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Abstract

The similarity solution to Prandtl’s boundary layer equations for two-dimensional
and radial flows with vanishing or constant mainstream velocity gives rise to a third-
order ordinary differential equation which depends on a parameter α. For special
values of α the third-order ordinary differential equation admits a three-dimensional
symmetry Lie algebra L3. For solvable L3 the equation is integrated by quadrature.
For non-solvable L3 the equation reduces to the Chazy equation. The Chazy equation
is reduced to a first-order differential equation in terms of differential invariants which
is transformed to a Riccati equation. In general the third-order ordinary differential
equation admits a two-dimensional symmetry Lie algebra L2. For L2 the differential
equation can only be reduced to a first-order equation. The invariant solutions of the
third-order ordinary differential equation are also derived.

1 Introduction

Prandtl [14] introduced the concept of a boundary layer in large Reynolds number flows
in 1904 and he also showed how the Navier-Stokes equation could be simplified to yield
approximate solutions. The similarity solution to Prandtl’s boundary layer equation for
the stream function for steady two-dimensional and radial flows with vanishing or constant
mainstream velocity yields the third-order ordinary differential equation

d3y

dx3
+By

d2y

dx2
+ C(

dy

dx
)2 = 0, (1.1)

where

B =

{

1 − α two-dimensional

2 − α radial
, C = 2α − 1, (1.2)
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and α is a constant determined from further conditions. Equation (1.1) arises in the study
of steady flows produced by free jets, wall jets and liquid jets (two-dimensional or radial),
the flow past a stretching plate and Blasius flow. The numerical solution for a free two-
dimensional jet for which α = 2/3 was obtained by Schlichting [17] and later an analytic
solution was derived by Bickley [3]. In [18], Squire obtained the solution for the free radial
jet for which α = 1. The solutions for two-dimensional and radial wall jets for which
α = 3/4 (two-dimensional) and α = 5/4 (radial) were obtained in parametric form by
Glauert [9]. Riley [15] derived the solution for a radial liquid jet for which α = 2. Later,
two-dimensional flow past a stretching plate with α = 0 was discussed by Crane [7].

The purpose of this paper is to obtain reductions and solutions of the third-order dif-
ferential equations which arise from Prandtl boundary layer equations for two-dimensional
and radial flows with vanishing or constant mainstream velocity using Lie symmetry meth-
ods of reduction. The invariant solutions are also derived.

The Lie point symmetry generators of equation (1.1) for general values of α are

X1 = ∂/∂x, X2 = x∂/∂x− y∂/∂y. (1.3)

For special values of α three Lie point symmetry generators exist and the third-order
ordinary differential equation is solved by the Lie approach as described, for example,
by Ibragimov and Nucci [11], Mahomed [12] and Olver [13]. For B = 0 the third-order
ordinary differential equation (1.1) describes radial and two-dimensional liquid jets and
admits a solvable Lie algebra. We solve the equation by the Lie approach ( Ibragimov and
Nucci [11], Mahomed [12], Olver [13]). For α = −1 (two-dimensional) and α = −4 (radial),
the third-order ordinary differential equation (1.1) admits a non-solvable Lie algebra and
can be reduced to the Chazy equation [4, 5, 6, 8]. Clarkson and Olver [8] expressed the
general solution of the Chazy equation as the ratio of two solutions of a hypergeometric
equation. We reduce the Chazy equation by the Lie approach using the semi-canonical
variables of Ibragimov and Nucci [11]. Another approach is given by Adam and Mahomed
[1].

2 Mathematical formulation

Prandtl’s boundary layer equation for the stream function for an incompressible, steady
two-dimensional flow with uniform or vanishing mainstream velocity is [16]

∂ψ̄

∂ȳ

∂2ψ̄

∂x̄∂ȳ
− ∂ψ̄

∂x̄

∂2ψ̄

∂ȳ2
= ν

∂3ψ̄

∂ȳ3
, (2.1)

where ν is the kinematic viscosity. Using the classical Lie method of infinitesimal trans-
formations [13] the similarity solution for equation (2.1) is found to be

ψ(x̄, ȳ) = x̄1−αF (χ), χ =
ȳ

x̄α
. (2.2)

The substitution of equation (2.2) in equation (2.1) yields a third-order ordinary differen-
tial equation in F (χ):

ν
d3F

dχ3
+ (1 − α)F

d2F

dχ2
+ (2α− 1)(

dF

dχ
)2 = 0. (2.3)
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The variable χ = ȳ/x̄α is the similarity variable.
For radial flow, Prandtl’s boundary layer equation for uniform or vanishing mainstream

velocity is [9]

1

r

∂ψ

∂z

∂2ψ

∂r∂z
− 1

r2
(
∂ψ

∂z
)2 − 1

r

∂ψ

∂r

∂2ψ

∂z2
= ν

∂3ψ

∂z3
. (2.4)

The similarity solution of equation (2.4) derived using the Lie method is

ψ(r, z) = r2−αF (χ), χ =
z

rα
, (2.5)

which reduces equation (2.4) to

ν
d3F

dχ3
+ (2 − α)F

d2F

dχ2
+ (2α− 1)(

dF

dχ
)2 = 0. (2.6)

Equations (2.3) and (2.6) can be combined to give the following third-order ordinary
differential equation:

ν
d3F

dχ3
+BF

d2F

dχ2
+ C(

dF

dχ
)2 = 0, (2.7)

where B and C are defined in terms of α by (1.2). The transformation (χ,F ) 7→ (x, νy)
reduces equation (2.7) to (1.1).

3 Lie point symmetry generators

Equation (1.1) can be written as

E(y, y′, y′′, y′′′) = 0, (3.1)

where

E =
d3y

dx3
+By

d2y

dx2
+ C(

dy

dx
)2. (3.2)

The Lie point symmetry generators

X = ξ
∂

∂x
+ η

∂

∂y
, (3.3)

are obtained from the determining equation [2]

X [3]E |E=0= 0, (3.4)

where X [3] is the third-order prolongation given by

X [3] = ξ
∂

∂x
+ η

∂

∂y
+ ζ1

∂

∂y′
+ ζ2

∂

∂y′′
+ ζ3

∂

∂y′′′
, (3.5)

where

ζ1 = D(η) − y′D(ξ), ζ2 = D(ζ1) − y′′D(ξ), ζ3 = D(ζ2) − y′′′D(ξ), (3.6)
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and

D =
∂

∂x
+ y′

∂

∂y
+ y′′

∂

∂y′
+ y′′′

∂

∂y′′
. (3.7)

Equation (3.4) is separated according to derivatives of y. The solution depends whether
B = 0 or B 6= 0.

Table 3.1: Lie point symmetries for B = 0 and B 6= 0.

Two-dimensional Radial Lie point symmetries Lie
flow flow for both flows algebra

B = 0 B = 0 X1 = ∂
∂x [X1,X2] = 0

α = 1 α = 2 X2 = ∂
∂y [X1,X3] = X1

X3 = x ∂
∂x − y ∂

∂y [X2,X3] = −X2

B = 2 B = 6 X1 = ∂
∂x [X1,X2] = X1

α = −1 α = −4 X2 = x ∂
∂x − y ∂

∂y [X1,X3] = 2X2

X3 = x2 ∂
∂x + (12

B − 2xy) ∂
∂y [X2,X3] = X3

B 6= 0, α 6= 1 B 6= 0, α 6= 2 X1 = ∂
∂x [X1,X2] = X1

B 6= 2, α 6= −1 B 6= 6, α 6= −4 X2 = x ∂
∂x − y ∂

∂y

4 Symmetry solutions

4.1 Case I: B = 0 (two-dimensional and radial )

For this case, α = 1, C = 1 for two-dimensional flow and α = 2, C = 3 for radial flow.
Using the transformation y → 3

CY in equation (1.1), we obtain

d3Y

dx3
+ 3(

dY

dx
)2 = 0. (4.1)

Equation (4.1) applies for both radial and two-dimensional liquid jets [15]. Using y → 3
CY

in Table 3.1, the commutators of the Lie point symmetry generators for this case are
[X1,X2] = 0, [X1,X3] = X1, [X2,X3] = −X2. Thus equation (4.1) admits a solvable Lie
algebra L3 and can be solved by the Lie approach as outlined, for example, by Ibragimov
and Nucci [11], Mahomed [12] and Olver [13].
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Consider the subalgebra L2 =< X1,X2 >. A basis of differential invariants of the
subalgebra L2 = L2 < X1,X2 > is

s = Y ′, t = Y ′′, (4.2)

which reduces equation (4.1) to the following first-order ordinary differential equation:

dt

ds
= −3s2

t
, (4.3)

which is in variables separable form. The solution of equation (4.3) is

t =
[

2(c1 − s3)
]

1

2 , (4.4)

which can be expressed in the original variables as

Y ′′ =
[

2(c1 − Y ′3)
]

1

2 . (4.5)

The solution of equation (4.5) is

− 2

3c
2

3

1

(c1 − s3)
1

2 ×2F1[
1

2
,
2

3
;
3

2
; 1 − s3

c1
] =

√
2x+ c2, (4.6)

where 2F1 is the Hypergeometric function of first kind and c1, c2 are arbitrary constants.
For both the radial and two-dimensional liquid jets the boundary conditions are

Y (0) = 0, Y ′(0) = 0, Y ′(1) = 1, Y ′′(1) = 0, (4.7)

and therefore

c1 = 1, c2 = −2

3
2F1[

1

2
,
2

3
;
3

2
; 1]. (4.8)

Equation (4.6) finally yields

x =

√
2

3

(

2F1[
1

2
,
2

3
;
3

2
; 1] − (1 − s3)

1

2 ×2F1[
1

2
,
2

3
;
3

2
; 1 − s3]

)

, (4.9)

which can be used to tabulate the values of x for given values of the parameter s = Y ′.
The scaled velocity profiles for radial and two-dimensional liquid jets are the same and
are shown in Figure 1. Figure 1 agrees with the velocity profile of a radial jet given by
Riley [15].

4.2 Case II: B = 2, α = −1 (two-dimensional), B = 6, α = −4 (radial)

Then C = −3B/2 and with this value of C the transformation y → −2Y/B reduces
equation (1.1) to

d3Y

dx3
− 2Y

d2Y

dx2
+ 3(

dY

dx
)2 = 0, (4.10)
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Figure 1: The velocity function Y ′(x) for two-dimensional and radial liquid jets.

which is the Chazy equation ([4, 5, 6, 8]). Using y → −2Y/B in the Lie point symmetries
for this case in Table 3.1, we obtain

X1 =
∂

∂x
, X2 = x

∂

∂x
− Y

∂

∂Y
, X3 = x2 ∂

∂x
− 2(3 + xY )

∂

∂Y
, (4.11)

which are the Lie point symmetries of the Chazy equation ([4, 5, 6, 8]). The commutators
of the Lie point symmetry generators in (4.11) are

[X1,X2] = X1, [X1,X3] = 2X2, [X2,X3] = X3. (4.12)

Thus equation (4.10) possesses a non-solvable Lie symmetry algebra L3 and, therefore,
cannot be solved by the Lie approach (Ibragimov and Nucci [11], Mahomed [12] and Olver
[13]).

Consider the subalgebra L2 =< X1,X2 >. A basis of differential invariants of the
subalgebra L2 = L2 < X1,X2 > is

s = Y ′Y −2, t = Y ′′Y −3, (4.13)

which reduces equation (4.10) to the following first-order ordinary differential equation:

dt

ds
=

(3s − 2)t+ 3s2

2s2 − t
. (4.14)

The non-local generator X3 admitted by equation (4.14) in the space (s, t) is [11]

X3 = Y −1[−2(1 − 6s)
∂

∂s
+ 6(3t − s)

∂

∂t
]. (4.15)

By solving the first-order linear partial differential equation

(1 − 6s)
∂w

∂s
− 3(3t − s)

∂w

∂t
= 0, (4.16)

we obtain a new variable

w =
1 + 9(t− s)

(1 − 6s)
3

2

, (4.17)
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which transforms the generator (4.15) to its semi-canonical form

X3 = Y −1(1 − 6s)
∂

∂s
. (4.18)

Equation (4.14) in variables s and w becomes

ds

dw
=

(1 − 6s)
1

2 (−1 + 3s) + (1 − 6s)w

9(w2 − 1)
. (4.19)

By the Vessiot-Guldberg-Lie theorem [10, 11], the generators

Λ1 = s(1 − 6s)
1

2

∂

∂s
, Λ2 = (1 − 6s)

1

2

∂

∂s
, Λ3 = (1 − 6s)

∂

∂s
, (4.20)

form a three-dimensional Lie algebra. To convert equation (4.19) to a Riccati equation,
consider

Λ̄1 = −1

3
Λ2, Λ̄2 = −1

3
Λ3, Λ̄3 = 2Λ1 −

1

3
Λ2, (4.21)

and define φ

φ = (1 − 6s)
1

2 , (4.22)

where φ satisfies

1

3
(1 − 6s)

dφ

dt
= −φ. (4.23)

Equation (4.19) reduces to a Riccati equation in the variables (w,φ):

dφ

dw
=

1

6(w2 − 1)
φ2 − w

3(w2 − 1)
φ+

1

6(w2 − 1)
. (4.24)

The substitution

u = exp[−1

6

(

∫

φ

w2 − 1
dw

)

], (4.25)

reduces the Riccati equation (4.24) to a second order linear differential equation:

d2u

dw2
+

7w

3(w2 − 1)

du

dw
− 1

36(w2 − 1)2
u = 0. (4.26)

The solution of equation (4.27) is

u =
c1P [16 , w] + c2Q[16 , w]

(w2 − 1)
1

12

, (4.27)

where P [16 , w] and Q[16 , w] are Legendre functions of first and second kind. Thus the
reduction of the Chazy equation is

Y 2 =
6Y ′

1 − φ2(w)
, (4.28)
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where w in the original variables is

w =
Y 3 − 9Y Y ′ + 9Y ′′

(Y 2 − 6Y ′)
3

2

, (4.29)

and φ is given by

φ =
[8w(c1P [16 , w] + c2Q[16 , w]) − 7(c1P [76 , w] + c2Q[76 , w])

c1P [16 , w] + c2Q[16 , w]
. (4.30)

To obtain the reduction of equation (1.1) in (x, y) variables with B = 2, C = −3 (two-
dimensional) B = 6, C = −9 (radial) replace Y → −By

2 . For (x, Y ) → (χ, −BF
2ν ) the

reduction of equation (2.7) can be recovered.
The approach used here is due to Ibragimov and Nucci [11] and is different from those

of Clarkson and Olver [8] and Adam and Mahomed [1].

4.3 Case III: B 6= 0, B 6= 2 (two-dimensional), B 6= 0, B 6= 6 (radial)

From Table 3.1, for this case we have only two generators. Using the transformation
y → 1

BY in equation (1.1), we obtain

d3Y

dx3
+ Y

d2Y

dx2
+
C

B
(
dY

dx
)2 = 0. (4.31)

The Lie point symmetry generators transform to

X1 =
∂

∂x
, X2 = x

∂

∂x
− Y

∂

∂Y
. (4.32)

The invariants of X1 are

u = Y, v = Y ′, (4.33)

which reduce equation (4.31) to the second-order ordinary differential equation

v
d2v

du2
+ (

dv

du
)
2

+ u
dv

du
+
C

B
v = 0. (4.34)

The generator

X2 = u
∂

∂u
+ 2v

∂

∂v
, (4.35)

in (u, v) coordinates is a Lie point symmetry of the reduced equation (4.34). The invariants
of the generator X2 are

s = vu−2, t = u−1 dv

du
, (4.36)

which reduce the second-order ordinary differential equation (4.34) to the first-order dif-
ferential equation

dt

ds
=
t2 + t+ st+ C

B s

s(2s− t)
. (4.37)
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There are several subcases depending on the value of the ratio C/B.

For C/B = 0, α = 1/2 with B = 1/2 (two-dimensional) and B = 3/2 (radial). Equation
(4.31) reduces to

d3Y

dx3
+ Y

d2Y

dx2
= 0, (4.38)

which is the Blasius equation [2]. Equation (4.38) in terms of invariants reduces to the
following first-order ordinary differential equation:

dt

ds
=
t2 + t+ st

s(2s− t)
. (4.39)

For C/B = −1, α = 0 for two-dimensional flows and α = −1 for radial flows. Using
appropriate boundary conditions, Crane [7] derived an exact solution for a two-dimensional
stretching plate with α = 0. For C/B = −1 equation (4.31) in terms of differential
invariants becomes

dt

ds
=
t2 + t+ st− s

s(2s− t)
. (4.40)

It is of interest to observe that for C/B = 1 and C/B = 2, the second-order equation
(4.34) obtained by using the invariants of X1 becomes exact. The second reduction is not
needed to obtain a solution.

For C/B = 1, α = 2/3 for two-dimensional flows and α = 1 for radial flows. Equation
(4.34) can be integrated immediately with respect to u to give

dv

du
= −u+

c1
v
, (4.41)

where c1 is a constant. Integrating equation (4.41) again with respect to u and expressing
the result in terms of the original variables gives the Riccati equation

Y ′ = −Y
2

2
+ c1x+ c2, (4.42)

where c2 is a constant. For a free two-dimensional jet [17, 3] the conserved quantity gives
α = 2/3 and for the free radial jet [18] the conserved quantity gives α = 1. In both cases
the boundary conditions are

Y (0) = 0, Y ′′(0) = 0, Y ′(±∞) = 0. (4.43)

Imposing the boundary condition Y ′(±∞) = 0 gives

c1 = 0, c2 =
1

2
Y 2(∞), (4.44)

and equation (4.42) reduces to

Y ′ =
1

2
(Y 2(∞) − Y 2). (4.45)
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The solution may be completed for the free two-dimensional jet as described by Bickley
[3] and for the free radial jet as described by Squire [18].

For C/B = 2, α = 3/4 for two-dimensional flows and α = 5/4 for radial flows. By first
multiplying equation (4.34) by u, equation (4.34) can be integrated with respect to u to
give

dv

du
− 1

2u
v = −u+

c3
uv
, (4.46)

where c3 is a constant. Multiplying equation (4.46) by the integrating factor u−1/2, inte-
grating again with respect to u and expressing the result in the original variables gives

Y ′ = −2Y 2

3
+ (c3

∫ x

Y −3/2dx+ c4)Y
1/2, (4.47)

where c4 is a constant. Using a conserved quantity, Glauert [9] showed that for a two-
dimensional wall jet α = 3/4 and for a radial wall jet α = 5/4. The boundary conditions
in both cases are

Y (0) = 0, Y ′(0) = 0, Y ′(∞) = 0. (4.48)

Now for a wall jet the stress at the wall is non-zero and finite and therefore Y ′′(0) is
non-zero and finite. Since Y (0) = 0 and Y ′(0) = 0 it follows that

Y (x) ∼ 1

2
Y ′′(0)x2 as x→ 0. (4.49)

Hence

c3Y
1/2

∫ x 1

Y 3/2
dx ∼ − c3

Y ′′(0)

1

x
, as x→ 0. (4.50)

Imposing on equation (4.47) the boundary condition at x = 0 therefore gives c3 = 0 and
imposing Y ′(∞) = 0 yields

c4 =
2

3
Y 3/2(∞). (4.51)

Equation (4.47) reduces to

Y ′ =
2

3
Y 1/2(Y 3/2(∞) − Y 3/2). (4.52)

The solution for two-dimensional and radial wall jets may be completed as described by
Glauert [9].

5 Invariant solutions

5.1 Case I: B = 0 (two-dimensional and radial)

From Table 3.1 the generator X of the invariant solution, for y → 3Y/C, is

X = (c1 + c3x)
∂

∂x
+ (

Cc2
3

− Y c3)
∂

∂Y
, (5.1)
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where c1, c2 and c3 are constants. The invariant solution will depend only on the ratio of
the constants. The invariant solution is obtained by solving the following characteristic
equation

dx

(c1 + c3x)
=

dY

(Cc2
3 − Y c3)

, (5.2)

which yields

Y =
1

c3
[
C

3
c2 +

k

(c1 + c3x)
], (5.3)

provided c3 6= 0, where k is the constant of integration. To obtain k, equation (5.3) is
substituted into equation (4.1). This gives k = 0 and k = 2c23. For k = 0, we obtain the
constant solution Y = c2C/3c3. The invariant solution for k = 2c23 is

Y =
C

3

c2
c3

+
2c3

(c1 + c3x)
. (5.4)

After using y → 3Y/C, the invariant solutions for two-dimensional and radial flows can
be obtained from equation (5.4) by taking C = 1 and C = 3, respectively. The trivial
constant solution is obtained for c3 = 0.

5.2 Case II: B = 2, α = −1 (two-dimensional), B = 6, α = −4 (radial)

In Section 4.2, we saw that equation (1.1) reduces to the Chazy equation (4.10). From
equation (4.11), the generator X of the invariant solution is

X = (c1 + c2x+ c3x
2)
∂

∂x
− (c2Y + 2c3(3 + xY ))

∂

∂Y
, (5.5)

where c1, c2 and c3 are constants. The solution of the characteristic equation gives

Y =
k − 6c3x

c1 + c2x+ c3x2
. (5.6)

By substituting equation (5.6) into equation (4.10) it is found that the constant of inte-
gration k satisfies

(c22 − 4c1c3)(k
2 + 6kc2 + 36c1c3) = 0. (5.7)

Thus either c22 − 4c1c3 = 0 and k is arbitrary or c22 − 4c1c3 6= 0 and

k = 3[−c2 ± (c22 − 4c1c3)
1/2]. (5.8)

If c22 − 4c1c3 < 0, k is complex and the invariant solution does not exist.
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5.3 Case III: B 6= 0, B 6= 2 (two-dimensional), B 6= 0, B 6= 6 (radial)

From Table 3.1, for all real values of α, except α = 1 and α = −1 for two-dimensional
flow and α = 2 and α = −4 for radial flow, the generator X of the invariant solution of
equation (1.1) is

X = (c1 + c2x)
∂

∂x
− c2y

∂

∂y
, (5.9)

where c1 and c2 are constants. The non-trivial invariant solution is

y =
6c2

(2B + C)(c1 + c2x)
, (5.10)

where 2B + C does not depend on α and is 1 for two-dimensional flow and 3 for radial
flow. Thus for Blasius flow we obtain the invariant solution

y =
6c2

(c1 + c2x)
. (5.11)

6 Conclusions

For α = 1 (two-dimensional) α = 2 (radial), equation (1.1) admits three independent
Lie point symmetries generating a solvable Lie algebra. We therefore solved equation
(1.1) by the Lie approach and obtained the scaled velocity profile for two-dimensional
and radial liquid jets. For α = −1 (two-dimensional) α = −4 (radial), equation (1.1) has
three independent Lie point symmetries generating a non-solvable Lie algebra. The Chazy
equation was recovered and its reduction was obtained using the semi-canonical variables
of Ibragimov and Nucci [11].

For the values of α which correspond to two-dimensional and radial (free or wall) jets,
we have given an alternative method of solution which is more systematic. Equation (1.1)
has two independent Lie point symmetries. The equation can be integrated because the
second-order differential equations obtained using the invariants of X1 are exact and the
boundary conditions give the constants of integration special values. For all other real
values of α, the differential invariants of X1 and X2 can be used to reduce the third-order
ordinary differential equation to a first-order ordinary differential equation.

We have also derived the invariant solutions of equation (1.1) which give singular solu-
tions of the third-order ordinary differential equation. Particularly, for the Chazy equation
and Blasius equation the invariant solutions have been obtained.
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