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Abstract

Quasiclassical generalized Weierstrass representatiohighly corrugated surfaces iR3
with slow modulation is proposed. Integrable deformatiohsuch surfaces are described by
the dispersionless modified Veselov-Novikov hierarchy.

1 Introduction

Surfaces, interfaces, fronts and their dynamics are thaéngrgdients in a number of very inter-
esting phenomena from hydrodynamics, growth of crystakmpry of membranes to string theory
and gravity (see.g.[30,2,26,24,5]). Most of the papers on this subject andlitesbtained have
been concerned to a smooth case. On the other hand, irregotteugated surfaces also have at-
tracted interest in various fields from applied physics aotinology to the pure mathematics (see
e.0.[7,9,1,27,22,23,11,29]).

In the present paper we propose a Weierstrass type reprdearior highly corrugated surfaces
with a slow modulation in the three dimensional EuclideaacgfR®. It is the quasiclassical limit
of the generalized Weierstrass representation (GWR) fdases inR? introduced in [13,14].
This GWR was based on the two-dimensional Dirac equatioritahdws the construction of any
surface inR3. The hierarchy of the modified Veselov-Novikov (mVN) eqoat provides us with
the integrable deformations of surfaces [13,14].

The quasiclassical GWR is based on the quasiclassical difiite Dirac equation. It allows
us to construct surfaces &* with highly oscillating (corrugated) profiles and slow méations
of these oscilations characterized by a small paranﬁeﬁt where | and L are typical scales of
oscillations and modulations, respectively. In the loveeder ins the coordinateX! (j = 1,2,3)
of such surfaces are of the form

X1rix? = A(sz,sz)exp[—Zi@],

1
X3 = 2B(ez £2) (1.1)

wherez andz are the conformal coordinates on a surface, A and B some &nfimattions and
S is a solution of the eikonal equation. The correspondingricnand mean curvature are finite
functions of the slow variablesz, £z while the Gaussian curvature is of the ordér
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Integrable deformations of such corrugated surfaces ahécad by the hierarchy of disper-
sionless mVN equations . These deformations preserve thsidassical Willmore functional
(Canham-Helfrich bending energy for membranes or the Rolyaxtrinsic action for strings (see
e.g.[26,24]). The quasiclassical limit of the Gauss map and Kesmrepresentation for surfaces
in R3 of above type are discussed too.

2 Generalized Weierstrassrepresentation for surfacesin R3

The generalized Weierstrass representation (GWR) prdpis§l3,14] is based on the linear
system ( two-dimensional Dirac equation)

LIJZ = pq)’

®, — —pW (2.1)
whereW and® are complex -valued functions afz € C (bar denotes a complex conjugation )

andp(z 2) is a real-valued function. One defines three real-valuedtioms X !(z,2), j = 1,2,3 by
the formulae

X1yix?2 — i/(@zdz‘—ﬁzd?),
r
X1_ix? — i/(qnzdz—wzd?), 2.2)
r
X = - [ (@odZ + WedZ)
r

wherel is an arbitrary contour ift.

Theorem 1. [13,14]. For any function (z,z2) and any solution ‘¢, ®) of the system (2.1) the
formulae (2.2) define a conformal immersion of a surface Ritavith the induced metric

ds? = u’dzdz; (2.3)
the Gaussian curvature
4
mean curvature
p
H=2&E 25
. (2.5)

and the Willmore functional given by

Wdif//GHZ[ds] :4//G p2dxdy (2.6)

where u= || + |®|? and z= X+ iy.

Morever, any regular surface R® can be constructed via the GWR (2.1),(2.2).

Integrable dynamics of surfaces constructed via the GWR) (&.induced by the integrable
evolutions of the potentigh(z,z,t) and the function&’, ® with respect to the deformation param-
eter t. They are given by the modified Veselov-Novikov (mVNerarchy [13,14]. The simplest
example is the mVN equation
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.3 3 __
P+ Pzzzt Pz + 300P; + 30p; + 5 pw + 3P0z = O,
w = (p%): (2.7)

while ¥ and® obey the system of linear equations
_ 3__
_ 3
D + Pyyrt Pry + 300D, + 3pquz — 3pwl.|J + E(J)ZCD = 0. (28)

The mVN equation (2.7) and the whole mVN hierarchy are amlentmbthe inverse spectral
transform method [3,14] and they have a number of remarkatoperties typical for integrable
2+1-dimensional equations. Integrable dynamics of seddnR® inherits all these properties
[14]. One of the remarkable features of such dynamics istti@tVillmore functional W (2.6)
remains invariantif = 0) [20,4]. In virtue of the linearity of the basic problemI2the GWR is
quite a useful tool to study various problems in physics aathematics (see.qg.[4,28,16,25]).

A different representation of surfaces k¥ has been proposed in [12]. It is based on the
following parametrisation of the Gauss map

G = (1- f2i(1+ 2),2f), (2.9)

where f(z,2) is a complex-valued function. Then the Kenmotsu represientaf a surface is
given by [12]

X(z2) = Re(/n@di) , (2.10)
r
where the functiom obeys the compatibility condition
2f f,
logn),= ——=, (2.11)
(logn), 1+|f|?

The Kenmotsu representation (2.9)-(2.11) and the GWR ,(2212) are equivalent to each
other. The relation between the functiarfsn) and(¥, ®) is the following [20,4]

f:i%,n —iPp?, (2.12)

while

o ntk
N1 (1+]f%)

Both the GWR and Kenmotsu representations have been widelg to study properties of
generic surfaces and special classes of surfaces, inyartiof the constant mean curvature sur-
faces.
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3 Quasiclassical Weierstrassrepresentation.

In this paper we shall consider a class of surfaceR3mvhich can be characterized by two scales
| and L such that the parameter= IE < 1. A simple example of such a surface is provided by
the profile of a slowly modulated wavetrain for which | is aitggl wavelength and L is a typical
length of modulation. Theory of such highly oscillating veawvith slow modulations is well
developed (see.g.[30,6]). Borrowing the ideas of this Whitham (or nonlineakK®) theory we
study surfaces iiR2 for which the coordinateX?, X2, X2 have the form

n=

(o) = =
Xi(z2) =Y £"F) (@,sz,sz) L =123 3.1)
0

where' S = (S}, &, %) andF/ are smooth functions of slow variablés= £z,& = £z and the
small parametes is defined above. The argumer%s’n F! describe a relatively fast variation of a
surface while the rest of arguments correspond to slow natiduis.

There are different ways to specify functiois. Here we will consider one of them induced
by the similar quasiclassical (WKB) limit of the GWR (2.12..2).

Thus, we begin with the quasiclassical limit of the Dirac &ipn (2.1). Having in mind the
discussion given above, we take

i Pn(€z €2),

Y= exp<M> is”lvn(sz, £2), (3.2

&

£

®= exp<m> Zosndnn(sz, £€2)
Nn=

whereS W, ®, are smooth functions of slow variablés= €z, & = ezandS=S. Substituting
(3.2) into (2.1), at zero order inone gets

nglPo—podJo = 0,
poWo+iSz®o = O (3.3)

while at ordere one has
iSE W1—po®P1 = —Woe+ p1®Po,
poLpl + ISEch = _CDOE — plLPO- (34)

The existence of nontrivial solutions for the system (3m3plies that S should obey the equa-
tion

et X | =S50 (3:5)

Po ISy
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or (§ =&1+i&y)
S, + S, = 45 (3.6)
i.e. the Hamilton-Jacobi equation for the two-dimensional sitz system with the potentialpd
or the eikonal equation with the refraction indepg4
From equations (3.3) and (3.5) it follows th|a35| = ‘&E‘ = pp and |Wy| = |Po|. Equations

(3.4) imply theiSg(Wog — p1Po) = po(Pgz + P1¥o).
Using the differential form of the formulae (2.2).

(X14iX?), =P, (X2 4iX?), = —i®", X3 = P, (3.7)
one concludes that the coordinadshave the form
. > 2i Z
X1rix? = Zos”An(sz,sz)exp(—M>,
L £
1 (o]
X3 = =5 e"By(ez ez 3.8
2 Y "Bn(ez£7) (38)

whereA, andBy, are smooth functions. In the lowest orderione has

e —
Y, @ —
= 9 B = —Wodp. .
25 25 3 0Po (3.9)
Note that both the expressions g are equivalent to each other due to equations (3.3) and (3.5)
Thus, we have the

Theorem 2. The quasiclassical GWR provides us with the highly correddoscillating) surfaces
with slow modulations for which the coordinates have thenf¢8.8) where the function S is a
solution of the eikonal equation (3.5) and in the lowest ottie functions A and B, are given by
(3.9),(3.3). In the limit — 0 one has the following principal contributions to the metric

d2 = 4|Wo(ez,£2)[* dzct = g ‘W(E,E)rdfdf_, (3.10)
mean curvature
Ho(€,8) = &8 (3.11)
2|wo(€.Z]
the Gaussian curvature
Ko = —&? — (log|Wo) sz , (3.12)
‘Wo(ff‘
and the Willmore functional
4 _
Wo=a /[ phlez ezdy=; [[ ph(€ D&t (3.1

where G is the rescaled domain @ = %,y: %).
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One can refer to surfacesk? given by the formulae (3.8)-(3.13) as the quasiclassiodhses.
They represent a subclass of surfaces of the type (3.1).
We note that, in virtue of (3.6), the Willmore functiona is just the Dirichlet integral

Wo = 8—12//G (&,+%,) daadee. (3.14)

So, due to the Dirichlet principle (seeg.[10]) the problem of minimization di\4 is equivalent
to the Dirichlet boundary problem for the harmonic functiothe domainG;. For surfaces with
all pp=0,n=1,2,3... . the formulae (3.13) and (3.14) give us not just the asyngpéxpressions
for the Willmore functional at — 0O, but the exact one.

The quasiclassical analogs of surfaces of constant megataue and surfaces with/detg =
1 (seee.g.[4]) correspond to the constraintg = 2|llJo|2 and 4o |llJ0|2 =1, respectively. In the
very particular cas@, = 0 and¥, = ®, = 0 one hasPp; =0, Py =0, i.e. Wo = Wo(&), D =
®p(&). Consequently, the formulae (3.3), (3.8)-(3.13) genadatelopable surfacek§ = 0) with
the metricds) = e%wg(f)mg(f)dfdf which after the reparameterizatiolf — dw = 2P5(& )d&
becomesis = S dwdw.

Now let us consider the quasiclassical limit of the Kenma&uresentation. In virtue of (2.12)
one has

&
n = ﬁ@q%@) (3.15)

P icvexp(_2|8(sz,sz)>7

f = e"fn(ez,€2),
e
n = Zoe”nn(&ﬁ)

n=

and fg = i%, ho = i®3 and so on. Using (3.15), one gets the quasiclassical Gayss ma

2is

Gq = (1— 26~ % i(1+ fze*%s),Zi‘ve*T>
and, finally, the quasiclassical Kenmotsu representation

—

X = Re{% /rgdf’?(f’,?)ﬁ(é’,?) (F—le%S —fe B (e + fe—%s),2> } (3.16)

which , of course, is equivalent to the quasiclassical GWB)(3
Quasiclasical versions of the GWR’s for surfaces in themetisional [15,17,25] and higher
dimensional spaces can be constructed in a similar manner.
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4 Integrable deformationsviathe dmVN hierarchy.

Deformations of quasiclassical surfaces described abowegigen by the dispersionless limit
of the mVN hierarchy. To get this limit one, as usual (in thelddimensional case, sexg.
[31]), assumes that the dependence of all quantities on slievaone,i.e. p= p(€z €z ¢t),S=
S(ez ez,¢t) and so on. At the first and second orderseirquation (2.7) givest(= &t,w =
Yn-0€"Wh(€Z, €2 €t))
_ 3 3 _
Por + 3o Pog +3WoPgg + 7 Polbg +5PoWoe = O,
Wz = (P (4.1)
and
P1r + 31 Pog + 3o Pag + 3WoPyz + 3W1Pgg +
3 _ 3 _
+5P1(hg +Wgg) + 5 Po(wig + W) = 0, (4.2)
wg = 2(PopP1)e-

In the lowest order equation (2.8) is

Mo ( i;’ ) =0, (4.3)
where
i(S; — S — S+ 3weSy), 3powy
Mo = < ~ 3potao, (S-S - S+ 3 4

With the use of (3.5) the condition dey = 0 assumes the form

(5-8-) (5 -5 - S +3wS +3@05) =0, (4.5)

Equation (4.1) is the dispersionless limit of the mVN equatidmVN equation). It is equiv-
alent to the compatibility condition of the linear syster8s3j and (4.3). In a similar manner one
constructs the whole dmVN hierarchy.

This hierarchy generates the integrable deformationseofjtiasiclassical surfaces described in
the previous section via the dependence iy, p1, Wo, Po ect given by equations (4.1)-(4.5) and
so on. These integrable deformations are very special fnengéometrical viewpoint. Indeed, the
dmVN equation (4.1) implies that

(P3), +3(wopg) +3(@Woph) =0, (4.6)

So, for periodic or rapidly decaying &| — o functionspy anday one has

4
Wor = ?//G (pB), d&1d& =0, 4.7)
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One can show that the Willmore functionah (or Dirichlet integral (3.14)) is invariant under
the whole dmVN hierarchy of deformations as well. One maygssg that the quasiclassical
limit of the higher mVN integrals , discussed in [8], will pfide us with the higher geometrical
invariants for quasiclassical surfaces.

The formula (4.6) indicates also an interesting conneatfdhe dmVN equation with the other
known dispersionless equation. Indeed, denop%ug: u, one has

U +3(aou)s +3(wou)g = O,

It is the dispersionless VN equation introduced in [21,T8)e dVN equation is equivalent to
the compatibility condition for the two Hamilton-Jacobiuagions

$S-u = 0,
Sr—Sg’—Sng’sangJrBwoSg = 0. (4.9)

These equations show that the whole theory of the dVN hibyacan be developed without
any reference to its dispersive version. Within the quasiitald— dressing method the dVN
hierarchy has been studied in [19] in connection with thélams of nonlinear geometrical optics
in the so-called Cole-Cole media. In order to apply the tesnibtained for the dVN hierarchy
to the dmVN hierarchy one, due to the relatior= p3 , should be able to select effectively the
positive solutions of the dVN hierarchy. This problem argbahe application of thé — dressing
method directly to the dmVN hierarchy will be consideredeelkere.

The quasiclassicad— dressing method is based on the nonlinear Beltrami equétiothe
function S in the auxuliary space of "spectral” parametehisapproach reveals a deep interrela-
tion between the solutions of the eikonal equation (3.6) #reldVN hierarchy and the quasicon-
formal mappings on the plane [19]. One may suggest that tarytof the quasiclassical surfaces
presented in the section 3 is closely related to the theogpasiconformal mappings on the plane
too.
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