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Abstract

In this paper we prove an extension of the usual freezing tigument which can be applied

to a number of quasi-exactly solvable spin models of Calmg8utherland type. In order to
illustrate the application of this method we analyze a pHytsolvable spin chain presenting
near-neighbors interactions which was introduced andestuid J. Phys. A: Math. Theo40
(2007) 1857—-1883; Nucl. Phyg39 (2008) 452—-482. Our discussion focuses on the existence
of integer eigenvalues.

1 Introduction

In the last few years there has been a revival of interestlimbte spin chains, due in part to their
remarkable connections with SUSY Yang—Mills and stringties [16, 2, 20, 1, 10, 11]. The first
example of such chains is the spifi2lHeisenberg chain [14], whose Hamiltonian is given by

Hie = >SS

This chain describes a set Nfspins on a lattice with short-range, position-independietetac-
tions, and it is well known that it can be exactly solved udimg Bethe ansatz [3]. In the above
equationS; denotes the spin operator of théh site, the sum runs from 1 td (as always here-
after), and we defin&y.1 = S;. For future reference it is convenient to subtract the gadostate
energy from the above Hamiltonian and write it in the lessreational form

Hie= 3 (1-Sis1). (L.1)

whereS; is the operator exchanging theh andj-th spins
A different kind of solvable spin chain, independently attuced by Haldane [13] and Shas-
try [21], describes an arrangementMfspins on a circle interacting pairwise with strength in-
versely proportional to the chord distance. The Hamiltorodthe Haldane—Shastry (HS) chain
can be written as
Hus=3 Y SinE— &) 2(1-S), &=, 12)
i<]
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in terms of the aforementioned spin exchange operaprsAlthough the particles’ spin in the
original HS chain was assumed to h&1one can more generally consider particles withternal
degrees of freedom transforming under the fundamentatéseptation of sim).

The ultimate reason for the solvability of the HS chain lie$t$ intimate connection with the
spin Sutherland model dfy type [23, 24]. Indeed, Polychronakos [17] noted that the ete
integrability of the HS chain could be inferred from that leg tspin Sutherland model by suitably
taking a strong coupling limit (the so-called “freezingclkel). By applying the same technique
to the Ay spin Calogero model [4], the latter author arrived at thellwelted spin chain that is
nowadays referred to as the Polychronakos—Frahm (PF),ateimely [18]

HPFZZ(Ei_Ej)iz(l_SU)- (1.3)

i<)

Here the chain site§ are the coordinates of the unique maximum of the scalar paregotential
of the Calogero spin model @&y type, i.e., the only solutions to the system

1
§E=S—— i=1....N
;‘,Ei—fj

such thaté; < --- < &y. Contrary to what happens in the HS chains, in this case teg aie no
longer equispaced. The partition function of this chain sascessfully computed by Polychron-
akos as an appropriate limit of the quotient of the partitidunctions of the spin and spinless
Calogero models. Variations of this technique were dewaadp analyze spin chains with free
parameters related BCy Calogero—Sutherland (CS) models [5, 9].

The bottom line of Polychronakos’s freezing trick is thabyided that some technical condi-
tions are satisfied, one can associate to every solvablenspilel of CS typeH a solvable spin
chain H whose spectrum can be computed from the knowledge of thdigartunctions ofH
and its scalar counterpart. Given the influence that quamsitly solvable (QES) quantum sys-
tems [25, 22, 26] have exerted in various areas of Matheaid®ysics, it is natural to wonder
whether Polychronakos’s freezing trick argument can bersdd to systems for which only a
proper subset of its spectrum is explicitly known. Sincedhplicit knowledge of the full spec-
trum of H is required in order to compute its partition function, itclear that this extension is
nontrivial.

An interesting type of QES spin models with near-neighbateractions has been recently
introduced in Refs. [6, 7]. The associated spin chain reads

Hin =5 (& — &) %(1-Sj1), (1.4)
|
where the sites’ coordinatés < --- < &y are given by the only solution to the algebraic equations
1 1
= + 5 |:l,,N 15
4 &—¢&1 &i—Gin (15)

compatible with the above ordering. A novel feature of thigin is that it is somehow intermediate
between the Heisenberg chain, presenting short-ranggioposidependent interactions, and the
spin chains of HS type, where the interactions are long age depend on the sites’ positions.
As a matter of fact, one would recover (1.1) if the spins weraispaced, whereas the equation
of the sites is obtained from that of the PF chain by keepirg the summands involving nearest
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neighbors. The analysis of the spectrum of the operato),(tatried out in Ref. [8], is thus
naturally related to the general problem mentioned in tieeguling paragraph.

The paper is organized as follows. In Section 2 we prove argknenvergence result relating
QES spin systems of CS type and partially solvable spin shalthe hypotheses of the lemma
have been written in such a way that can be readily verified feide panoply of such models. In
Section 3 we make use of the freezing lemma to study the agetmergies of the spin chain (1.4).
This section is mainly based on Ref. [8]. The paper concludésa digression on the existence
of integer energy levels in this and some other related nsadlith short-range interactions.

2 A freezinglemma

In this section we shall state and prove a lemma which allonsbtain a (partially) solvable spin
chain starting with a QES spin model. In some sense, thist reemube understood as a refinement
of Polychronakos’s freezing trick [18]. The applicabiltgnditions of the lemma have been stated
in such a way that can be readily verified for most models ofypg.t

Let us introduce the necessary definitions. Edbe a finite-dimensional Hilbert space and
consider a spin Hamiltonian

H=— Iz 0% +2a[U1(x) + h(x)] + aUp(x) (2.1)

acting on (a dense subset @f}(C) ® 3, C being a domain iRN. Herea > 0 is a coupling
parameter and we denote by: RN — R andh : RN — End(Z) sufficiently regular scalar and spin
multiplication operators. We need also consider an aswaticalar Hamiltonian

HSC— _ za§+2aul(x) +a%Us(x), (2:2)
|

defined orL?(RN). BothH andHSCare assumed to be lower bounded, and we assumel thhas
an eigenvalue at the bottom of the spectrum. [Letenote the normalized ground state function
of HSC, which can be chosen to be strictly positive [19]. There i$ass of generality in assuming
that the ground state energy df¢is 0, and we have introduced a factor 2 above in the above
equations for convenience.

We shall assume that is of the form

fi(x, ) = C(a) ™)

where the functiom has a unique maximuré in C, which must also coincide with a global
minimum ofU,. For the sake of simplicity, we also assume that this maxirsunyperbolic. We
define the spin chain Hamiltonidth € End(X) as

H=h(€). (2.3)

Lemma 1. Let W be an eigenfunction of H with energy E. Assume that therésexis-valued
polynomial F€ C[x,a %] ® Z such that

plw-_F=0@?, (2.4)
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and suppose, moreover, that this eigenfunction can be Haeaeso that
pwecCxalo:z. (2.5)

Then the limits

. . E
X = limF(S), E:;ergoz—a
exist, and
Hx =Ex. (2.6)

Proof. A first observation is thafi? converges to a Dirac delta distribution supported a@isa
tends to infinity, i.e., that

im [ ipdx—g() 27

for every compactly supported smooth functipn The maximumé being nondegenerate, this
follows from the standard argument behind the proof of Leggamethod.

The existence of the limit lig., % is easy, as the ground state energii&fhas been shifted to
zero ancH — HSCdepends linearly oa. The limit definingy must also exist due to the polynomial
dependence df ona L.

The self-adjointness dfis¢and Eq. (2.7) readily imply that

/ﬁlHSC(lP)dx:/Hsc(ﬂ)qux:O

C C
/ﬁhwdx:/ﬁz [hF + 0@ )] dx=Hy + o@™).
C C

If we now use thaH = H3¢+ 2ah(x) and Eq. (2.7) to write

/ﬁHSC(lP)dx+2a/ ﬂthx:/ﬁH(‘P)dXzEXJrﬁ(l),
c c c

substitute the former equations into this identity and ttie limit a — o, we readily derive
Eq. (2.6). |

Remark 1. Lemma 1 asserts thgt when nonzero, is an eigenvector of the spin chain (2.3) with
energyE.

Remark 2. An analogous result for models with hyperbolic or trigonarigepotentials can be
similarly established by replacing the spatkx,a—] for C[z,a 1], wherez = € orz = €% in
each case. The key point for the application of the above Laisrthe polynomial dependance of
W on a, which is shared by Calogero—Sutherland models and a widgeraf QES spin systems.

Remark 3. Physically, the main idea is th&¥| becomes sharply peakedéatso that the particles
‘freeze” at the point¢ (which can be proven to be a global minimum of the potential and
thus a stable critical point of the classical movement). faitlied semi-rigorous justification of the
classical freezing trick along these lines can be found i [Rg
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3 Modelswith near-neighbor sinteractions

In this section we shall show how the freezing lemma can bd ts@btain some families of
eigenvectors of the spin chain Hamiltonian (1.4). The dis@n presented in this section is mainly
based on Refs. [5, 7, 8].

Let X be the Hilbert space of the internal degrees of freedoM pérticles of spirM € %N and
consider the domain

C={xeRN:ix < <xn}.
We will be interested in the spin Hamiltonian densely defioedl?(C) ® = given by

2a® N 2a
(% —%i—1) (% — Xit1) .z (% —Xi+1)?

Hw=—Y o +ar’+ 5 (@-Si+1) B.1)

and its scalar counterpart

HRn = Hls -1 (3.2)

Here and in what follows is a positive constant and we use the customary notafiea s; x2.
This model can be understood as a QES short-range versibe atial spin Calogero system.
At this point we need to introduce some additional notatiogt. us denote the elements of the
standard basis o by |s;...sy), wheres = —M,—M +1,... M, and define the projectadk in
L?(C) ® < to be the total symmetrizer under particle permutatior, ith) under the simultaneous
exchange of théth andj-th coordinates and spins, for anyli, j < N. We shall also define the
subspac&’ C X of spin statess) € X such thafy; ]§j+l> is symmetric,]qﬂp being defined by

A= (i, %))19) = 3 9 (%,%))Is]) + (3.3)

i<j

whereg. is an arbitrary smooth function such thaat(x,y) = g4 (x,y). A complete characteri-
zation of this subspace can be found in Ref. [7].
The main result in Ref. [7] concerning the spectruntHofan be summarized in the following

Theorem 1. Let

a:N<a+%>—; BzB(m):l—m—N(aJr%), t:W_l’

Eo=Na(2a+1), e |'|>q Xi+1/%,

wherex = 1 5,% is the center of mass coordinate. The Hamiltoniangossesses the follow-
ing families of spin eigenfunctions with eigenvalug E Ep+ 2a(2l + m), with | > 0 and m as
indicated in each case:

Wi =1L PP me®,  m>o,

(t

~—
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7]

72 (a+2,8) 2((1 +1) (a+1,8) 0
2

W2 = pxm2L P (ar?) [P%*ff)(t) (0 — 250

2

2 — -2 P (ar?) | P 2P (1) (912 — 2x0)

17)-1
22 [ p(a+2B) 2(a+1) (@+18) )
X (PLEJ—l (t)+ ( Lm_lJ +l)(N 1) PL%“J—l t) )™, m>=2,
- [ 2
Wl(r?]) — l,l)_(m*3|_I B(arz) N Tj‘ ZX3+?¢m )} , m> 3,

i =21 P @) [P (1) (01 - 2x0?)

1 a+3p) 1 (a+2,8)
20 +3 1
T Py FendC) L] B BE!

o = AGK|s)), P2 = A(x1%2|s)), D& = A(xxe(X1 — %2)|9)),

where the spin statgs) is symmetric under;3 and belongs t&’ for the elgenfunctlohlJl(m), and is

antisymmetric under43 for the elgenfunctlor‘}PI(m). The function®m, @, and X, are polynomials
given explicitly by

m+2a +2 pla+28-2) _ P(a+3 -1 Aa+7 P

_ (a+2,8-1) (a+3,8)
om=—r—7 Py m-1 z-1 +3P ’
m+2a+3 2p-1)
P(a+4B 1) 2P(a+3ﬁ 1 r(norJr B
n= (m-1)(m—3) %1
1 (a+ap) M+20—1_(a13p)
BT
o= 3m+2a Pr(na+2,571)+2m 7 (a+3B-1) _ p(a+4p-1)
" (m-1)(m-3) 21 m-3 2-1 21

m+20+2 28 M+2a (a+3/3) 1 _(a+ap)
— T T2 plotz Py Py
m-Dm-3 32  m-3 32
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for even m, and

1 m+2a +2
_2P(a+25 1) P(a+3B 1) P(a+3[3) (a+1,B)
fm m T3ime mm-2) "
_WP(G+27B)
m-2 %
(a+ap-1) _ 2m—5 Ja+3p) 1 (a+ap)  M+20 -1 ai3p)
O =P m—2 3 gPms "t T Pe
2m 3 _(a+2p-1) , 2(M—=3) _(g+3B-1) (a+4p-1)
:7P ’ P ) _P 5
Xm mm—-2) " T2 Ty =
_m+2“+1§£mm_”H20¢wwm+ pmMm
m(m—-2) %3’

m—2 3 ’
for odd m.

In the statement of this theorernk and P,ga”b) respectively denote the Laguerre and Jacobi
polynomials. As a consequence of Theorem 1, the normalirednd state function o35, is
given byt = p/||u||. Gerschgorin's theorem [12, 15.814] enables us to showtledtiessian of
logu is in fact positive definite ifC. With some more work it is in fact possible [8] to prove the
following

Proposition 1. The normalized ground state function ofihas a unique critical poing in C,
which is a hyperbolic maximum. Moreover,

Y&=0, Y&=N. (3.4)

A short computation shows that the sites’ equation (1.5pkirmeans tha is a critical point
of the ground state functiof. FurthermoreHyn andHRY, are indeed of the form (2.1)-(2.2), with

h(x) = 3 (%)) 21— ).

and clearlyHyy = h(&). Hence one can resort to Lemma 1 to obtain some eigenvaluks an
eigenvectors of the spin chain (1.4) in closed form.

Theorem 2. If |s) e Zand|s) € ¥/, the states

Xo=Xo(|S)) =Al|s), (3.5a)

($%z2&ﬁ% (3.5b)

X2 = Xx2(]9)) ZE. |s) + N—1)Z &&lsf), Swls)=1s), (3.5¢)
i<]

X3 = Xx3(/9)) ZE.E, —&) \s}>+226\s>, Siols) = —|s), (3.5d)

i<]

satisfy the equations

(H—i)xi=0, i=0,1,23.
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Proof. The proof consists in applying Lemma 1 to suitably chosersgé,F). First, it is easy
to show thatyp € kerH directly. However, we prefer to prove it using the same firmgzrick
argument as in the other cases to illustrate the applicafitimee lemma in the easiest case. To this
end, consider the functions

©
i ||

which trivially satisfy the hypotheses in Lemma 1 wigh= 0. Since in this case
E=0, x=Als,

W= _AAly,  F=Als),

from Proposition 1 it follows thag, if nonzero, is an eigenvector &f with eigenvalue 0.
The next case is slightly more complicated. With the notatibTheorem 1, let us set

e
ﬁ =p(@® -x0@),  F=0ob_x0.

Itis not difficult to show thatW, F) satisfies the hypotheses in Lemma 1 viith- 2a. SinceE =1
in this case, the state

X =limF (&)=Y &s)

LIJ:

is either zero or an eigenvector Hf with energy 1. Here we have used the iden§ityé; = O,
cf. Eq. (3.4).
The other two states are obtained in a similar manner sgatith the functions

(2 e
Yoy +(N—DWe; . . _ .
p= 02 = f1(D? 4 (N— 1)@ — 2NxdD + (N +2)2D(0)
4l
W
F=g E=da e, Sof)=f),
and
PO _ 49 _ 8O 2 2 4
B T SR C R T

= :%, E=6a, Spls)=-|s

in each case. Indeed, with the former set of functions we idiately arrive at
X=Y &) +(N-1) > &&jls) ),
while in the latter case we obtain
XZiZinfj( —&jls;) + ZE.E, |s) .
Using Eq. (3.4), the result follows. |
Remark 4. If M =1/2, one can prove thag(|s)) always vanishes.

Remark 5. Itis interesting to note that the three lowest frequencfgb@small oscillations near
the equilibrium of the classical potentidp are also integers [15].
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4 Integer energiesin spin chains with near-neighborsinteractions

In Theorem 2 we have explicitly constructed several eigetove of Hyny whose corresponding
energies are integer numbers. Such eigenvectors can by tigtmed algebraic, as they are in
fact obtained from the algebraic eigenfunctiondHag.

The fact that these eigenvalues are integers merely reflettthe energies of the correspond-
ing algebraic eigenfunctions &f are of the form

Ex=Eo+yak+0(1), keN. 4.1)

This expression is ubiquitous in the theory of rational QESlais, and therefore one can interpret
the existence of integer energies as a reflection of the pat€pES character of the associated
dynamical spin model. As discussed in Ref. [8], this modeti(amany other amenable to an exact
treatment using Lemma 1) can be regarded as QES spin chains.

Although we have not been able to obtain a rigorous proofetiferthere is very strong nu-
merical evidence (based on computations performed for dp+a20 spins) of the validity of the
following fact:

Conjecture 1. The algebraic eigenvectol8.5a}{3.5¢) span the three lowest levels of the spin
chain(1.4). When M> 1 the fourth algebraic energ¥, = 3, is however the fifth lowest level of the
chain, and its whole eigenspace is spanned by the states @drin(3.5d) The algebraic energies
are singled out in the spectrum Hfas being the only integer ones, i.e.,

spe¢H)NZ =1{0,1,2,3}.

It is well known that all the eigenvalues of the PF chain ategaers. Since the spin chain (1.4)
is obtained from the latter by keeping only the terms withrastaneighbors interactions both in
the definition of the potential and in the equations for thairlsites, one would be tempted to
believe that the number of integer energies of the spin shain

H= 3 (&-&)°(1-5). 1<n<N, 4.2)

i<j<i+n modN

which satisfyH; = Hyn and Hy = Hprg, should in fact increase with. Quite remarkably, nu-
merical simulations seem to show that this is not the casepatticular, it seems unlikely that
the solvability properties of either the chains (4.2) oritlassociated spin models significantly
improve asn < N increases.
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