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Abstract

We discuss how the Camassa-Holm hierarchy can be framed within the geometry of the Sato
Grassmannian. We discuss the geometry of an extension of thenegative flows of the CH
hierarchy, recover the well-known CH equations, and frame the problem within the theory of
pseudo-differential operators.

1 Introduction

In this paper we study some specific aspects of the Camassa Holm hierarchy. Since its appearance
in the literature, it has been recognized that the CH equation possesses specific features, (e.g.,
peakon solutions, the appearance of third order Abelian differentials in finite gap solutions,...)
that other more ”classical” soliton hierarchies (KdV, Boussinesq, NLS) do not exhibit. Among
these, especially in view of the Dubrovin–Zhang classification scheme [8], the non-existence of
a formulation via aτ function is, from our point of view, of particular interest.The Sato theory
of the τ function basically views it as a section of the (dual) determinant bundle over the so–
called Sato (or Universal) Grassmannian (UG). It is associated with any hierarchy of evolutionary
PDEs that can be represented as a hierarchy of linear flows on UG. Thus it seems important to
analyze whether (and which) flows of the CH hierarchy can be realized as linear flows in the Sato
Grassmannian.

The main aim of this paper is to discuss this problem in the framework of a set up, introduced
in [11, 2], relating the (bi)–Hamiltonian structures of soliton hierarchies of KdV type to the Sato
Grassmannian. In particular, we will rely on some preliminary results presented in [15] and earlier
in [4], concerning the relations between the CH hierarchy and such a representation of the Sato
Grassmannian.

In [12] it was shown that the bi–Hamiltonian structures of the CH and KdV equations (as
well of the Harry–Dym equation) are related, being geodesicmotions on the Virasoro group with
respect to different metrics. Actually, the relation with the evolution on the Sato Grassmannian
has been studied for the KdV and the HD hierarchies, showing that they are related to linear flows
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in the big cell of UG. In this paper we try to complete this picture showing that the CH hierarchy
too is related to the big cell of the Sato Grassmannian by means of its local (also called negative)
flows. One of the basic differences among this representation of the three hierarchies is given by
the relation between the local flows and the “time” of the hierarchy related to the conservation of
the linear momentum.

This will show up, in the present paper, as the realization ofthe CH local hierarchy in a con-
strained subspace of the big cell. The path leading us to thisresult is the analysis of the evolution
of the Noether currents associated with the bi–Hamiltonianrecurrence relation of the local hier-
archy. We will argue as, on more general grounds, they are associated with a two-field (albeit
somehow trivial) bi–Hamiltonian extension of the CH local hierarchy.

The ordinary CH bi–Hamiltonian hierarchy is recovered – together with the non local part
including the ”true” CH equation – by Dirac restricting thistwo-field hierarchy to a specific sub-
manifold, namely those selected by these Noether currents satisfying a specific constraint. Thus
the CH equation is realized, in the picture herewith presented, as an additional commuting flow of
an infinite system of (suitably constrained) linear flows on the Sato Grassmannian.

The full interpretation of the whole nonlocal hierarchy to this Sato Grassmannian approach, as
well as the problem of how far this picture could be useful to explain and understand the non–
existence of theτ function for CH is still under consideration.

The scheme of the paper is as follows: in Sections 2 and 3 we will present, basically following
[15] the application of the bi–Hamiltonian scheme that provides a representation of the (local or
negative) flows of the Camassa Holm hierarchy as flows on a suitable subset of the Sato Grass-
mannian. For the readers’ convenience, we will present the “inductive” route starting from the CH
Poisson pencil and arriving at the Grassmannian representation. However, the logical scheme of
the present paper (namely of section 3) is somehow to revert (and extend) this point of view. That
is, to start from a set of equations on UG, and arrive at CH. In passing, we seize the chance of
discussing some of the content of Sections 4 and 5 of [15], (e.g., we discuss some conditions that
insure its consistency, and other related topics), as well as providing proofs therein missing or just
sketched.

In Section 4 we discuss the (bi)–Hamiltonian geometry of thetwo-field system associated with
such a constrained subspace (that we call Extended CH hierarchy) of the Sato Grassmannian. In
Section 5 we recover, from such a two-field bi–Hamiltonian system the bi-Hamiltonian geometry
of the full Camassa Holmhierarchy, by means of a suitable Dirac reduction procedure. Finally,
we show how the problem we are dealing with can be framed within the theory of a Lax system
for a second order differential operator.

2 The geometry of the CH hierarchy ...

It is well known[1, 10] that the CH equation1

4vt −vxxt = 24vxv−4vxxvx−2vvxxx

is a bi–Hamiltonian evolutionary PDE onC∞(S1,R) w.r.t. the Poisson pencil

Pλ = (4∂x−∂ 3
x )+ λ (2m∂x +2∂xm) λ ∈ R

1We have herewith chosen unusual normalizations because this somewhat simplifies some of the formulæ we are
interested in.
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wherem= 4v−vxx.
The densities of the conserved laws of the hierarchy can be obtained by recursively solving

hx +h2 = mz2 +1, z=
√

λ (2.1)

whereh is the generating function of the densities of the Casimir ofPλ [4, 5, 6, 14, 17].
This Riccati equation admits two different solutions

h = h−1z+h0 +
h1

z
+

h2

z2 + . . .

k = k0 +k−1z+k−2z2 +k−3z3 + . . . .

The two families of coefficients{hi}i≥−1 and{ki}i≤0 give, by means of the Lenard recursion, all
the f CH hierarchy. In particular, thehi ’s are the densities of the negative (or local) CH hierarchy,
and can be algebraically found from (2.1), while thek j ’s are the densities of the positive (or “non–
local”) CH hierarchy whose first two members are, respectively, x-translation and the CH equation
itself.

The first flow of the local hierarchy is

∂
∂ t3

m= (4∂x−∂ 3
x )

1
2
√

m
. (2.2)

The key ingredient used in [11] to relate the Hamiltonian structure of Soliton hierarchies of KdV
type to evolutions on the Sato Universal Grassmannian manifold is given by the Noether currents.

In particular, it has been shown in [4] that the Noether currents associated with the local CH hi-
erarchy are characterized, in the space of formal Laurent series in the parameterzby the following
two properties:

1. Their asymptotic behavior is given by

J(s) = zs+O(z), s≥ 2 (2.3)

2. They belong to the span

〈(∂x +h)nz2〉n≥0 (2.4)

of theFaà di Brunomonomials associated with the generating functionh, which solves (2.1)

with asymptotic conditionh(z) = h1z+h0+
h1

z
+ · · · , with coefficients onC∞(S1,R).

The connection between the currentsJ(s) and the generating functionh is given by the fact that,
along thes-th time of the local CH hierarchy, they evolve as

∂sh = ∂xJ
(s) where ∂s =

∂
∂ ts

. (2.5)

The asymptotic behavior of the local Noether currents and the presence of a “generator”h suggest,
in analogy with what happens in the KdV case, that they can be associated with linear evolutions
on the Sato Grassmannian.
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3 .... and the Sato Grassmannian

In this section we shall look at the problem starting from a slightly different perspective.
Let us consider the spaceJ+ given by the span onC∞(S1,R) of the family

J(i) = zi +Ji
−1z+Ji

0 +Ji
1z

−1 + . . . i ≥ 2

in the spaceJ of Laurent series (with at most a pole singularity atz= ∞). J admits a direct splitting
as

J = J+⊕J−, where J− := 〈zi〉i≤1. (3.1)

Therefore the collection{J(i)}i≥2 defines a point of the big cellB of the Sato Grassmannian
translated byz2 w.r.t. the standard Sato representation [18].
On this space we can define an infinite family of flows setting

(∂s+J(s))J+ ⊂ J+ s≥ 2 (3.2)

that, more explicitly, can be written as

(∂s+J(s))J(r) = J(s+r) +
r−2

∑
i=−1

Js
i Jr−i +

s−2

∑
i=−1

Jr
i Js−i +Jr

−1J
s
−1J(2) . (3.3)

Proposition 1. The flows (3.2) commute.

Proof We have to show that[∂s,∂r ]J+ = 0, i.e.

[∂s,∂r ]J
(n) = 0, ∀s, r,n≥ 2 . (3.4)

Thanks to (3.2) the flows satisfy the the “symmetry condition” ∂sJ(r) = ∂rJ(s) and then equation
(3.4) can be written as

[∂s,∂r ]J
(n) = [∂s+J(s),∂r +J(r)]J(n). (3.5)

From the explicit form of the currents it holds

[∂s,∂r ]J
(n) ∈ J−,

but from (3.2)
[∂s+J(s),∂r +J(r)]J(n) ∈ J+.

�

Proposition 2. The local currents of CH satisfy (3.2).

Proof The currents (2.3) are elements ofJ+. Moreover from the property (2.4) follows that every
element ofJ+ can be written asJ(i)

lCH = ∑k ci
k(∂x +h)kz2. Using this expansion (2.5) we see that

(∂s+J(s))
r

∑
k=0

cr
k(∂x +h)kz2 =

r

∑
k=0

(∂sc
r
k)(∂x +h)kz2 +

r

∑
k=0

cr
k(∂s+J(s))(∂x +h)kz2

=
r

∑
k=0

(∂sc
r
k)(∂x +h)kz2 +

r

∑
k=0

(∂x +h)kz2 J(s) ⊂ J+ ⊕z2J+ .

In [4] it is shown that, for the local currents of CH,z2J+ ⊂ J+ and then they satisfy (3.2).
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�

Therefore, taking into account the results of [11] we can conclude that the local (negative) flows
of CH hierarchy are given, by means of the construction outlined above, linear flows on the big
cell B of the Grassmannian.
Remark. The basic issue to recover a hierarchy of 1+1 dimensional PDEs from a dynamical
system of the form (3.2) is to specify (or define) the “physical” space variablex.

For instance, in the ordinary KP-KdV case,x can be, as it is well known, identified with the
first ”time” of the hierarchy. As it was shown in [3], fractional KdV hierarchies can be obtained
identifying x with a different timets of a system similar to (3.2). Actually, in our case,x is not
contained in the dynamical system, and thus should be added by means of the introduction of
another currenth = h−1z+h0 + h1

z + . . . . In turn, this additional current has to be related with the

action ofx-translation on the currentsJ(s) of the Grassmannian.
The most natural way to add this new current is to consider theenlargement of the system (3.2)

to

(∂s+J(s))J+ ⊂ J+, (∂s+J(s))h∈ J+ (s≥ 2), (∂x +h)J+ ⊂ J+, (3.6)

which explicitly is given, in addition to Eqn.s (3.3), by

(∂x +h)J(s) =
s−2

∑
i=−1

hiJ
(s−i) +h−1Js

−1J(2) s≥ 2

(∂s+J(s))h =
s−2

∑
i=−1

hiJ
(s−i) +h−1Js

−1J(2) s≥ 2.

(3.7)

However, these flows are not in general commuting, so that further conditions have to be imposed.
It is outside the size of this paper to discuss this problem infull generality; we simply remark the
restriction to the subspace of the translated big cell defined by

J(2) = z2 and z2J+ ⊂ J+ . (3.8)

is a consistent one2.
The following Lemma helps clarifying the meaning of the constraint(3.8):

Lemma 3. For any choice of J(2), the currents J(i) satisfying (3.7) are elements of F= sp〈(∂x +
h)nJ(2)〉n≥0.

Proof Expanding the relation (3.7) it follows that

J(s+1) =
1

h−1
(∂x +h)J(s)−

s−2

∑
i=−1

hi

h−1
J(s−i) +Js

−1J(2). (3.9)

Since(∂x + h)F ⊂ F andJ(2) ∈ F , then one can write recursively all the currents using elements
of F .

�

2Another consistent solution to this problem is given by requiring that (∂x + h)h ∈ J+. The resulting system of
commuting PDEs leads to a 2+1 dimensional extension of the HD hierarchy [13, 16].
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In the light of this proposition, we can rephrase the first of equations (3.8) saying that we consider
only the caseJ(2) = z2. The study of more general choices of the currentJ(2) is under considera-
tion.

The basic reason for this choice of ours is that the spaceJ+ defined by (3.8) contains the
currents of the CH hierarchy (see Proposition 2). Moreover,it turns out thatJ+ is parameterized
by three fields, namelyh−1, h0, andh1. This can be seen as follows. Sincez2 J+ ⊂ J+ andJ(2) = z2,
we get thatJ(4) = z4. The recursion relations (3.9) allow us to write all the currents, and namely
J(4), as differential polynomials in the componentshk of the formal Laurent seriesh. Thus we
arrive at

z2

h−1
2(hx +h2)−z2

(

h−1x

h−1
3 +

2h0

h−1

2)

h−z2
(

h0x

h−1
2 −

h0
2

h−1
2 +

2h1

h−1
− h0 (h−1x)

h−1
3

)

= z4. (3.10)

It is straightforward to check that this relation enables one to recoverh2,h3, . . . as differential
polynomials inh−1,h0,h1. So the system (3.7), determines a hierarchy of 1+1 evolutionary PDEs
in the three fields (dependent variables)h−1,h0,h1. For instance, the first non trivial flow is [15]:

∂3h−1 =− h−1xh1

h−1
2 +

h1x

h−1

∂3h0 =
3
2

h1xh−1x

h−1
3 − 3

2
h1(h−1x)

2

h−1
4 − 1

2
h1xx

h−1
2 +

1
2

h−1xxh1

h−1
3

∂3h1 =− 3
2

h−1xh1xx

h−1
4 +

5
2

h−1xh−1xxh1

h−1
5 +

15
4

(h−1x)
2h1x

h−1
5 − 15

4
h1 (h−1x)

3

h−1
6

+
h1

2h−1x

h−1
3 +

1
4

h1xxx

h−1
3 −

1
4

h−1xxxh1

h−1
4 − h1xh−1xx

h−1
4 − h1xh1

h−1
2 .

(3.11)

We notice that the fieldh0 does not affect the dynamics. Actually, this is true for all the times of
the hierarchy we are considering. This is a consequence of the fact that no currents depends onh0,
as one can see by recursion using (3.9), noticing thatJ(2) = z2 andJ(3) = z2

h−1
(h−h0).

Therefore the constraint given by (3.10) do not depend onh0 as well, and so we can limit
ourselves to the study of the system in the two dependent variablesh−1,h1. We will study further
this two–field system, that we callExtended CH systemin the next Section.

4 The geometry of the extended CH system

In this section we shall prove that the system (3.11), or better, the closed system defined by its first
and third equation (see the remark above) is a bi–Hamiltonian system and it admits an iterable
Casimir, that is, a Casimir of the pencil of Poisson bracket (to be found below) that generates,
via the Lenard recursion relations, the commuting flows. Ourproof will be done in a sequence of
steps as follows.

First we notice that, if we perform the change of variablesh−1 = α andh1 = γ
α the first and

third of equations (3.11) become:

∂3α =
( γ

α2

)

x

∂3γ =
α
4

(

1
α

(

1
α

( γ
α2

)

x

)

x

)

x

. (4.1)
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From the general theory, and namely from the representation(2.5) of the PDEs, we see that this
system has an infinite sequence of conserved quantities, whose densities are given by the coeffi-
cients of the formal Laurent series (3.10) withh0 = 0, i.e.:

1
α2(hx +h2)− αx

α3h− 2γ
α2 = z2. (4.2)

It is worthwhile to remark again that this equation determines all the coefficientshi , i ≥ 0 as differ-
ential polynomials inα ,γ . For instance we have, apart form the obvious relationsh−1 =−α , h1 =
−γ/α , the expressions

h2 =
( γ

2α2

)

x
, h3 =

γ2

2α3 −
(

1
α

( γ
α2

)

x

)

x
, h4 = total derivative,

h5 =
γ3

2α5 −
1
12

γ2αxx

α6 +
1
8

γγxx

α5 − 7
24

γγxαx

α6 + total derivative, . . .

(4.3)

and so on and so forth.
The motivation for the change of variables, as well as further hints for our program come from
considering of the dispersionless limit of (4.1), that is,

∂3α =
( γ

α2

)

x

∂3γ = 0. (4.4)

This equation is bi–Hamiltonian w.r.t. to the Poisson tensors

Pdisp
0 =





0 ∂xα

α∂x γ∂x + ∂xγ



 Pdisp
1 =





∂x 0

0 0



 (4.5)

with Hamiltonian densitiesh3 = γ2/2α3,h1 = −γ/α . This property suggests that the full disper-
sive hierarchy can be obtained by suitably deforming the pencil of Poisson tensors (4.5).

As a first step in this direction, one notices that the flow (4.1) can be obtained in a ”Hamilto-
nian” way, via the action of the antisymmetric tensors

P0 =





0 ∂xα

α∂x γ∂x + ∂xγ + α
4 ∂xT2

α α



 , P1 =





∂x
1
4∂xT2

α α

α
4 ∂xT2

α
α
16∂xT4

α α



 , (4.6)

whereTα is the operator3
1
α

∂x, as

(

∂3α
∂3γ

)

= P0d
∫

h3 dx= P1

∫

h1 dx,

whereh1 andh3 are the densities (4.3). Furthermore, a direct computationshows thath1 is the
density of a Casimir ofP0. Actually, our use of this terminology is justified by the following propo-
sition, whose proof, that can be directly obtained via a straightforward albeit tedious computation,
will be apparent from the sequel.

3Operator composition is here and in the following, understood.
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Proposition 4. The tensors (4.6) are a pair of compatible Poisson tensors.

To push our analysis further, the following observation is important. We notice that the member
P1 of the pair (4.6) is greatly degenerate. Indeed one sees thatvector fields(α̇ , γ̇) belong to its
image if and only if the relation

γ̇ =
α
4

∂x
1
α

∂x
1
α

α̇(=
α
4

(

T†
α
)2 α̇). (4.7)

This entail that the system (4.1), as well asany bi–Hamiltonian vector field associated with the
pair (4.6) admits as an invariant submanifold the one definedby

γ − 1
4

∂ 2
x lnα +

1
8
(∂x lnα)2

(

≡ γ − 1
8
(α(Tα −T†

α )Tα(α)

)

= const. (4.8)

This fact (together with the particularly simple dependence onγ of the relation (4.8)) prompts us
to consider the dependent variableu = y− 1

4∂ 2
x lnα + 1

8(∂x lnα)2. In the coordinates(α ,u) the
tensors of (4.6) become

P0 =







0 ∂xα

α∂x u∂x + ∂xu−
1
4

∂ 3
x .






, P1 =





∂x 0

0 0



 . (4.9)

The fact that the antisymmetric tensors we are considering indeed make up a Poisson pair is now
apparent from the theory of affine Poisson structures on duals of Lie algebras. This new form of
the pencil will also allow us to state that the hierarchy of commuting vector fields starting with
(4.1) is indeed a bi–Hamiltonian hierarchy.

According to the Gel’fand–Zakharevich bi–Hamiltonian scheme, we look for a Casimir of the
pencil (4.9). This amounts to finding an exact one-formΩ(λ ) = (X(λ ),Y(λ )) that satisfies the
equation

(P1−λP0)Ω = 0, with asymptoticsΩ(λ ) = Ω0 +
Ω1

λ
+ · · · ,

whose first element is the differential of the Casimir ofP0 (in particular, with obvious meaning of

the notation,Y0 ≃
1
α

). So we can trade the above equation for the system

X(λ ) = λα Y(λ ); λα2Y(λ )2 +2uY(λ )2− 1
2
Yxx(λ )Y(λ )+

1
4
(Yx(λ ))2 = λ . (4.10)

In turn, the second of these equations is equivalent to the following system

hx +h2 = λα2 +2u, h =
z

Y(λ )
+

1
2

Yx(λ )

Y(λ )
, (4.11)

wherez2 = λ , andh = h−1z+ h0 +
h1

z
+ · · · . It can be easily shown that the series h(z) solving

the first of these equations is, in the sense of formal Laurentseries, indeed the potentials of the
one-formΩ(λ ). Also, the coefficientshi can be algebraically computed in a recursive way.
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The comparison of this Riccati equation with the Riccati equation associated with the local
CH hierarchy suggests a further minor coordinate change, namely to setm = α2. Indeed in the
coordinates(m,u) the Poisson pencilP1−λP0 is (4.9)





2(∂xm+m∂x) 0

0 0



−λ







0 ∂xm+m∂x

∂xm+m∂x −1
4

∂ 3
x + ∂xu+u∂x






, (4.12)

and the corresponding Riccati equation is

hx +h2 = 2u+mz2, z=
√

λ . (4.13)

The vector field (4.1) becomes simply

∂3m= (2u∂x +2∂xu−
1
2

∂ 3
x )

1√
m

∂3u = 0, (4.14)

Summing up,the search for a Casimir of the pencil (4.12) is reduced to the problem of solving -

in the space of formal Laurent series - the Riccati equation for h(z) = h−1z+
∞

∑
i=1

hi

zi . This problem

can be iteratively solved, and is equivalent, up to the totalderivativeh0, to (4.2) written in theu,m
variables.

Remarks. 1) Onu =
1
2

the first of the equations (4.14) becomes the first nontriviallocal CH flow

(2.2).
2) In the coordinates(m,u) (as well as in the coordinates(α ,u)), all vector fields of this hier-

archy are somewhat trivial, since they read

∂ti m= ∂x(Fi(m,u)), ∂ti u = 0. (4.15)

This fact can be, in a sense, understood also in the frameworkof the theory of reciprocal transfor-
mations. For instance, transforming the system (4.1) underthe reciprocal transformation induced
by its first element (seen as a conservation law) yield the triangular system

∂3U =
1
2
(UV)z

∂3V =
1
4
(Vzzz+6VVz)

wheredx= Udz+ 1
2UVdt3, U = 1

α , andV = −2γ
α2 . To fully examine these equations in the light of

the theory of reciprocal transformations, however, is outside the aim of the present paper [9].
3) As a final check of the bi–Hamiltonian analysis we performed,we notice the following

We exchange the role of the Poisson tensorsP0 andP1 and consider the Casimir functionK =
∫

(u+ m)dx of P1. Clearly enough, the vector fieldP0dK is justx-translation. This Casimir does
not give rise to a new Lenard sequence, sinceP0dK0 does not lie in the image ofP1. However from
the fact thatx=translation is the image underP0 of a Casimir ofP1 confirms that it commutes with
all the vector field of the hierarchy, as it should be.
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5 Back to the CH hierarchy: its bi–Hamiltonian structure and its
Lax representation

As we have seen, the bi–Hamiltonian geometry of the manifoldwe are considering is particularly
simple: indeed, it is stratified by the submanifolds given byu = κ for some constantκ , and these
submanifolds are left invariant by all vector fields that areHamiltonian w.r.tP1, and thus by all

bi–Hamiltonian vector fields. Also, on the invariant submanifold u =
1
2

we have that the first flow

of our hierarchy coincides with the first local CH flow, and theRiccati equation (4.13) reduces to
the Riccati equation associated with the CH hierarchy (2.1).

These facts suggest the opportunity to consider the Dirac reduction of the pencil (4.12).

Proposition 5. The Dirac reduction of (4.12) on the constraint u= κ gives a Poisson pencil for
the Camassa Holm. The hierarchy restricts to this submanifold as a bi–Hamiltonian hierarchy.

Proof. To prove the assertion, we find it more convenient to use the notation of Poisson brackets
rather than that of Poisson tensors. According with Dirac’stheory, the reduction onu = constof
the Poisson brackets associated with our pencil is given by

{m(x),m(y)}D
0 := {m(x),m(y)}|u=κ

−
∫

dw
∫

dz{m(x),u(w)}({u(w),u(z)})−1{u(z),m(y)}|u=κ

where{ui(x),u j (y)}0 :=
∫

dzδui(x)
δuk(x)(Pλ )kl δuj (y)

δul (x) .
A simple computation shows that

PD
λ |u=κ = 2(∂xm+m∂x)−λ (∂xm+m∂x)

(

2 κ ∂x−
1
4

∂ 3
x

)−1

(∂xm+m∂x).

It is easy to recognize in the above formula (one of) the Poisson pencils of the CH hierarchy,
namely the one given by the standard Lie Poisson tensor and the first nonlocal tensor with the
suitable choiceκ = 1

2
4. The Dirac reduction of the Poisson structure (4.12) generates exactly the

local part of the CH hierarchy. This follows from the fact that the Dirac deformation of the Poisson
bracket associated withP0 is achieved by means of Casimir functions of the other brackets. This
entails that Lenard relationsP0dH = P1dK hold also for the corresponding Dirac reductions. On
the manifoldu = κ (e.g.,u = 1

2) we can recover the standard nonlocal part of CH hierarchy using
the solution of (4.13) whose asymptotic behavior is 1+O(z) as in [4], via the usual CH substitution
m= 4v−vxx. In terms of the geometry of bi–Poisson manifolds, with reference to Remark #3 of
the previous Section, the situation is the following. In theextended two-field system, the Casimir
K =

∫

(u+ m)dx of P1 does not give rise to any additional Lenard sequence. On the contrary, in
the CH constrained submanifoldu= κ , this Casimir is iterable, and gives rise (with all the proviso
about non-locality in mind) to the positive CH hierarchy. Inother words, in this picture, the
flows of the positive CH hierarchy (and so, the CH equation as well) play the role of “additional”
(commuting) symmetries of these flows, which are restrictions tou= 1

2 of the linear flows defined
by (3.2).

�

4Indeed,κ can be rescaled to12 without loss of generality. Forκ = 0, we get a Poisson pencil of HD.
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A further outcome the previous construction is to provide a Lax representation of the (extended)
local CH hierarchy as a suitable flow in the space of pseudodifferential operators. We will basically
follow a construction presented in [2] for the KdV–KP case.

The Riccati constraint (3.8) can be read as the requirement that the functionψ = exp(
∫

hdx) be
an eigenfunction of the operatorL = 1

m∂ 2
x − 2u

m with eigenvaluez2. Also, the equations of motion
imply ∂sJ(r) = ∂rJ(s) and∂sh = ∂xJ(s). Therefore, from the compatibility of equationsLψ = z2ψ
and∂sψ = J(s)ψ , we get

∂2s+1L =
[

J(2s+1),L
]

s≥ 1, (5.1)

while times and currents with even label 2s are trivial, as implied by the constraint (3.8). In order
to obtain an operatorial version of the equations of motion we relate the currentsJ(s) with L.

First of all we need the following technical

Lemma 6. Under the constraint (3.8) it holds J(s) = ΠJ+(zs).

Proof The spaceJ+ = ΠJ+(J) is, by definition, the linear span ofJ(i). Therefore there is a
unique way to write the elementΠJ+(zs) by means of the currentsJ(s). Since the leading term of
J(s) is exactlyzs, the assertion is true.

�

Because of Lemma 3,J+ is also the linear span of the{(∂x + h)iz2}i≥0. Moreover, extending by
recursion the definition of(∂x +h)iz2 to negative powers, the set{(∂x +h)iz2}i∈Z is a basis of all
the spaceJ. The map

φ : J → ΨDO

(∂x +h)iz2 → ∂ i
x ·L

by means of the basis(∂x + h)nz2 with n ∈ Z of the spaceJ, gives the operatorial action of an
elementJ on ψ

Proposition 7. Under the constraint (3.8) it holds

J(s)ψ =
(

Ls/2−1
)

+
Lψ

Proof The mapφ intertwines betweenΠJ+ and the operator( · L−1)+L on theΨDO space
where( · )+ is the standard projection on the differential part of aΨDO operator. This property
can be easily proved remarking that it holds for any element(∂x +h)iz2 of theJ basis. Therefore

J(s)ψ = φ(J(s))ψ = φ(ΠJ+(zs))ψ = (Ls/2−1)+Lψ .

�

The equations (5.1) become then

∂2s+1L =
[

(Ls−1/2)+L,L
]

. (5.2)
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We finally notice that in the CH case that is, under the constraint u =
1
2

, the Lax operator is

L =
1
m

∂ 2
x − 1

m
; therefore(L1/2)+ = m−1/2∂x− 1

2(m−1/2)x and the previous equation gives

∂3
1
m

= −2m−2
(

∂x−
1
4

∂ 3
x

)

m−1/2

which is equivalent to the local CH (2.2).
We end this Section noticing that the integrability of the system constructed starting from the

Lax operator for local CH can be proven also by means of a direct computation. Indeed it holds:

Proposition 8. Let DO2 be the space of second order differential operators of the form λ =
a∂ 2 +b∂ +c, and let()+ be the projection operator fromΨDO to DO. The equations

∂sλ =
[

(λ
s
2 )+λ ,λ

]

define a family of commuting flows on DO2, that is,∂r∂sλ = ∂s∂rλ .

Proof. We start expanding

∂r∂sλ = ∂r

[

(λ
s
2 )+λ ,λ

]

=
[

(∂rλ
s
2 )+λ ,λ

]

+
[

(λ
s
2 )+∂rλ ,λ

]

+
[

(λ
s
2 )+λ ,∂rλ

]

=
[[

(λ
r
2 )+λ ,λ

s
2

]

+
λ ,λ

]

+
[

(λ
s
2 )+

[

(λ
r
2 )+λ ,λ

]

,λ
]

+
[

(λ
s
2 )+λ ,

[

(λ
r
2 )+λ ,λ

]]

,

as well as∂s∂rλ . Then the assertion follows using standard techniques in the ΨDO approach to
KP-type equations (see e.g. [7]), with the crucial remarks that, since we are considering degree 2
operators,

([

(λ
r
2 )−λ ,(λ

s
2 )−

])

+
=

(

(λ
r
2 )−

[

(λ
s
2 )−,λ

])

+
= 0,

because the degrees of the operators appearing in these expression is less than zero.

�
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itary symmetries,Physica D4 (1981/82), 47–66.

[11] FALQUI G, MAGRI F and PEDRONI M, Bihamiltonian geometry, Darboux coverings and Lineariza-
tion of the KP hierarchy,Commun. Math. Phys.197(1998), 303–324.

[12] KHESIN B and MISIOLEK G, Euler equations on homogeneous spaces and Virasoro orbits, Adv.
Math.176(2003), 116–144.

[13] KONOPELCHENKOB and OEVEL W, An r-Matrix Approach to Nonstandard Classes of Integrable
Equations,Publ. RIMS, Kyoto Univ.29 (1993), 581–666.

[14] LENELLS J, Conservation laws of the Camassa–Holm equation,J. Phys. A38 (2005), 869–880.

[15] ORTENZI G, Some remarks on the KP system for the Camassa–Holm equation,SIGMA3 (2007) 047,
10 pages.

[16] PEDRONI M, SCIACCA V and ZUBELLI J, On the bi–Hamiltonian theory for the Harry–Dym equa-
tion, Theor. Math. Phys.133(2002), 1583–1595.

[17] REYES E G, Geometric integrability of the Camassa-Holm equation,Lett. Math. Phys.59 (2002),
117–131.

[18] SEGAL G and WILSON G, Loop Groups and equations of the KdV type,Publ. Math. IHES61(1985),
5–65.


