

∂z
, B = λ5

λ2
xy, I1 = y′z − yz′ + λ5

λ2
xy

− λ5

2λ2
x2y′,

X2 = ∂
∂x

, B = −λ5

λ2
z, I2 = −λ5

λ2
z + 1

2 (y′2 + z′2),

X3 = x ∂
∂x

+ y
2

∂
∂y

B = λ5

2λ2
xz +

λ2

5

4λ2

2

x3, I3 = λ5

2λ2
xz +

λ2

5

4λ2

2

x3 − 3λ5

4λ2
x2z′

+(z
2 + 3λ5

4λ2
x2) ∂

∂z
, +x

2 (y′2 + z2) − 1
2(yy′ + zz′),

X4 = x ∂
∂z

, B = z + λ5

2λ2
x2, I4 = z − xz′ + λ5

2λ2
x2,

X5 = ∂
∂z

, B = λ5

λ2
x, I5 = λ5

λ2
x − z′,

X6 = x ∂
∂y

, B = y, I6 = y − xy′,

X7 = ∂
∂y

. B = 0. I7 = −y′.

4 Conclusion

We have studied the partial Noether operators corresponding to a partial Lagrangian for
a Hamiltonian system with two degrees of freedom. This problem was studied before via
Noether symmetries in [6] wherein the authors did not provide the first integrals. In this
work we have obtained both the partial Noether operators and the corresponding first
integrals. We investigated the effectiveness of the partial Lagrangian approach which has
provided all the first integrals. This study provides an alternative way to construct first
integrals for equations for which we do not need a Lagrangian. The previous work [6], does
not give the complete classification for the Hamiltonian system considered. In this paper
we gave the complete classification for the underlying system via a partial Lagrangian
approach and we have obtained more general results that were not discussed in [6]. This
approach can give rise to further studies to classify systems which are not variational and
to derive first integrals from a partial Lagrangian viewpoint.
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