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Abstract

We solve an initial-boundary problem for the Klein-Gordon equation on the half line using
the Riemann-Hilbert approach to solving linear boundary value problems advocated by Fokas.
The approach we present can be also used to solve more complicated boundary value prob-
lems for this equation, such as problems posed on time-dependent domains. Furthermore, it
can be extended to treat integrable nonlinearisations of the Klein-Gordon equation. In this re-
spect, we briefly discuss how our results could motivate a novel treatment of the sine-Gordon
equation.

1 Introduction

In this paper we consider two important equations of mathematical physics, the Klein-Gordon
equation in one space dimension

qtt(x, t)−qxx(x, t)+q(x, t) = 0, (1.1)

and an integrable nonlinearisation of this equation known as the sine-Gordon equation

qtt(x, t)−qxx(x, t)+sinq(x, t) = 0. (1.2)

We consider these equations posed on the half linex > 0, and solve the initial-boundary value
problem obtained by prescribing the following set of initial and boundary conditions:

q(x,0) = q0(x), qt(x,0) = q1(x), x > 0, (1.3)

q(0, t) = f0(t), t > 0, q(x, t) →t→∞ 0. (1.4)

To avoid any technical issue not of immediate interest in this paper, we assume that all prescribed
functions belong to the Schwarz class.
In principle, the Klein-Gordon equation could be solved by separation of variables and an applica-
tion of an appropriate Fourier transform. However, we present a solution of the Dirichlet boundary
value problem posed on the half line using a different approach. This approach follows a general
method for solving boundary value problems for linear PDEs in two dimensions, first proposed by
Fokas (see e.g. [2, 3]).
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The Fokas transform method has two important advantages over the classical approaches. Firstly,
it can be used to solve complicated boundary value problems,such as problems posed on time
dependent domains. Secondly, it nonlinearises, in the sense that the same steps used to analyse
the linear equation can be used for the analysis of any nonlinear integrableversion of the same
equation. This is similar to the celebrated inverse scattering transform for the solution of the
Cauchy problem for integrable nonlinear PDEs.

Using this approach, we prove the following result.

Theorem 1.1. Consider the Klein-Gordon equation (1.1), for x> 0 and t> 0. Assume that there
exists a unique solution of the boundary value problem obtained by prescribing the initial condi-
tions (1.3) and the boundary conditions (1.4).
Then this solution is given by the following expression:

q(x, t) =
1

4π i

∫

R

eik−x
{

eik+t [q̂1(k−)+ ik+q̂0(k−)]−e−ik+t [q̂1(k−)− ik+q̂0(k−)]
} kdk

1+k2 ,

t < x,

q(x, t) =
1

4π i

∫

R

{
eik−x+ik+t [q̂1(k−)+ ik+q̂0(k−)]−eik−x−ik+t [q̂1(k−)− ik+q̂0(k−)]

} kdk
1+k2

+
1

4π i

∫

Γ1

eik−x−ik+t [ f̂1(−k+)+ ik− f̂0(−k+)]
kdk

1+k2

+
1

4π i

∫

Γ2

eik−x+ik+t [ f̂1(k+)+ ik− f̂0(k+)]
kdk

1+k2 , x < t, (1.5)

where the function f1(t) is given by

f1(t) =
1

4π

∫

R

{
eik+t [q̂1(k−)+ ik+q̂0(k−)]+e−ik+t [q̂1(k−)− ik+q̂0(k−)]

}
dk

+
1

4π

∫

Γ2

eik+t ik− f̂0(k+)dk−
1

4π

∫

Γ1

e−ik+t ik− f̂0(−k+)dk−2 f ′0(t). (1.6)

In these expressions,̂g(k) denotes the usual Fourier transform of the function g(x),

g(k) =
∫ ∞

0
e−ikxg(x)dx,

k−,k+ are functions of the complex parameter k defined by,

k− =
1
2

(
k−

1
k

)
, k+ =

1
2

(
k+

1
k

)
, (1.7)

andΓ1 andΓ2 are the oriented contours

Γ1 = (−∞,−1]∪{|k| = 1, Im(k) > 0}∪ [1,∞) (left to right), (1.8)

Γ2 = −[−1,1]∪{|k| = 1, Im(k) > 0} (clockwise). (1.9)

Note that the functionf1(t) denotes the unknown boundary value of the solution atx = 0, namely
f1(t) = qx(0, t).
The analogous boundary value problem for the sine-Gordon equation (1.2) has been considered in
[4, 5, 11, 14]. At the end of this paper, we propose an alternative way of solving this nonlinear
equation, motivated by the solution of the corresponding linearised problem presented here.



336 B Pelloni and D A Pinotsis

The Fokas transform method is based on the formulation of a linear or nonlinear PDE as the
compatibility condition of a pair of linear eigenvalue equations, called theLax pair [6]. The
spectral analysis of this pair yields aRiemann-Hilbert problem, which is scalar in the linear case
and matrix-valued in the nonlinear case. The solution of this Riemann-Hilbert problem yields a
formal representation of the solution of the boundary valueproblem.
In the case of evolution and elliptic PDEs, the derivation ofan effectivesolution of a boundary
value problem (i.e. a representation of the solution in terms only of the given initial and bondary
conditions) involves not only the analysis of the Lax pair, but also the analysis of a relation cou-
pling all initial and boundary values, called theglobal relation[3].
In this paper, we present the application of this method to the case of linearhyperbolicPDEs. It
appears that, for hyperbolic equations, an effective solution of boundary value problems in time-
independent domains can be obtained by analysing the Lax pair only, as long as the Lax pair
selected is of second order. Indeed, this second order Lax pairs gives rise to two first-order pairs.
The analysis of these two pairs can be combined to yield an effective representation of the solution,
without resorting to the global relation. The same idea can be extended to the analysis of the sine-
Gordon equation. The Dirichlet problem on the half line for this nonlinear integrable equation is
usually solved using just one Lax pair and the global relation. The Lax pair used is the nonlinear
version of one of the two first-order Lax pairs of the linear problem. We propose instead to use the
nonlinear version of both first-order Lax pairs.

This paper is organised as follows. In section 2, we derive a Lax pair formulation of the Klein-
Gordon equation as well as a variant of the Fourier transformwhich we will need later. In section
3, we prove the theorem 1.1. Finally, in section 4, we discussthe implications of our results for
the case of the sine-Gordon equation.

2 Lax pairs and variants of the Fourier transform

2.1 The Lax pair formulation

Any linear PDE with constant coefficients in two variables can be written as the compatibility
condition of a pair of ODEs, called a Lax pair of the PDE. The approach for the construction of a
Lax pair proposed in [3] assumes that the ODE in the variablex is of the form

µx(x, t,k)− ikµ(x, t,k) = q(x, t), k∈ C,

whereq(x, t) denotes the solution of the PDE and then yields algorithmically an ODE int. Using
this approach and performing an appropriate change of the spectral parameterk we derive the
following Lax pair of the Klein-Gordon equation:

µx(x, t,k)−
i
2

(
k−

1
k

)
µ(x, t,k) = q(x, t), (2.1)

µtt(x, t,k)+
i
4

(
k+

1
k

)2

µ(x, t,k) = qx(x, t)+
i
2

(
k−

1
k

)
q(x, t), (2.2)

whereµ(x, t,k) is a real function.
Writing (2.2) as a first order differential system and diagonalising thet-part of this system, we
obtain

(
ν1

ν2

)

t

+

( i
2

(
k+ 1

k

)
0

0 − i
2

(
k+ 1

k

)
)(

ν1

ν2

)
=

(
qx + i

2

(
k− 1

k

)
q

qx + i
2

(
k− 1

k

)
q

)
(2.3)
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where
{

ν1 = µt −
i
2

(
k+ 1

k

)
µ ,

ν2 = µt +
i
2

(
k+ 1

k

)
µ so that µ(x, t,k) =

ν2(x, t,k)−ν1(x, t,k)

i
(
k+ 1

k

) . (2.4)

Computing thex-derivative ofν1, ν2, we find that each of these two functions satisfy a Lax pair,
namely

{
(ν1)x−

i
2

(
k− 1

k

)
ν1 = qt −

i
2

(
k+ 1

k

)
q

(ν1)t +
i
2

(
k+ 1

k

)
ν1 = qx + i

2

(
k− 1

k

)
q,

(2.5)

and
{

(ν2)x−
i
2

(
k− 1

k

)
ν2 = qt +

i
2

(
k+ 1

k

)
q

(ν2)t −
i
2

(
k+ 1

k

)
ν2 = qx + i

2

(
k− 1

k

)
q.

(2.6)

Note that the Klein-Gordon equation can be obtained as the compatibility condition of either of
the two Lax pairs (2.5) and (2.6). Hence one possible way to find the solution is to analyse either
of these Lax pairs. This procedure yields two integral representations forq(x, t). These represen-
tations involve both boundary valuesq(0, t) andqx(0, t) of the solution. Since only one boundary
condition can be prescribed atx = 0, these representations are not effective. To determine the
unknown boundary value each of these representations must be supplemented by the global rela-
tion. Alternatively, we show below that bycombining boththese representations, it is possible to
compute explicitly the unknown boundary valuewithout invoking the global relation.

Remark 2.1. Following [13], the Lax pair for the sine-Gordon equation that usually appears in
the literature (see equation (4.1)) can be obtained in an algorithmic way starting from the Lax pair
(2.6). In section 4, we discuss the implications of this factfor the solution of the sine-Gordon
equation on the half line.

2.2 Variants of the Fourier transform

To derive an effective representation of the solution of theboundary value problem for the Klein-
Gordon equation on the half line, we use a variant of the Fourier transform. This variant can be
obtained by a change of variable in the Fourier inversion theorem and an appropriate manipulation
of the contours of integration. We present however an alternative, direct derivation of this variant
of the Fourier transform by means of the spectral analysis ofan appropriate ODE. This approach
offers a systematic way of deriving precisely the necessarytransform for the solution of the Klein-
Gordon equation. In addition, it generalises to more complicated boundary value problems for
which the Fourier transform would not suffice, for example itcan be used to analyse boundary
value problems posed on time-dependent domains [7].

Proposition 2.1. Let f(t) ∈ S [0,∞), and define the function F(k), k∈C, by

F(k) =
∫ ∞

0
e−

i
2(k+ 1

k )s f (s)ds. (2.7)

Then

f (t) =
1

4π

∫

Γ1

e−
i
2(k+ 1

k )tF(−k)dk−
1

4π

∫

Γ2

e
i
2(k+ 1

k )tF(k)dk, (2.8)

whereΓ1 andΓ2 are the oriented contours given by (1.8)-(1.9).
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In this statement,S denotes the Schwarz space of infinitely differentiable functions, rapidly de-
caying ast → ∞.

Proof (sketch): We follow the approach reviewed in e.g. [12]. We derive the transform pair
(2.7)-(2.8) by considering the ODE

ϕt(t,k)+
i
2

(
k+

1
k

)
ϕ(t,k) = f (t), k∈ C.

and seeking a solutionϕ(t,k) of it that is sectionally analytic, and bounded for allk ∈ C. This
solution can be found by solving a scalar Riemann-Hilbert problem on the countour determined
by the equation

Im(k+
1
k
) = 0.

Solving this Riemann-Hilbert problem we obtain the following integral representation forϕ(t,k):

ϕ(t,λ ) = −
1

2π i

∫

Γ1

e−
i
2(k+ 1

k)tF(−k)
dk

k−λ
+

1
2π i

∫

γ2

e−
i
2(k+ 1

k)tF(−k)
dk

k−λ
,

whereΓ1 is given by (1.8) and

γ2 = −[−1,1]∪{|k| = 1, Im(k) < 0} (clockwise) (2.9)

Computingϕt +
i
2

(
λ + 1

λ
)

ϕ we obtain forf (t) the expression

f (t) =
1

4π

∫

Γ1

e−
i
2(k+ 1

k)tF(−k)dk−
1

4π

∫

γ2

e−
i
2(k+ 1

k)tF(−k)dk.

Equation (2.8) follows after lettingk→−k in the integral alongγ2.
QED

Remark 2.2. Similarly to the above analysis or by a change of variable in the Fourier inversion
theorem we derive the following result: Letf (t) ∈ S [0,∞), and define the functionF−(k), k∈C,
by

F−(k) =
∫ ∞

0
e−

i
2(k− 1

k )s f (s)ds. (2.10)

The inversion formula for this transform is

f (x) =
1

4π

∫

R

e
i
2(k− 1

k )xF−(k)dk. (2.11)

3 The Dirichlet problem for the Klein-Gordon equation

In this section, we prove theorem 1.1.
Proof of theorem 1.1: We consider the two Lax pairs (2.5)-(2.6).
Any solution of the Lax pair (2.5) is of the form

ν1(x, t,k) =

∫ x

x∗
eik−(x−y)(qt − ik+q)(y, t)dy+eik−x

∫ t

t∗
e−ik+(t−s)(qx + ik−q)(x0,s)ds
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and its asymptotic behaviour ask→ 0 andk→ ∞ is given by

ν1 = −q−2i(qx +qt)k+O(k2), k→ 0,

ν1 = q+O

(
1
k

)
, k→ ∞. (3.1)

The general choice ofx∗, t∗ that yields data determining an appropriate Riemann-Hilbert problem
is given in [3]. To determine such a problem one needs solutions ν j with prescribed decay at
infinity, each of which is analytic and bounded ink in a subdomainD j of the complex planeC,
such that the domainsD j do not overlap and

⋃
j D j = C. In the present case, we obtain the three

particular solutions of (2.5)

ν1,+
1 =

∫ x

0
eik−(x−y)(qt − ik+q)(y, t)dy−eik−x

∫ ∞

t
e−ik+(t−s)(qx + ik−q)(0,s)ds,

ν2,+
1 =

∫ x

0
eik−(x−y)(qt − ik+q)(y, t)dy+eik−x

∫ t

0
e−ik+(t−s)(qx + ik−q)(0,s)ds,

ν−
1 = −

∫ ∞

x
eik−(x−y)(qt − ik+q)(y, t)dy.

Indeed, the functionν1,+
1 , considered as a function of the complex variablek, is bounded and

analytic inC
+ \B1, the functionν2,+

1 is analytic inC
+ ∩B1 while ν−

1 is bounded and analytic in
C
−, whereB1 is the unit disk inC.

Similarly, for the Lax pair (2.6) we obtain the following particular solutions

ν1,+
2 =

∫ x

0
eik−(x−y)(qt + ik+q)(y, t)dy+eik−x

∫ t

0
eik+(t−s)(qx + ik−q)(0,s)ds, k∈ C

+ \B1,

ν2,+
2 =

∫ x

0
eik−(x−y)(qt + ik+q)(y, t)dy−eik−x

∫ ∞

t
eik+(t−s)(qx + ik−q)(0,s)ds, k∈ C

+∩B1,

ν−
2 = −

∫ ∞

x
eik−(x−y)(qt + ik+q)(y, t)dy, k∈ C

−
.

We now define the three functions

µ j,+(x, t,k) =
ν j,+

2 (x, t,k)−ν j,+
1 (x, t,k)

2ik+
, j = 1,2

µ−(x, t,k) =
ν−

2 (x, t,k)−ν−
1 (x, t,k)

2ik+
.

Equation (2.4) implies that the above formulae define three particular solutions of the system (2.2)
which are bounded and analytic inC+ \B1, C

+∩B1 andC
− respectively, except for a simple pole

at k = i. In addition the functionsµ1,+ and µ− are of orderO
(1

k

)
ask → ∞ in the respective

half planes. These functions determine a Riemann-Hilbert problem with jumps alongR and∂B1.
These jumps are given by

µ1,+(x, t,k)−µ2,+(x, t,k) =
eik−x+ik+t

2ik+
[ f̂1(k+)+ ik− f̂0(k+)]

+
eik−x−ik+t

2ik+
[ f̂1(−k+)+ ik− f̂0(−k+)], |k| = 1, k∈ C

+
,



340 B Pelloni and D A Pinotsis

µ1,+(x, t,k)−µ−(x, t,k) =
eik−x+ik+t

2ik+
[q̂1(k−)+ ik+q̂0(k−)]

−
eik−x−ik+t

2ik+
[q̂1(k−)− ik+q̂0(k−)]

+
eik−x−ik+t

2ik+
[ f̂1(−k+)+ ik− f̂0(−k+)], |k| ≥ 1, k∈ R,

µ2,+(x, t,k)−µ−(x, t,k) =
eik−x+ik+t

2ik+
[q̂1(k−)+ ik+q̂0(k−)]

−
eik−x−ik+t

2ik+
[q̂1(k−)− ik+q̂0(k−)]

−
eik−x+ik+t

2ik+
[ f̂1(k+)+ ik− f̂0(k+)], −1 < k < 1.

The unique solution of this Riemann-Hilbert problem which is also a bounded solution of (2.2), is
given by

µ(x, t,λ ) =
1

2π i

∫

R

{
eik−x+ik+t

2ik+
[q̂1(k−)+ ik+q̂0(k−)]−

eik−x−ik+t

2ik+
[q̂1(k−)− ik+q̂0(k−)]

}
dk

k−λ

+
1

2π i

∫

Γ1

eik−x−ik+t

2ik+
[ f̂1(−k+)+ ik− f̂0(−k+)]

dk
k−λ

+
1

2π i

∫

Γ2

eik−x+ik+t

2ik+
[ f̂1(k+)+ ik− f̂0(k+)]

dk
k−λ

, (3.2)

where the contoursΓ j , j = 1, 2 are given by (1.8) and (1.9). Using (2.1), we finally obtain an
integral representation forq(x, t):

q(x, t) =
1

4π i

∫

R

{
eik−x+ik+t [q̂1(k−)+ ik+q̂0(k−)]−eik−x−ik+t [q̂1(k−)− ik+q̂0(k−)]

} dk
2k+

+
1

4π i

∫

Γ1

eik−x−ik+t [ f̂1(−k+)+ ik− f̂0(−k+)]
dk
2k+

+
1

4π i

∫

Γ2

eik−x+ik+t [ f̂1(k+)+ ik− f̂0(k+)]
dk
2k+

. (3.3)

This formal representation contains the unknown functionf1(t). We now show how to evaluate
this function explicitly.
We distinguish two cases:t < x andt > x.

(a): x− t > 0

In this case the exponential eik−x−ik+teik+s, s≥ 0, is bounded and analytic in the region ofC
+ above

the contourΓ1. Indeed, this is the case for eik+s, while

eik−x−ik+t = ei k
2(x−t)− i

2k (x+t) =⇒ |eik−x−ik+t | = e−
k2
2 (x−t)e

k2
2|k|2

(x+t)

so that the latter exponential is bounded ifk2 > 0 andk is away fromk = 0 . It follows by Jordan’s
lemma that

lim
R→∞

∫

CR

eik−x−ik+t [ f̂1(−k+)+ ik− f̂0(−k+)]
dk
k+

= 0 (3.4)
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whereCR = {k ∈ C
+ : |k| = R} with counterclockwise orientation. The integrand of the integral

alongΓ1 appearing in (3.3) has a simple pole atk = i. Computing the residue at this pole, and
using (3.4), we obtain

1
4π i

∫

Γ1

eik−x−ik+t [ f̂1(−k+)+ ik− f̂0(−k+)]
dk
2k+

=
1
2

e−2x[ f̂1(0)−2 f̂0(0)].

Similarly, the exponential eik−x+ik+te−ik+s, s≥ 0, is bounded and analytic in the region bounded by
the contourΓ2, where the integrand has a simple pole (atk = i). Hence,

1
4π i

∫

Γ2

eik−x+ik+t [ f̂1(k+)+ ik− f̂0(k+)]
dk
2k+

= −
1
2

e−2x[ f̂1(0)−2 f̂0(0)].

It follows that the contribution of the last two integrals in(3.3) cancels and we obtain

q(x, t) =
1

4π i

∫

R

{
eik−x+ik+t [q̂1(k−)+ ik+q̂0(k−)]−eik−x−ik+t [q̂1(k−)− ik+q̂0(k−)]

} dk
2k+

. (3.5)

(b): t−x > 0

In this case, the contribution of the terms involving the boundary values is not zero. To evaluate
this contribution explicitly, we take the derivative of theexpression (3.3) forq(x, t) with respect to
t and evaluate it atx = 0. Thus we obtain

2qt(0, t) =
1

4π

∫

R

{
eik+t [q̂1(k−)+ ik+q̂0(k−)]+e−ik+t [q̂1(k−)− ik+q̂0(k−)]

}
dk

−
1

4π

∫

Γ1

e−ik+t [ f̂1(−k+)+ ik− f̂0(−k+)]dk

+
1

4π

∫

Γ2

eik+t [ f̂1(k+)+ ik− f̂0(k+)]dk. (3.6)

In expression (3.6), the left hand side isf ′0(t). The term involving the unknown boundary value
f1(t) is

1
4π

∫

Γ2

eik+t f̂1(k+)dk−
1

4π

∫

Γ1

e−ik+t f̂1(−k+)dk, f̂1(−k+) =

∫ ∞

0
eik+s f1(s)ds.

Using the inversion formula (2.8), the above term is equal to− f1(t). Hence we obtain the follow-
ing explicit expression for the unknown functionf1(t) in terms of the given initial and boundary
conditions:

f1(t) =
1

4π

∫

R

{
eik+t [q̂1(k−)+ ik+q̂0(k−)]+e−ik+t [q̂1(k−)− ik+q̂0(k−)]

}
dk

+
1

4π

∫

Γ2

eik+t ik− f̂0(k+)dk−
1

4π

∫

Γ1

e−ik+t ik− f̂0(−k+)dk−2 f ′0(t). (3.7)

QED
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Remark 3.1. The integral representations (3.5) and (3.3) are obtained in theorem 1.1 under the
assumption of existence. However, we can nowdefinethe function f1(t), t > 0, by the expression
(3.7), as well as the functionq(x, t) by the expression (3.5) whent < x and by the expression (3.3)
whent > x. By construction,q(x, t) satisfies the boundary conditionq(0, t) = f0(t). In addition,
using (2.11), we verify that it satifies the given initial conditions. Indeed, lettingt = 0 in (3.5), we
find

q(x,0) =
1

4π

∫

R

eik−xq̂0(k−)dk= q0(x).

Similarly, qt(x,0) = q1(x).

Remark 3.2. It is possible to derive the solution of the pure initial value problem posed on the
real line as well as the solution (3.5) of the Dirichlet problem far away from the boundary using
the representation obtained from only one of the two Lax pairs (2.5) and (2.6) and a change of
variables. However, it is not possible to characterise the unknown boundary value without deriving
an additional relation.

4 Remarks on the half-line problem for the sine-Gordon equation

The sine-Gordon equation is a nonlinear integrable equation in one space dimension. In [9] this
equation was formulated as the compatibility condition of the Lax pair

µx +
i
2

k−σ3µ = Q̃(x, t,k)µ ,

µt +
i
2

k+σ3µ = Q̃(x, t,−k)µ , (4.1)

whereµ(x, t,k) is a 2×2 matrix and

Q̃(x, t,k) =
1
4

(
i
k(cosq−1) −i(qx +qt)−

sinq
k

−i(qx +qt)+ sinq
k − i

k(cosq−1)

)
, (4.2)

Using this Lax pair, the Cauchy problem for the sine-Gordon equation was solved by the inverse
scattering transform.
Recently, Fokas solved the boundary value problem for the sine-Gordon equation on the half-
line using his generalised transform method [4, 5]. In thesepapers, the global relation plays a
crucial role in deriving an effective representation of thesolution of this problem because it is
the analysis of this relation that yields the unknown boundary value f1(t) in terms of the given
boundary conditions.

In section 3, we presented an approach for the solution of theKlein-Gordon equation which is a
linearisation, aroundq = 0, of the sine-Gordon equation. For evolution equations, the linearised
problem can be taken as a guideline for the solution of the corresponding integrable nonlinear
problem. We expect this to be the case also in the present problem. Our approach for the solution
of the Klein-Gordon equation motivates an analogous treatment for the sine-Gordon equation,
which doesnot involvethe global relation.
A systematic approach for the derivation ofnonlinear integrablePDEs starting from the corre-
spondinglinear PDEs was introduced in [13]. This approach is based on the algorithmic construc-
tion of a Lax pair of the nonlinear equation starting from theLax pair of the corresponding linear
equation.
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Since the solution of the linearised equation is based on thespectral analysis ofboth Lax pairs
(2.5) and (2.6), we propose to study the sine-Gordon equation by considering the Lax pair (4.1)
which is the nonlinear analogue of (2.6) as well as a second Lax pair, corresponding to (2.5).
Following the approach of [13] and starting from (2.5), we obtain the following Lax pair of the
sine-Gordon equation:

µx−
i
2

k−σ3µ = Q(1)(x, t,k)µ

µt +
i
2

k+σ3µ = Q(2)(x, t,k)µ , (4.3)

where the matricesQ( j)(x, t,k) j = 1,2 are defined by

Q(1)(x, t,k) =
1
4

(
i
k(1−cosq) i(qx−qt)−

sinq
k

i(qx−qt)+ sinq
k

i
k(cosq−1)

)
, (4.4)

Q(2)(x, t,k) =
1
4

(
i
k(1−cosq) −i(qx−qt)−

sinq
k

−i(qx−qt)+ sinq
k

i
k(cosq−1)

)
. (4.5)

A third Lax pair of the sine-Gordon equation was introduced in [1]. This alternative Lax pair was
used in [5] to motivate the role of some special boundary conditions, first proposed in [14]. The
relation between these results and the approach we suggest here is currently under investigation
and will be presented elsewhere.
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