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Abstract

Quasiclassical generalized Weierstrass representation for highly corrugated surfaces inR3

with slow modulation is proposed. Integrable deformationsof such surfaces are described by
the dispersionless modified Veselov-Novikov hierarchy.

1 Introduction

Surfaces, interfaces, fronts and their dynamics are the keyingredients in a number of very inter-
esting phenomena from hydrodynamics, growth of crystals, theory of membranes to string theory
and gravity (seee.g. [30,2,26,24,5]). Most of the papers on this subject and results obtained have
been concerned to a smooth case. On the other hand, irregular, corrugated surfaces also have at-
tracted interest in various fields from applied physics and technology to the pure mathematics (see
e.g. [7,9,1,27,22,23,11,29]).

In the present paper we propose a Weierstrass type representation for highly corrugated surfaces
with a slow modulation in the three dimensional Euclidean spaceR

3. It is the quasiclassical limit
of the generalized Weierstrass representation (GWR) for surfaces inR

3 introduced in [13,14].
This GWR was based on the two-dimensional Dirac equation andit allows the construction of any
surface inR3. The hierarchy of the modified Veselov-Novikov (mVN) equations provides us with
the integrable deformations of surfaces [13,14].

The quasiclassical GWR is based on the quasiclassical limitof the Dirac equation. It allows
us to construct surfaces inR3 with highly oscillating (corrugated) profiles and slow modulations
of these oscilations characterized by a small parameterε = l

L where l and L are typical scales of
oscillations and modulations, respectively. In the lowestorder inε the coordinatesX j ( j = 1,2,3)
of such surfaces are of the form

X1+ iX2 = A(εz,εz)exp

[
−2i

S(εz,εz)
ε

]
,

X3 =
1
ε

B(εz,εz) (1.1)

wherez andz are the conformal coordinates on a surface, A and B some smooth functions and
S is a solution of the eikonal equation. The corresponding metric and mean curvature are finite
functions of the slow variablesεz,εzwhile the Gaussian curvature is of the orderε2.
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Integrable deformations of such corrugated surfaces are induced by the hierarchy of disper-
sionless mVN equations . These deformations preserve the quasiclassical Willmore functional
(Canham-Helfrich bending energy for membranes or the Polyakov extrinsic action for strings (see
e.g.[26,24]). The quasiclassical limit of the Gauss map and Kenmotsu representation for surfaces
in R

3 of above type are discussed too.

2 Generalized Weierstrass representation for surfaces in R3

The generalized Weierstrass representation (GWR) proposed in [13,14] is based on the linear
system ( two-dimensional Dirac equation)

Ψz = pΦ,

Φz = −pΨ (2.1)

whereΨ andΦ are complex -valued functions ofz,z∈ C (bar denotes a complex conjugation )
andp(z,z) is a real-valued function. One defines three real-valued functionsX j(z,z), j = 1,2,3 by
the formulae

X1+ iX2 = i
∫

Γ
(Ψ2

dz′−Φ2
dz′),

X1− iX2 = i
∫

Γ
(Φ2dz′−Ψ2dz′), (2.2)

X3 = −
∫

Γ
(ΨΦdz′ + ΨΦdz′)

whereΓ is an arbitrary contour inC.

Theorem 1. [13,14]. For any function p(z,z) and any solution (Ψ,Φ) of the system (2.1) the
formulae (2.2) define a conformal immersion of a surface intoR

3 with the induced metric

ds2 = u2dzdz, (2.3)

the Gaussian curvature

K = − 4
u2(logu)zz, (2.4)

mean curvature

H = 2
p
u
, (2.5)

and the Willmore functional given by

W
de f
=

∫∫

G
H2[ds] = 4

∫∫

G
p2dxdy, (2.6)

where u= |Ψ|2 + |Φ|2 and z= x+ iy.

Morever, any regular surface inR3 can be constructed via the GWR (2.1),(2.2).
Integrable dynamics of surfaces constructed via the GWR (2.2) is induced by the integrable

evolutions of the potentialp(z,z, t) and the functionsΨ,Φ with respect to the deformation param-
eter t. They are given by the modified Veselov-Novikov (mVN) hierarchy [13,14]. The simplest
example is the mVN equation
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pt + pzzz+ pzzz+3ω pz+3ω pz+
3
2

pωz+
3
2

pωz = 0,

ωz = (p2)z (2.7)

while Ψ andΦ obey the system of linear equations

Ψt + Ψzzz+ Ψzzz−3pzΦz+3ωΨz+
3
2

ωzΨ+3pωΦ = 0,

Φt + Φzzz+ Φzzz+3ωΦz+3pzΨz−3pωΨ+
3
2

ωzΦ = 0. (2.8)

The mVN equation (2.7) and the whole mVN hierarchy are amenable to the inverse spectral
transform method [3,14] and they have a number of remarkableproperties typical for integrable
2+1-dimensional equations. Integrable dynamics of surfaces inR

3 inherits all these properties
[14]. One of the remarkable features of such dynamics is thatthe Willmore functional W (2.6)
remains invariant (Wt = 0) [20,4]. In virtue of the linearity of the basic problem (2.1) the GWR is
quite a useful tool to study various problems in physics and mathematics (seee.g. [4,28,16,25]).

A different representation of surfaces inR3 has been proposed in [12]. It is based on the
following parametrisation of the Gauss map

−→
G = (1− f 2

, i(1+ f 2),2 f ), (2.9)

where f (z,z) is a complex-valued function. Then the Kenmotsu representation of a surface is
given by [12]

−→
X (z,z) = Re

(∫

Γ
η
−→
G dz′

)
, (2.10)

where the functionη obeys the compatibility condition

(logη)z = − 2 f fz
1+ | f |2

, (2.11)

The Kenmotsu representation (2.9)-(2.11) and the GWR (2.1), (2.2) are equivalent to each
other. The relation between the functions( f ,η) and(Ψ,Φ) is the following [20,4]

f = i
Ψ
Φ

,η = iΦ2
, (2.12)

while

p = − η fz
|η |(1+ | f |2)

.

Both the GWR and Kenmotsu representations have been widely used to study properties of
generic surfaces and special classes of surfaces, in particular, of the constant mean curvature sur-
faces.
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3 Quasiclassical Weierstrass representation.

In this paper we shall consider a class of surfaces inR
3 which can be characterized by two scales

l and L such that the parameterε = l
L ≪ 1. A simple example of such a surface is provided by

the profile of a slowly modulated wavetrain for which l is a typical wavelength and L is a typical
length of modulation. Theory of such highly oscillating waves with slow modulations is well
developed (seee.g. [30,6]). Borrowing the ideas of this Whitham (or nonlinear WKB) theory we
study surfaces inR3 for which the coordinatesX1

,X2
,X3 have the form

Xi(z,z) =
∞

∑
n=0

εnF i
n

(−→
S(εz,εz)

ε
,εz,εz

)
, i = 1,2,3 (3.1)

where
−→
S = (S1

,S2
,S3) and F i

n are smooth functions of slow variablesξ = εz,ξ = εz and the
small parameterε is defined above. The argumentsSi

ε in F i
n describe a relatively fast variation of a

surface while the rest of arguments correspond to slow modulations.
There are different ways to specify functionsF i

n. Here we will consider one of them induced
by the similar quasiclassical (WKB) limit of the GWR (2.1), (2.2).

Thus, we begin with the quasiclassical limit of the Dirac equation (2.1). Having in mind the
discussion given above, we take

p =
∞

∑
n=0

εnpn(εz,εz),

Ψ = exp

(
iS(εz,εz)

ε

) ∞

∑
n=0

εnΨn(εz,εz), (3.2)

Φ = exp

(
iS(εz,εz)

ε

) ∞

∑
n=0

εnΦn(εz,εz)

whereS,Ψn,Φn are smooth functions of slow variablesξ = εz,ξ = εz andS= S. Substituting
(3.2) into (2.1), at zero order inε one gets

iSξ Ψ0− p0Φ0 = 0,

p0Ψ0 + iSξ Φ0 = 0 (3.3)

while at orderε one has

iSξ Ψ1− p0Φ1 = −Ψ0ξ + p1Φ0,

p0Ψ1 + iSξ Φ1 = −Φ0ξ − p1Ψ0. (3.4)

The existence of nontrivial solutions for the system (3.3) implies that S should obey the equa-
tion

det

∣∣∣∣
iSξ −p0

p0 iSξ

∣∣∣∣= −Sξ Sξ + p2
0 = 0, (3.5)
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or (ξ = ξ1 + iξ2)

S2
ξ1

+S2
ξ2

= 4p2
0, (3.6)

i.e. the Hamilton-Jacobi equation for the two-dimensional classical system with the potential 4p2
0

or the eikonal equation with the refraction index 4p2
0 .

From equations (3.3) and (3.5) it follows that
∣∣Sξ
∣∣ =

∣∣∣Sξ

∣∣∣ = p0 and |Ψ0| = |Φ0|. Equations

(3.4) imply theiSξ (Ψ0ξ − p1Φ0) = p0(Φ0ξ + p1Ψ0).
Using the differential form of the formulae (2.2),i.e.

(
X1+ iX2)

z = iΨ2
,

(
X1 + iX2)

z = −iΦ2
,X3

z = −ΨΦ, (3.7)

one concludes that the coordinatesXi have the form

X1+ iX2 =
∞

∑
n=0

εnAn(εz,εz)exp

(
−2iS(εz,εz)

ε

)
,

X3 =
1
ε

∞

∑
n=0

εnBn(εz,εz) (3.8)

whereAn andBn are smooth functions. In the lowest order inε one has

A0 = − Ψ2
0

2Sξ
=

Φ2
0

2Sξ
,B0ξ = −Ψ0Φ0. (3.9)

Note that both the expressions forA0 are equivalent to each other due to equations (3.3) and (3.5).
Thus, we have the

Theorem 2. The quasiclassical GWR provides us with the highly corrugated (oscillating) surfaces
with slow modulations for which the coordinates have the form (3.8) where the function S is a
solution of the eikonal equation (3.5) and in the lowest order the functions A0 and B0 are given by
(3.9),(3.3). In the limitε → 0 one has the following principal contributions to the metric

ds2 = 4|Ψ0(εz,εz)|4 dzdz=
4
ε2

∣∣∣Ψ(ξ ,ξ )
∣∣∣
4
dξ dξ , (3.10)

mean curvature

H0(ξ ,ξ ) =
p0(ξ ,ξ )

2
∣∣∣Ψ0(ξ ,ξ

∣∣∣
2 , (3.11)

the Gaussian curvature

K0 = −ε2 2
∣∣∣Ψ0(ξ ,ξ

∣∣∣
2 (log|Ψ0|)ξξ , (3.12)

and the Willmore functional

W0 = 4
∫∫

G
p2

0(εz,εz)dxdy=
4
ε2

∫∫

Gε
p2

0(ξ ,ξ )dξ1dξ2, (3.13)

where Gε is the rescaled domain G(x = ξ1
ε ,y = ξ2

ε ).
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One can refer to surfaces inR3 given by the formulae (3.8)-(3.13) as the quasiclassical surfaces.
They represent a subclass of surfaces of the type (3.1).

We note that, in virtue of (3.6), the Willmore functionalW0 is just the Dirichlet integral

W0 =
1
ε2

∫∫

Gε

(
S2

ξ1
+S2

ξ2

)
dξ1dξ2. (3.14)

So, due to the Dirichlet principle (seee.g.[10]) the problem of minimization ofW0 is equivalent
to the Dirichlet boundary problem for the harmonic functionin the domainGε . For surfaces with
all pn = 0,n= 1,2,3... . the formulae (3.13) and (3.14) give us not just the asymptotic expressions
for the Willmore functional atε → 0 , but the exact one.

The quasiclassical analogs of surfaces of constant mean curvature and surfaces withH
√

detg=
1 (seee.g. [4]) correspond to the constraintsp0 = 2|Ψ0|2 and 4p0 |Ψ0|2 = 1 , respectively. In the
very particular casep1 = 0 andΨ1 = Φ1 = 0 one hasΨ0ξ = 0,Φ0ξ = 0, i.e. Ψ0 = Ψ0(ξ ),Φ0 =

Φ0(ξ ). Consequently, the formulae (3.3), (3.8)-(3.13) generatedevelopable surfaces (K0 = 0) with

the metricds2
0 = 4

ε2 Ψ2
0(ξ )Ψ2

0(ξ )dξ dξ which after the reparameterizationdξ → dw= 2Ψ2
0(ξ )dξ

becomesds2
0 = 1

ε2 dwdw.
Now let us consider the quasiclassical limit of the Kenmotsurepresentation. In virtue of (2.12)

one has

f = f̃ exp

(
−2iS(εz,εz)

ε

)
,

η = η̃ exp

(
2iS(εz,εz)

ε

)
(3.15)

where

f̃ = ∑
n=0

εn fn(εz,εz),

η̃ = ∑
n=0

εnηn(εz,εz)

and f0 = i Ψ0
Φ0

,h0 = iΦ2
0 and so on. Using (3.15), one gets the quasiclassical Gauss map

−→
Gq =

(
1− f̃ 2e−

4iS
ε
, i(1+ f̃ 2e−

4iS
ε ),2 f̃ e−

2iS
ε

)

and, finally, the quasiclassical Kenmotsu representation

−→
X = Re

{
1
ε

∫

Γε
dξ ′ f̃ (ξ ′

,ξ
′
)η̃(ξ ′

,ξ
′
)
(

f̃−1e
2iS
ε − f̃ e−

2iS
ε
, i( f̃−1e

2iS
ε + f̃ e−

2iS
ε ),2

)}
, (3.16)

which , of course, is equivalent to the quasiclassical GWR (3.8).
Quasiclasical versions of the GWR’s for surfaces in the 4-dimensional [15,17,25] and higher

dimensional spaces can be constructed in a similar manner.
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4 Integrable deformations via the dmVN hierarchy.

Deformations of quasiclassical surfaces described above are given by the dispersionless limit
of the mVN hierarchy. To get this limit one, as usual (in the 1+1-dimensional case, seee.g.
[31]), assumes that the dependence of all quantities on t is aslow one,i.e. p= p(εz,εz,εt),S=
S(εz,εz,εt) and so on. At the first and second orders inε equation (2.7) gives (τ = εt,ω =

∑n=0εnωn(εz,εz,εt))

p0τ +3ω0p0ξ +3ω0p0ξ +
3
2

p0ω0ξ +
3
2

p0ω0ξ = 0,

ω0ξ = (p2
0)ξ (4.1)

and

p1τ +3ω1p0ξ +3ω0p1ξ +3ω0p1ξ +3ω1p0ξ +

+
3
2

p1(ω0ξ + ω0ξ )+
3
2

p0(ω1ξ + ω1ξ ) = 0, (4.2)

ω1ξ = 2(p0p1)ξ .

In the lowest order equation (2.8) is

M0

(
Ψ0

Φ0

)
= 0, (4.3)

where

M0 =

(
i(Sτ −S3

ξ −S3
ξ
+3ω0Sξ ), 3p0ω0

−3p0ω0, i(Sτ −S3
ξ −S3

ξ
+3ω0Sξ )

)
(4.4)

With the use of (3.5) the condition detM0 = 0 assumes the form

(
Sτ −S3

ξ −S3
ξ

)(
Sτ −S3

ξ −S3
ξ +3ω0Sξ +3ω0Sξ

)
= 0, (4.5)

Equation (4.1) is the dispersionless limit of the mVN equation (dmVN equation). It is equiv-
alent to the compatibility condition of the linear systems (3.3) and (4.3). In a similar manner one
constructs the whole dmVN hierarchy.

This hierarchy generates the integrable deformations of the quasiclassical surfaces described in
the previous section via theτ- dependence ofp0, p1,

Ψ0,Φ0 ect given by equations (4.1)-(4.5) and
so on. These integrable deformations are very special from the geometrical viewpoint. Indeed, the
dmVN equation (4.1) implies that

(
p2

o

)
τ +3

(
ω0p2

0

)
ξ +3

(
ω0p2

0

)
ξ = 0. (4.6)

So, for periodic or rapidly decaying at|ξ | → ∞ functionsp0 andω0 one has

W0τ =
4
ε2

∫∫

Gε

(
p2

0

)
τ dξ1dξ2 = 0. (4.7)
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One can show that the Willmore functionalW0 (or Dirichlet integral (3.14)) is invariant under
the whole dmVN hierarchy of deformations as well. One may suggest that the quasiclassical
limit of the higher mVN integrals , discussed in [8], will provide us with the higher geometrical
invariants for quasiclassical surfaces.

The formula (4.6) indicates also an interesting connectionof the dmVN equation with the other
known dispersionless equation. Indeed, denotingp2

0 = u, one has

uτ +3(ω0u)ξ +3(ω0u)ξ = 0,

ω0ξ = uξ .

(4.8)

It is the dispersionless VN equation introduced in [21,18].The dVN equation is equivalent to
the compatibility condition for the two Hamilton-Jacobi equations

Sξ Sξ −u = 0,

Sτ −S3
ξ −S3

ξ +3ω0Sξ +3ω0Sξ = 0. (4.9)

These equations show that the whole theory of the dVN hierarchy can be developed without
any reference to its dispersive version. Within the quasiclassical∂− dressing method the dVN
hierarchy has been studied in [19] in connection with the problems of nonlinear geometrical optics
in the so-called Cole-Cole media. In order to apply the results obtained for the dVN hierarchy
to the dmVN hierarchy one, due to the relationu = p2

0 , should be able to select effectively the
positive solutions of the dVN hierarchy. This problem and also the application of the∂− dressing
method directly to the dmVN hierarchy will be considered elsewhere.

The quasiclassical∂− dressing method is based on the nonlinear Beltrami equationfor the
function S in the auxuliary space of ”spectral” parameter . This approach reveals a deep interrela-
tion between the solutions of the eikonal equation (3.6) andthe dVN hierarchy and the quasicon-
formal mappings on the plane [19]. One may suggest that the theory of the quasiclassical surfaces
presented in the section 3 is closely related to the theory ofquasiconformal mappings on the plane
too.
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