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Abstract

In this paper we prove an extension of the usual freezing trick argument which can be applied
to a number of quasi-exactly solvable spin models of Calogero–Sutherland type. In order to
illustrate the application of this method we analyze a partially solvable spin chain presenting
near-neighbors interactions which was introduced and studied in J. Phys. A: Math. Theor.40
(2007) 1857–1883; Nucl. Phys.789 (2008) 452–482. Our discussion focuses on the existence
of integer eigenvalues.

1 Introduction

In the last few years there has been a revival of interest in solvable spin chains, due in part to their
remarkable connections with SUSY Yang–Mills and string theories [16, 2, 20, 1, 10, 11]. The first
example of such chains is the spin 1/2 Heisenberg chain [14], whose Hamiltonian is given by

H̃He = ∑
i

Si ·Si+1 .

This chain describes a set ofN spins on a lattice with short-range, position-independentinterac-
tions, and it is well known that it can be exactly solved usingthe Bethe ansatz [3]. In the above
equationSi denotes the spin operator of thei-th site, the sum runs from 1 toN (as always here-
after), and we defineSN+1 = S1. For future reference it is convenient to subtract the ground state
energy from the above Hamiltonian and write it in the less conventional form

HHe = ∑
i

(1−Si,i+1) , (1.1)

whereSi j is the operator exchanging thei-th and j-th spins
A different kind of solvable spin chain, independently introduced by Haldane [13] and Shas-

try [21], describes an arrangement ofN spins on a circle interacting pairwise with strength in-
versely proportional to the chord distance. The Hamiltonian of the Haldane–Shastry (HS) chain
can be written as

HHS =
1
2 ∑

i< j
sin(ξi −ξ j)

−2(1−Si j ) , ξi =
iπ
N

, (1.2)
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in terms of the aforementioned spin exchange operatorsSi j . Although the particles’ spin in the
original HS chain was assumed to be 1/2, one can more generally consider particles withn internal
degrees of freedom transforming under the fundamental representation of su(n).

The ultimate reason for the solvability of the HS chain lies in its intimate connection with the
spin Sutherland model ofAN type [23, 24]. Indeed, Polychronakos [17] noted that the complete
integrability of the HS chain could be inferred from that of the spin Sutherland model by suitably
taking a strong coupling limit (the so-called “freezing trick”). By applying the same technique
to theAN spin Calogero model [4], the latter author arrived at the celebrated spin chain that is
nowadays referred to as the Polychronakos–Frahm (PF) chain, namely [18]

HPF = ∑
i< j

(ξi −ξ j)
−2(1−Si j ) . (1.3)

Here the chain sitesξi are the coordinates of the unique maximum of the scalar part of the potential
of the Calogero spin model ofAN type, i.e., the only solutions to the system

ξi = ∑
j 6=i

1
ξi −ξ j

, i = 1, . . . ,N

such thatξ1 < · · · < ξN. Contrary to what happens in the HS chains, in this case the sites are no
longer equispaced. The partition function of this chain wassuccessfully computed by Polychron-
akos as an appropriate limit of the quotient of the partitions functions of the spin and spinless
Calogero models. Variations of this technique were developed to analyze spin chains with free
parameters related toBCN Calogero–Sutherland (CS) models [5, 9].

The bottom line of Polychronakos’s freezing trick is that, provided that some technical condi-
tions are satisfied, one can associate to every solvable spinmodel of CS typeH a solvable spin
chainH whose spectrum can be computed from the knowledge of the partition functions ofH
and its scalar counterpart. Given the influence that quasi-exactly solvable (QES) quantum sys-
tems [25, 22, 26] have exerted in various areas of Mathematical Physics, it is natural to wonder
whether Polychronakos’s freezing trick argument can be extended to systems for which only a
proper subset of its spectrum is explicitly known. Since theexplicit knowledge of the full spec-
trum of H is required in order to compute its partition function, it isclear that this extension is
nontrivial.

An interesting type of QES spin models with near-neighbors interactions has been recently
introduced in Refs. [6, 7]. The associated spin chain reads

HNN = ∑
i

(ξi −ξi+1)
−2(1−Si,i+1) , (1.4)

where the sites’ coordinatesξ1 < · · ·< ξN are given by the only solution to the algebraic equations

ξi =
1

ξi −ξi−1
+

1
ξi −ξi+1

, i = 1, . . . ,N (1.5)

compatible with the above ordering. A novel feature of this chain is that it is somehow intermediate
between the Heisenberg chain, presenting short-range, position independent interactions, and the
spin chains of HS type, where the interactions are long ranged and depend on the sites’ positions.
As a matter of fact, one would recover (1.1) if the spins were equispaced, whereas the equation
of the sites is obtained from that of the PF chain by keeping only the summands involving nearest
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neighbors. The analysis of the spectrum of the operator (1.4), carried out in Ref. [8], is thus
naturally related to the general problem mentioned in the preceding paragraph.

The paper is organized as follows. In Section 2 we prove a general convergence result relating
QES spin systems of CS type and partially solvable spin chains. The hypotheses of the lemma
have been written in such a way that can be readily verified fora wide panoply of such models. In
Section 3 we make use of the freezing lemma to study the algebraic energies of the spin chain (1.4).
This section is mainly based on Ref. [8]. The paper concludeswith a digression on the existence
of integer energy levels in this and some other related models with short-range interactions.

2 A freezing lemma

In this section we shall state and prove a lemma which allows to obtain a (partially) solvable spin
chain starting with a QES spin model. In some sense, this result can be understood as a refinement
of Polychronakos’s freezing trick [18]. The applicabilityconditions of the lemma have been stated
in such a way that can be readily verified for most models of CS type.

Let us introduce the necessary definitions. LetΣ be a finite-dimensional Hilbert space and
consider a spin Hamiltonian

H = −∑
i

∂ 2
xi

+2a
[
U1(x)+h(x)

]
+a2U2(x) (2.1)

acting on (a dense subset of)L2(C)⊗ Σ, C being a domain inRN. Herea > 0 is a coupling
parameter and we denote byUi : R

N →R andh : R
N →End(Σ) sufficiently regular scalar and spin

multiplication operators. We need also consider an associated scalar Hamiltonian

Hsc = −∑
i

∂ 2
xi

+2aU1(x)+a2U2(x) , (2.2)

defined onL2(RN). BothH andHscare assumed to be lower bounded, and we assume thatHsc has
an eigenvalue at the bottom of the spectrum. Letµ̂ denote the normalized ground state function
of Hsc, which can be chosen to be strictly positive [19]. There is noloss of generality in assuming
that the ground state energy ofHsc is 0, and we have introduced a factor 2 above in the above
equations for convenience.

We shall assume that̂µ is of the form

µ̂(x,a) = C(a)eaλ(x) ,

where the functionλ has a unique maximumξ in C, which must also coincide with a global
minimum ofU2. For the sake of simplicity, we also assume that this maximumis hyperbolic. We
define the spin chain HamiltonianH ∈ End(Σ) as

H = h(ξ ) . (2.3)

Lemma 1. Let Ψ be an eigenfunction of H with energy E. Assume that there exists a Σ-valued
polynomial F∈ C[x,a−1]⊗Σ such that

µ̂−1Ψ−F = O(a−1) , (2.4)
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and suppose, moreover, that this eigenfunction can be normalized so that

µ̂−1Ψ ∈ C[x,a−1]⊗Σ . (2.5)

Then the limits

χ = lim
a→∞

F(ξ ) , E = lim
a→∞

E
2a

exist, and

Hχ = Eχ . (2.6)

Proof. A first observation is that̂µ2 converges to a Dirac delta distribution supported atξ asa
tends to infinity, i.e., that

lim
a→∞

∫

C
µ̂2φ dx = φ(ξ ) (2.7)

for every compactly supported smooth functionφ . The maximumξ being nondegenerate, this
follows from the standard argument behind the proof of Laplace’s method.

The existence of the limit lima→∞
E
a is easy, as the ground state energy ofHschas been shifted to

zero andH−Hsc depends linearly ona. The limit definingχ must also exist due to the polynomial
dependence ofF on a−1.

The self-adjointness ofHsc and Eq. (2.7) readily imply that
∫

C
µ̂ Hsc(Ψ)dx =

∫

C
Hsc(µ̂)Ψdx = 0

∫

C
µ̂ hΨdx =

∫

C
µ̂2[

hF +O(a−1)
]
dx = Hχ +O(a−1) .

If we now use thatH = Hsc+2ah(x) and Eq. (2.7) to write
∫

C
µ̂ Hsc(Ψ)dx+2a

∫

C
µ̂hΨdx =

∫

C
µ̂ H(Ψ)dx = Eχ +O(1) ,

substitute the former equations into this identity and takethe limit a → ∞, we readily derive
Eq. (2.6). �

Remark 1. Lemma 1 asserts thatχ , when nonzero, is an eigenvector of the spin chain (2.3) with
energyE.

Remark 2. An analogous result for models with hyperbolic or trigonometric potentials can be
similarly established by replacing the spaceC[x,a−1] for C[z,a−1], wherezi = e2xi or zi = e2ixi in
each case. The key point for the application of the above Lemma is the polynomial dependance of
Ψ on a, which is shared by Calogero–Sutherland models and a wide range of QES spin systems.

Remark 3. Physically, the main idea is that|Ψ| becomes sharply peaked atξ , so that the particles
‘freeze” at the pointξ (which can be proven to be a global minimum of the potentialU2, and
thus a stable critical point of the classical movement). A detailed semi-rigorous justification of the
classical freezing trick along these lines can be found in Ref. [8].
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3 Models with near-neighbors interactions

In this section we shall show how the freezing lemma can be used to obtain some families of
eigenvectors of the spin chain Hamiltonian (1.4). The discussion presented in this section is mainly
based on Refs. [5, 7, 8].

Let Σ be the Hilbert space of the internal degrees of freedom ofN particles of spinM ∈ 1
2N and

consider the domain

C =
{

x ∈ R
N : x1 < · · · < xN

}
.

We will be interested in the spin Hamiltonian densely definedon L2(C)⊗Σ given by

HNN = −∑
i

∂ 2
xi

+a2r2 +∑
i

2a2

(xi −xi−1)(xi −xi+1)
+∑

i

2a
(xi −xi+1)2 (a−Si,i+1) (3.1)

and its scalar counterpart

Hsc
NN = H|Si,i+1→1 . (3.2)

Here and in what followsa is a positive constant and we use the customary notationr2 = ∑i x
2
i .

This model can be understood as a QES short-range version of the usual spin Calogero system.
At this point we need to introduce some additional notation.Let us denote the elements of the

standard basis ofΣ by |s1 . . .sN〉, wheresi = −M,−M + 1, . . . ,M, and define the projectorΛ in
L2(C)⊗Σ to be the total symmetrizer under particle permutations, that is, under the simultaneous
exchange of thei-th and j-th coordinates and spins, for any 16 i, j 6 N. We shall also define the
subspaceΣ′ ⊂ Σ of spin states|s〉 ∈ Σ such that∑i |s

+
i,i+1〉 is symmetric,|s±i j 〉 being defined by

Λ
(
g±(xi ,x j)|s〉

)
= ∑

i< j

g±(xi ,x j)|s
±
i j 〉 , (3.3)

whereg± is an arbitrary smooth function such thatg±(x,y) = ±g±(x,y). A complete characteri-
zation of this subspace can be found in Ref. [7].

The main result in Ref. [7] concerning the spectrum ofH can be summarized in the following

Theorem 1. Let

α = N
(

a+
1
2

)
−

3
2

, β ≡ β (m) = 1−m−N
(

a+
1
2

)
, t =

2r2

Nx̄2 −1,

E0 = Na(2a+1) , µ = e−
a
2 r2 ∏

i
|xi −xi+1|

a ,

wherex̄ = 1
N ∑i xi is the center of mass coordinate. The Hamiltonian H0 possesses the follow-

ing families of spin eigenfunctions with eigenvalue Elm = E0+2a(2l +m), with l > 0 and m as
indicated in each case:

Ψ(0)
lm = µ x̄mL−β

l (ar2)P(α ,β)
⌊m

2 ⌋
(t)Φ(0) , m> 0,

Ψ(1)
lm = µ x̄m−1L−β

l (ar2)P(α+1,β)

⌊m−1
2 ⌋

(t)
(
Φ(1) − x̄Φ(0)

)
, m> 1,
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Ψ(2)
lm = µ x̄m−2L−β

l (ar2)

[
P(α+2,β)
⌊m

2 ⌋−1 (t)
(
Φ(2) −2x̄Φ(1)

)

+ x̄2
(

P(α+2,β)
⌊m

2 ⌋−1 (t)−
2(α +1)

2⌊m−1
2 ⌋+1

P(α+1,β)
⌊m

2 ⌋−1 (t)

)
Φ(0)

]
, m> 2,

Ψ̃(2)
lm = µ x̄m−2L−β

l (ar2)

[
P(α+2,β)
⌊m

2 ⌋−1 (t)
(
Φ̃(2) −2x̄Φ(1)

)

+ x̄2
(

P(α+2,β)
⌊m

2 ⌋−1 (t)+
2(α +1)(

2⌊m−1
2 ⌋+1

)
(N−1)

P(α+1,β)
⌊m

2 ⌋−1 (t)

)
Φ(0)

]
, m> 2,

Ψ(3)
lm = µ x̄m−3L−β

l (ar2)

[
2

3N
P(α+3,β)

⌊m−3
2 ⌋

(t)∑
i

x3
i + x̄3ϕm(t)

]
Φ(0) , m> 3,

Ψ̂(3)
lm = µ x̄m−3L−β

l (ar2)

[
P(α+3,β)

⌊m−3
2 ⌋

(t)
(
Φ̂(3) −2x̄Φ(2)

)

+2x̄2
(

P(α+3,β)

⌊m−3
2 ⌋

(t)+
2(α +2)

2⌊m
2 ⌋−1

P(α+2,β)

⌊m−3
2 ⌋

(t)

)
Φ(1)

−2x̄3
(

1
3

P(α+3,β)

⌊m−3
2 ⌋

(t)+
1

2⌊m
2 ⌋−1

P(α+2,β)

⌊m−3
2 ⌋

(t)

+
(
1− (−1)m) 2α +3

2m(m−2)
P(α+1,β)

⌊m−3
2 ⌋

(t)

)
Φ(0)

]
, m> 3,

Ψ(4)
lm = µ x̄m−4L−β

l (ar2)

[
3

2(⌊m−3
2 ⌋+ 1

2)
x̄2P(α+3,β)

⌊m
2 ⌋−2 (t)Φ(2)

+
(3

2
x̄3φm(t)−

1
N

P(α+4,β)
⌊m

2 ⌋−2 (t)∑
i

x3
i

)
Φ(1)

+
( 1

N
x̄P(α+4,β)

⌊m
2 ⌋−2 (t)∑

i

x3
i +

3
2

x̄4χm(t)
)

Φ(0)

]
, m> 4.

Here

Φ(k) = Λ(xk
1|s〉), Φ̃(2) = Λ(x1x2|s〉), Φ̂(3) = Λ(x1x2(x1−x2)|s〉),

where the spin state|s〉 is symmetric under S12 and belongs toΣ′ for the eigenfunctioñΨ(2)
lm , and is

antisymmetric under S12 for the eigenfunction̂Ψ(3)
lm . The functionsϕm, φm andχm are polynomials

given explicitly by

ϕm =
m+2α +2

m−1
P(α+2,β−2)

m
2

−P(α+3,β−1)
m
2 −1 −

4α +7
m−1

P(α+2,β−1)
m
2 −1 +

1
3

P(α+3,β)
m
2 −2 ,

φm = P(α+4,β−1)
m
2 −1 −2P(α+3,β−1)

m
2 −1 −

m+2α +3
(m−1)(m−3)

P(α+2,β−1)
m
2 −1

−
1
3

P(α+4,β)
m
2 −2 +

m+2α −1
m−3

P(α+3,β)
m
2 −2 ,

χm =
3m+2α

(m−1)(m−3)
P(α+2,β−1)

m
2 −1 +

2m−7
m−3

P(α+3,β−1)
m
2 −1 −P(α+4,β−1)

m
2 −1

−
m+2α +2

(m−1)(m−3)
P(α+2,β)

m
2 −2 −

m+2α
m−3

P(α+3,β)
m
2 −2 +

1
3

P(α+4,β)
m
2 −2 ,
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for even m, and

ϕm = 2P(α+2,β−1)
m−1

2
−P(α+3,β−1)

m−1
2

+
1
3

P(α+3,β)
m−3

2
+

m+2α +2
m(m−2)

P(α+1,β)
m−3

2

−
m+2α +2

m−2
P(α+2,β)

m−3
2

,

φm = P(α+4,β−1)
m−3

2
−

2m−5
m−2

P(α+3,β)
m−3

2
−

1
3

P(α+4,β)
m−5

2
+

m+2α −1
m−2

P(α+3,β)
m−5

2
,

χm =
2m−3

m(m−2)
P(α+2,β−1)

m−3
2

+
2(m−3)

m−2
P(α+3,β−1)

m−3
2

−P(α+4,β−1)
m−3

2

−
m+2α +1
m(m−2)

P(α+2,β)
m−5

2
−

m+2α
m−2

P(α+3,β)
m−5

2
+

1
3

P(α+4,β)
m−3

2
,

for odd m.

In the statement of this theorem,Lk
n and P(a,b)

n respectively denote the Laguerre and Jacobi
polynomials. As a consequence of Theorem 1, the normalized ground state function ofHsc

NN is
given byµ̂ = µ/‖µ‖. Gerschgorin’s theorem [12, 15.814] enables us to show thatthe Hessian of
logµ is in fact positive definite inC. With some more work it is in fact possible [8] to prove the
following

Proposition 1. The normalized ground state function of Hsc
NN has a unique critical pointξ in C,

which is a hyperbolic maximum. Moreover,

∑
i

ξi = 0, ∑
i

ξ 2
i = N . (3.4)

A short computation shows that the sites’ equation (1.5) simply means thatξ is a critical point
of the ground state function̂µ . Furthermore,HNN andHsc

NN are indeed of the form (2.1)-(2.2), with

h(x) = ∑
i

(xi −x j)
−2(1−Si j ) ,

and clearlyHNN = h(ξ ). Hence one can resort to Lemma 1 to obtain some eigenvalues and
eigenvectors of the spin chain (1.4) in closed form.

Theorem 2. If |s〉 ∈ Σ and |s′〉 ∈ Σ′, the states

χ0 ≡ χ0(|s〉) = Λ|s〉 , (3.5a)

χ1 ≡ χ1(|s〉) = ∑
i

ξi |si〉 , (3.5b)

χ2 ≡ χ2(|s
′〉) = ∑

i

ξ 2
i |s

′
i〉+(N−1)∑

i< j

ξiξ j |s
′+
i j 〉 , S12|s

′〉 = |s′〉 , (3.5c)

χ3 ≡ χ3(|s〉) = ∑
i< j

ξiξ j(ξi −ξ j) |s
−
i j 〉+2∑

i

ξi|si〉 , S12|s〉 = −|s〉 , (3.5d)

satisfy the equations

(H− i)χi = 0, i = 0,1,2,3.
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Proof. The proof consists in applying Lemma 1 to suitably chosen pairs (Ψ,F). First, it is easy
to show thatχ0 ∈ kerH directly. However, we prefer to prove it using the same freezing trick
argument as in the other cases to illustrate the applicationof the lemma in the easiest case. To this
end, consider the functions

Ψ =
Ψ(0)

00

‖µ̂‖
= µ̂ Λ|s〉 , F = Λ|s〉 ,

which trivially satisfy the hypotheses in Lemma 1 withE = 0. Since in this case

E = 0, χ = Λ|s〉 ,

from Proposition 1 it follows thatχ0, if nonzero, is an eigenvector ofH with eigenvalue 0.
The next case is slightly more complicated. With the notation of Theorem 1, let us set

Ψ =
Ψ(1)

01

‖µ‖
= µ̂(Φ(1) − x̄Φ(0)) , F = Φ(1) − x̄Φ(0) .

It is not difficult to show that(Ψ,F) satisfies the hypotheses in Lemma 1 withE = 2a. SinceE = 1
in this case, the state

χ = lim
a→∞

F(ξ ) = ∑
i

ξi|si〉

is either zero or an eigenvector ofH with energy 1. Here we have used the identity∑i ξi = 0,
cf. Eq. (3.4).

The other two states are obtained in a similar manner starting with the functions

Ψ =
Ψ(2)

02 +(N−1)Ψ̃(2)
02

‖µ‖
= µ̂

(
Φ(2) +(N−1)Φ̃(2) −2Nx̄Φ(1) +(N+2)x̄2Φ(0)

)
,

F =
Ψ
µ̂

, E = 4a, |s′〉 ∈ Σ′ , S12|s
′〉 = |s′〉 ,

and

Ψ =
Ψ̂(3)

03 −4Ψ(1)
03 − 8

3Ψ(0)
03

‖µ‖
= µ̂

[
Φ̂(3)−2x̄Φ(2) +

2r2

N
Φ(1) + x̄

(
r2

2N
−

4x̄2

3

)
Φ(0)

]
,

F =
Ψ
µ̂

, E = 6a, S12|s〉 = −|s〉

in each case. Indeed, with the former set of functions we immediately arrive at

χ = ∑
i

ξ 2
i |s

′
i〉+(N−1)∑

i< j

ξiξ j |s
′+
i j 〉 ,

while in the latter case we obtain

χ = ∑
i< j

ξiξ j(ξi −ξ j)|s
−
i j 〉+

2
N ∑

i, j

ξiξ 2
j |si〉 .

Using Eq. (3.4), the result follows. �

Remark 4. If M = 1/2, one can prove thatχ3(|s〉) always vanishes.

Remark 5. It is interesting to note that the three lowest frequencies of the small oscillations near
the equilibrium of the classical potentialU2 are also integers [15].
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4 Integer energies in spin chains with near-neighbors interactions

In Theorem 2 we have explicitly constructed several eigenvectors ofHNN whose corresponding
energies are integer numbers. Such eigenvectors can be rightly termed algebraic, as they are in
fact obtained from the algebraic eigenfunctions ofHNN.

The fact that these eigenvalues are integers merely reflectsthat the energies of the correspond-
ing algebraic eigenfunctions ofH are of the form

Ek = E0+ γak+O(1) , k∈ N . (4.1)

This expression is ubiquitous in the theory of rational QES models, and therefore one can interpret
the existence of integer energies as a reflection of the potential QES character of the associated
dynamical spin model. As discussed in Ref. [8], this model (and many other amenable to an exact
treatment using Lemma 1) can be regarded as QES spin chains.

Although we have not been able to obtain a rigorous proof thereof, there is very strong nu-
merical evidence (based on computations performed for up toN = 20 spins) of the validity of the
following fact:

Conjecture 1. The algebraic eigenvectors(3.5a)–(3.5c) span the three lowest levels of the spin
chain(1.4). When M> 1 the fourth algebraic energy,E = 3, is however the fifth lowest level of the
chain, and its whole eigenspace is spanned by the states of the form(3.5d). The algebraic energies
are singled out in the spectrum ofH as being the only integer ones, i.e.,

spec(H)∩Z = {0,1,2,3} .

It is well known that all the eigenvalues of the PF chain are integers. Since the spin chain (1.4)
is obtained from the latter by keeping only the terms with nearest-neighbors interactions both in
the definition of the potential and in the equations for the chain sites, one would be tempted to
believe that the number of integer energies of the spin chains

Hn = ∑
i< j6i+n modN

(ξi −ξ j)
−2(1−Si j ) , 1 6 n 6 N , (4.2)

which satisfyH1 = HNN andHN = HPF, should in fact increase withn. Quite remarkably, nu-
merical simulations seem to show that this is not the case. Inparticular, it seems unlikely that
the solvability properties of either the chains (4.2) or their associated spin models significantly
improve asn < N increases.
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