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Abstract

The boundary value problems for the two-dimensional, steady, irrotational flow of a
frictionless, incompressible fluid past a wedge and a circular cylinder are considered.
It is shown that by considering first the invariance of the boundary condition we are
able to obtain a transformation group that can be used to solve each boundary value
problem.

1 Introduction

In theoretical fluid mechanics the problem of determining the two-dimensional, steady,
irrotational flow of a frictionless, incompressible fluid (an ideal fluid) past a body B can
be solved by using conformal transformations (see, for example, [5, 7]). The basic idea
behind conformal transformations is very simple: find an invertible transformation, 7" say,
that will transform the body B into the body B* given that the flow past the body B* is
known; then, using the inverse transformation 7! the flow past the body B can be found.
By using conformal transformations we are able to determine the flow past the body B
without actually having to solve the two-dimensional Laplace equation which models the
problem. It does nonetheless provide us with a solution of Laplace’s equation subject to
some boundary condition.

It was discovered in the 19th century, mainly through the work of the Norwegian mathe-
matician Sophus Lie, that the majority of ad hoc methods used to solve differential equa-
tions could be explained and deduced by means of the theory of transformation groups
[6]. Transformation groups at present are mainly used to solve differential equations while
ignoring boundary conditions. Although it is known how to use transformation groups
to solve boundary value problems (see, for example, [3]), there is an infinite number of
transformation groups that leave Laplace’s equation invariant. This means that one has
to resort to guessing the transformation group that leaves the boundary value problem
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invariant, thus making the usual method unsuitable to treat this problem. In this article
we show how to overcome this difficulty by considering the invariance of the boundary con-
dition before the invariance of Laplace’s equation. This is a reversal of the usual method.

The outline for the rest of the article is as follows. In section 2 we give a brief overview of
some of the concepts and basic equations in fluid mechanics. In section 3 we justify our
belief that the problem of determining the two-dimensional, steady, irrotational motion of
an ideal fluid past a body can be solved via the theory of transformation groups. Using
this approach we obtain known solutions for the flow past a wedge and a circular cylinder.
The article ends with some conclusions.

2 The two-dimensional steady irrotational flow of an ideal
fluid

In the absence of any external forces (such as gravity) the steady flow of an ideal fluid
past a body is governed by the continuity equation,

and Euler’s equation,
p(v-V)v+YVp =0, (2.2)

where p is the density of the fluid, p (z) is the pressure at a point z in the fluid and v (z)
the velocity of a fluid particle at the point z (see, for example, [1, 4, 8]).

2.1 Streamlines

It is common practice in fluid mechanics to picture the flow of a fluid by drawing stream-
lines. A streamline, given by the equation ¢ (z) = ¢, ¢ a constant, is a fictitious line drawn
in the fluid whose tangent is everywhere parallel to v [1, 4, 8]. Following [8], let e! be a
unit vector tangent to the streamline drawn in the direction of v, let e2 = —V1/ |V4¢| be a
unit vector normal to the streamline drawn in the direction towards which ¢ (z) decreases
and let €3 be a constant unit vector perpendicular to the plane of motion such that e!, e?
and e? form a right-hand system of base vectors; then

v=¢®x Vi, (2.3)
where V = Z?Zl €' (9/0xz"). Using the vector identity,

Vx (& x¥Vp)=(V-V)e'— (V) Vv -V (V- e*) + (V- V),
we have that
Vxuv=— (e V)V + eV,

where V - V¢ = V2. However, (g3 -Z) V1 = 0 because there is no variation of V4
perpendicular to the plane of motion since the motion is taken to be two-dimensional.
Consequently

w = V%, (2.4)

where w is the magnitude of the vorticity w =V x v.
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2.2 Equipotential lines

If the vorticity is everywhere equal to zero then the flow is said to be irrotational and v
can be written as the gradient of a scalar function ¢ (z), that is,

v=VYo. (2.5)

Substituting for v in the continuity equation (2.1) we have that
V24 = 0. (2.6)

Furthermore, if we imagine the surface of the body to be a rigid impermeable wall and
the fluid next to this wall can slip past it, then the problem of determining the steady
irrotational flow of an ideal fluid past the body is reduced to solving Laplace’s equation
(2.6) for the velocity potential ¢ (z) subject to the boundary condition,

n - V¢ = 0 along the surface of the body, (2.7)

where n is a unit vector normal to the surface of the body in the outward direction. Since
the motion is irrotational it follows from equation (2.4) that an alternative approach to
determining the flow past the body would be to solve Laplace’s equation for the stream
function ¢ (),

Vi =0, (2.8)
subject to the boundary condition,
¥ (z) = 0 along the surface of the body. (2.9)

We do not, however, have to solve the boundary value problem (2.6)-(2.7) and the bound-
ary value problem (2.8)-(2.9) seperately to determine the velocity potential and the stream
function because, by equation (2.3), the stream function and the velocity potential are re-
lated by means of the equation

Vo =e* x Y. (2.10)

For this reason we shall consider the problem of solving the boundary value problem (2.6)-
(2.7) for the velocity potential instead of solving the boundary value problem (2.8)-(2.9)
for the stream function.

An important consequence of equation (2.10) is that equipotential lines and the streamlines
intersect at right angles. It was this observation that first led us to believe that we could
solve either boundary value problem using transformation groups.

3 Continuous one-parameter transformation groups

Let the problem of determining the flow past a body be posed in a rectangular cartesian
coordinate system so that, as is usual, z = (z,y). Then, if F'(z,y) = 0 is the equation of
the surface of the body, the unit outward normal vector n is given by

VF (Fy, Fy)

A NI

ﬂ:
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where subscripts denote differentiation. Hence to determine the velocity potential ¢ for
the flow past a body we have to solve Laplace’s equation,

¢:m + Qbyy = 0) (3-1)

subject to the boundary condition,
Fy¢p + Fy¢py =0 when F' = 0. (3.2)

The possibilty of using a continuous one-parameter transformation group to solve the
boundary value problem (3.1)-(3.2) can be justified as follows. The graph of the solution
of the boundary value problem is a surface, the contours of which are just equipotential
lines by another name. This fact, combined with the fact that equipotential lines and
streamlines intersect at right angles, implies that as we move along a streamline in the
direction of v we are continuously moving from one solution of the boundary value prob-
lem to another solution of the boundary value problem. It is, however, a property of
transformation groups, in our case a continuous one-parameter transformation group, G
say, given by

z* = a*(z,y,P;€)
vt o= yt(z,y,0€) o, (3.3)
¢ = ¢ (z,y,P;¢€)

to transform solutions to solutions [2, 9]. The streamlines therefore can be taken to be
the projection on the xy-plane of the path curves of the group G.

The infinitesimal transformations corresponding to (3.3),

z* z+eX (z,y,0)+ O (62)
y* y+eY (z,y,0) + O () 3, (3.4)
¢ = ¢+ (z,y,¢) + O ()

define a vector (X, Y, ®) that is tangent to the path curves of the group G. The projection
of this vector on the zy-plane is thus a vector parallel to v, that is, v x (X,Y,0) = 0.
Since we are taking the surface of the body to be a rigid impermeable wall (given by the
equation F' (x,y) = 0) and that the fluid next to this wall can slip past it, we have that,
along the surface of the body, v must be parallel to the unit tangent vector

(Fy, —F;,0)
\ F2+ Ff

from which it follows that

t=

(Fy,—F;,0) x (X,Y,0) =0. (3.5)
A solution of equation (3.5) is X = F,, and Y = F,. Hence

(X,Y,®) = (F,, —Fy, ®) when F =0. (3.6)
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If @ can be found then we will have the infinitesimal form of the transfomation group
G that leaves the boundary value problem (3.1)-(3.2) invariant. We can then apply the
invariance principle [6] and seek the solution of the boundary value problem among func-
tions that are invariant under the transformation group G.

The solution ¢ = F (x,y) of the boundary value problem (3.1)-(3.2) is said to be invariant
under the transformation group G if

¢* =F (z*,y") when ¢ = F(x,y). (3.7
The infinitesimal version of the invariance condition (3.7) is

¢+ed=F (z+eX,y+eY)+ O () when ¢ = F (2,9). (3.8)
Expanding and equating O (€) terms we have that

Xy + Y, = . (3.9)

3.1 Flow past a wedge

Consider the problem of determining the flow past a wedge placed in a uniform flow such
that the streamline pattern is symmetric with respect to the z-axis. Let the surface of the
wedge be given by the equation FF = y — ma = 0, m a positive constant. To determine
the velocity potential ¢ for the flow past the wedge we have to solve Laplace’s equation,

¢xw + ¢yy = 07 (3'10)

subject to the boundary condition,

—Ybz + ¢y = 0 when y = max. (3.11)
From (3.6)
(X,Y,®) = (1,m,®) wheny —mzx =0
1
= - D).
R

Let X =z, Y =y and redefine z® to be ® (X =1 and Y = y/x will not leave Laplace’s
equation invariant). Then we should expect the boundary value problem (3.10)-(3.11) to
be invariant under the transformation group G given infinitesimally by

¥ = z4+ex+0O (62)
y* y+ey+ 0 () : (3.12)
¢ = ¢+ed(,y,0)+ O ()

It follows from the infinitesimal transformations (3.12) that the derivatives ¢, and ¢y,
transform as (see, for example, [3, 6])

¢;*z* = Qzz € ((I)zz + 2¢J}(I)x¢> + ¢zz@¢> + ¢§;(I)¢¢ - 2¢a:a:) + O (62)
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and

¢Z*y* = ¢yy te (q)yy + 20y Pyg + dyy Py + ¢§¢¢>¢> - 2¢yy) + O (62) .

Then the condition for Laplace’s equation (3.10) to be invariant under the transformation
group G, namely,

Gpegr + ey = 0 when ¢y + ¢y = 0, (3.13)
implies that
Dug + Py + 202 Pug + 20, Pyg + (02 + 1) g = 0. (3.14)

Since ® does not depend on the derivatives of ¢, equation (3.14) decomposes into a system
of partial differential equations for @,

(I)¢¢ =0, ‘1335(75 =0, (I)y¢ =0, and ®,, + (I)yy =0,
from which we obtain

q)(x7y7¢) :a¢+A(x7y)7

where a is a constant and A, + Ay, = 0. If A is set equal to be zero then substituting for
X =2z,Y =y and ® = a¢ in equation (3.9) we have that for a group invariant solution

Loz + Yoy = ag. (3.15)

Solving the partial differential equation (3.15) the solution of the boundary value problem
(3.10)-(3.11) must be of the form

6 (2,y) = (&% +12)" F(w), (3.16)

where w = arctan (y/x) (it is easier to solve the resulting ordinary differential equation
if we take w = arctan (y/z) instead of w = y/x). Substituting the form of the solution
(3.16) into Laplace’s equation (3.10) gives the following ordinary differential equation for

S (w):
fww + azf =0. (317)

The solution of the ordinary differential equation (3.17) yields

¢ (z,y) = (2> + y2)a/2 [k1 cos (aw) + ko sin (aw)], (3.18)

where ki and ky are arbitrary constants. It follows from the boundary condition (3.11)
that ko = k1 tan (af) where 6 = arctan m. Hence

ey (x2 + yQ)a/Z

¢ (@,y) = cos (af)

cos [a (w — 0)]. (3.19)

To determine the corresponding stream function we note from equation (2.10) that

Gz = wy and ¢y = —%-
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Choosing to differentiate the velocity potential (3.19) with respect to x and then integrat-
ing with respect to y by parts and setting the additive constant of integration equal to
zero we obtain the following stream function:

ky (xz + yz)a/2

o5 (a) sin [a (w — 6)]. (3.20)

¥ (2,y) =
Taking a = w/ (m — ) gives us the known solution for the flow past a wedge [8]. Sketched in
Figure 1 are some equipotential lines and streamlines for the flow past a wedge calculated
using equations (3.18) and (3.20).

Figure 1: Equipotential lines (- -) and streamlines (—) for the flow past a wedge.

3.2 Flow past a circular cylinder

Consider next the problem of determining the flow past a circular cylinder with unit radius
placed in a uniform stream such that the streamline pattern is symmetric with respect to
the z-axis. Let the surface of the cylinder be given by the equation F = 22 +y?> —1 =0
so that we have to solve Laplace’s equation,

¢xw + ¢yy = 07 (3-21)

subject to the boundary condition,

Thr + ydy, = 0 when 2?4192 =1. (3.22)
From (3.6)
(X,Y,®) = (2y,—2z,®) when z° +y* =1

®
= 2 -z, — .
(1s.2)

Let X =y, Y = —z and redefine ®/2 to be ®. Then we should expect the bound-
ary value problem (3.21)-(3.22) to be invariant under the transformation group G given
infinitesimally by

ot = ztey+0(?)
v = y—ex+ 0O () . (3.23)
0" = d+ed(z,y.0)+0()
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It follows from the infinitesimal transformations (3.23) that the derivatives ¢z, and ¢y,
transform as

Gy = oz + € (P + 205 Pug + Dua®Py + P2Pyp + 200y) + O ()
and
¢Z*y* = ¢yy te ((I)yy + 2¢yq)y¢ + ¢yy‘1)¢ + ¢§(I)¢¢ - 2¢:vy) + 0 (62) :

For this example, however, the condition that Laplace’s equation (3.21) be invariant under
the transformation group G, namely,

Ppegr + yeye = 0 when ¢y + ¢y = 0,

does not give us the known solution for the flow past a circular cylinder. Following [2], let
us consider instead the following invariance condition:

* * _ ¢xa: + Qbyy = 0,
g + Gyeyr = 0 when { Ybo —xhy = . (3.24)

The extra condition is obtained from equation (3.9) setting X = y and Y = —z. The
invariance condition (3.24) reduces to

Dy + Py + 202 Pag + 20y Pyg + (07 + ¢7) Py = 0 when yo, — x¢y = . (3.25)
Introduce a function 2 (z,y, ¢) such that
20,4 = yQ and 2,4 = —zQ). (3.26)

Since ® does not depend on the derivatives of ¢ it follows from equations (3.25) and (3.26)
that

Dy + By, = —Q and Dy = 0. (3.27)

Without the function © the invariance condition (3.25) cannot be solved for ®. The
solution of the system of partial differential equations (3.26) and (3.27) is

O (z,y,0) = 6B (w) + D (z,y)
where w = arctan (y/z),

Byw —2BB, =0 (3.28)
and

Dyy + Dyy = —DSL.
Integration of the ordinary differential equation (3.28) with respect to w gives

B, —B?=c¢, can arbitrary constant.
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There are three cases to consider. Let ¢ = c% > 0, then B = ¢; tan (cqw + ¢2) and, if we
set D =0, ® = ¢y¢tan (ciw + c2) so that for a group invariant solution we must solve the
partial differential equation

Yoz — xdy = crgtan (crw + c2), (3.29)

where ¢y and ¢o are arbitrary constants. Thus the solution of the boundary value problem
(3.21)-(3.22) must be of the form

¢ (z,y) = cos (cqw + ¢2) f (u), (3.30)

where u = 22 + y2. The substitution of the form of the solution (3.30) into Laplace’s
equation (3.21) gives the following differential equation for f (u):

4P o + dufy — 3 f = 0. (3.31)

The solution of the ordinary differential equation (3.31) yields
¢ (z,y) = kg cos (crw + ¢2) [k1ucl/2 + u_cl/Q] , (3.32)

where k1 and ko are arbitrary constants. From the boundary condition (3.22) it follows
that k1 = 1. As in the previous example, if we differentiate (3.32) with respect to z,
integrate with respect to y by parts and set the additive constant of integration equal to
zero we have that

Y (z,y) = kosin (crw + ¢2) [UCI/Q - Uicl/Q] : (3.33)

Taking ¢; = 1 and ¢y = 0 gives us the known solution for the flow past a circular cylinder
[8]. Sketched in Figure 2 are some equipotential lines and streamlines for the flow past a
circular cylinder using equations (3.32) and (3.33).

Figure 2: Equipotential lines (- -) and streamlines (—) for the flow past a cylinder.

In the second case, ¢ = 0, we find that

ko

¢(:Cay) = k2w and ¢(‘T7y) = _?lnu’
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which represents circular flow around the cylinder. In the third case, ¢ = —c2 < 0, we find
that

¢ (x) = ko cos (mr - %1 In u) [co exp (crw) — exp (—cjw)]
and
Y (z) = kg sin (mr — %1 In u) [ca exp (ciw) + exp (—ciw)]

for which we are unable to offer a physical interpretation.

4 Conclusions

The conventional approach to solving a boundary value problem with one dependent
variable and two independent variables using continuous one-parameter transformation
groups consists of three steps. In the first step we determine all the transformation groups
that leave the differential equation invariant. In the second step we determine which of
these transformation groups also leaves the boundary condition invariant. In the last step
the transformation group that leaves the differential equation and the boundary condition
invariant is used to determine the group invariant solution of the boundary value problem.
If we were to follow this approach to solve the boundary value problem for the two-
dimensional, steady, irrotational flow of an ideal fluid past a wedge and a circular cylinder
then it is difficult to proceed beyond the first step. This is because there are an infinite
number of transformation groups that leave Laplace’s equation (3.1) invariant, the only
restriction being that the infinitesimal form of the transformation group,

x* z+ eX (z,y) + O (e2)
v o= y+eY (ny) +0(E) o, (4.1)
o = o+ed(n,y,0)+0(S)

satisfy the following constraints:
Xy =Y, and Xy, =Y, (4.2)
and

¢ = O‘¢+ﬁ(x7y)7 (43)

where « is a constant and (3, + By, = 0. The second step therefore requires us to guess
X, Y and @ subject to the contraints (4.2) and (4.3) such that the transformation group
(4.1) leaves the boundary condition (3.2) invariant. In this article we showed how this
problem may be overcome by interchanging the first two steps. In the first step of our
approach we determine X and Y from the boundary condition (3.2) using (3.6) such that
X and Y satisfy the constraints (4.2). In the second step we determine ® such that the
transformation group leaves Laplace’s equation (3.1) invariant. This is done using either
the classical method (as in the case of the wedge) or the non-classical method (as in the
case of the circular cylinder). We are then guaranteed that the transformation group thus
found will leave the boundary value problem invariant and can proceed to step three.
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