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Abstract 
This paper proposes a method of determining the optimal number of clusters dividing the multiple transformations 
for the purpose of the efficient processing of query against the results of applying the transformations to time 
series. In this paper, the moving average is used as a transformation for simplicity. The model of query time to the 
number of clusters is constructed for determining the optimal number of clusters. As the query time could be 
represented with the concave function of the number of clusters, it is shown that the optimal number of clusters for 
the best query time can be obtained. The verification experiment confirms the validity of the model constructed. It 
is revealed that the optimal number of clusters could be determined by the times obtained from a single query 
execution. 
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1. Introduction 
As the computer technology has rapidly been 
developed, the computer could treat a variety of 
multimedia data such as image stills, pieces of music, 
and movies. However, it is still difficult to retrieve 
appropriate data from an enormous amount of data 
adequately and promptly. The time varying data are 
included in such data. Change of stock price, change 
of temperature, change of the position of a cellphone, 
and changes of the position and the diameter of a 
typhoon are examples of such data. The former two 
changes are time series data, in which values change 
according to time. On the other hand, the latter two 
ones are spatial as well as temporal. In this paper, 
time series data are treated because of simplicity. 

There are many research efforts of addressing to 
the problem finding time series similar to a time 
series. 1-9 The simplest way is the one using the 
Euclidean distance between the points in k 
dimensional Euclidean space when a time series is 
represented with k values as dissimilarity of time 
series. As k is very large in general, the dimension of 
this space is very high. When the dimension is very 
high, curse of dimensionality occurs. This is the 
phenomena that every point is almost equally far 
from a point in a high dimensional space. In such 
space, similarity test does not work well because the 
distance between any pair of points is almost the 
same. Reducing dimensions is strongly required. 
Several dimension reduction methods have been 
proposed.2-6 One of these methods is based on the 
transformation from the time domain to the frequency 
domain. This method reduces dimensions by using 
only several low frequency components.2,3

  Although 
only low frequency components are used, similar 
time series can be retrieved because approximate 
tendency of a time series is sufficiently represented 
with them. 

Here, the time series obtained by applying a 
transformation to time series which are similar to the 
one obtained by applying the transformation to the 
retrieval key time series may be required to be 
obtained. For example, the ten-day moving averages 
of the sequences of stock prices similar to the one of 
a retrieval key sequence of stock prices are required 
to be retrieved. Moving averages are widely used in 
stock data analysis. They could smooth short term 
fluctuations of stock prices out, and show the basic 

trend of stock prices. Rafiei et al. have proposed an 
algorithm of efficiently processing this kind of 
query.1 This method uses the multidimensional index 
such as an R-tree index, which manages multi-
dimensional data by using minimum bounding 
rectangles (MBRs). The method efficiently processes 
such queries by applying the transformation to 
MBRs.  

Rafiei et al. have proposed the efficient 
algorithm for the queries with multiple 
transformations as well as the one for those with 
single transformation.1 For the query with multiple 
transformations, a set of transformations T is used. 
The time series obtained by applying a 
transformation in T to time series which are similar to 
the one obtained by applying the transformation to 
the retrieval key time series are retrieved. The query 
processing method for the query with multiple 
transformations divides the transformations in T into 
several clusters. The transformations in a cluster are 
managed as an MBR in a multidimensional index. 
This index is called an MT index. The effectiveness 
of the MT index has experimentally been shown. It 
has also experimentally been shown that the best 
retrieval performance can be obtained when a cluster 
contains six to eight transformations for 24 to 48 
transformations. Although the condition for the best 
retrieval performance has been shown, the underlying 
mechanism is not clear. It is not guaranteed that the 
best retrieval performance can be attained under such 
condition.  

This paper proposes a method of determining the 
optimal number of clusters, at which the fastest 
retrieval performance can be obtained. The moving 
average is used as a transformation for simplicity. 
The model of query time to the number of clusters is 
constructed by building models of the search time 
and the postprocessing time. The verification 
experiment confirms the validity of the model 
constructed. It is revealed that the optimal number of 
clusters could be determined by the times obtained 
from a single query execution. 

The remaining of this paper is as follows: 
Section 2 describes the related works including the 
ST index and the MT index. The model of query time 
is constructed in Section 3. Section 4 conducts an 
experiment for confirming the model constructed. 
Section 5 confirms the agreement of the model of 
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5. Evaluation 
 
5.1. Time and constant 
 
5.1.1. Search time 
 
The search time tsearch is proportional to the number 
of candidates NC as shown in Fig. 3. Therefore, it is 
confirmed that Eq. (5) is valid. 
 
5.1.2. Post-processing time 
 
The sum of the volumes of hyper-rectangles VRsum is 
proportional to the power of -3.5 of NC as shown in 
Fig. 5. It is considered that the tendency of VRsum is 
quite similar to that of Eq. (8). 
 

The number of candidates Ncandidate is 
proportional to the power of -2.7 as shown in Fig. 6. 
It is also considered that the tendency of Ncandidate is 
quite similar to that of Eq. (9). 

When we use the confirmation times tconfirm_answer 
at NC = NT / 5 shown in Table 3, the typical times 
may be obtained for every NT. The confirmation 
times tconfirm_answer obtained are 0.061[ms], 0.035[ms], 
and 0.040[ms] for NT = 50, 75, 100, respectively. 
 
5.1.3. Constant 
 
The constant α3 is represented with Ncandidate ∙ Nc

n-1 
based on Eq. (9). The constant α3 is obtained by using 
the number of candidates Ncandidate, shown in Table 2, 
at NC = NT/5, as in the retrieval time and the 
postprocessing one. The constants α3 obtained are 
570.0, 2193.8, and 6440.0 at NT = 50, 75, 100, 
respectively. 

The times tsearch_on_index and tconfirm_answer, and the 
constant α3 obtained up to here are shown in Table 4. 
 
5.2. Optimal number of clusters 
The optimal numbers of clusters NC50, NC75, and NC100 
obtained by using Eq. (12) in four dimensions are 
4.2, 5.3, and 7.2, respectively. Therefore, the query 
time is the minimum when NC is equal to 5 for all of 
the numbers of transformations: 50, 75, and 100. 

On the other hand, it can be seen that the query 
time is the minimum when NC is equal to 5 in the 
experiment as shown in Fig. 1 and Fig. 2. 

As we have seen, both of the model of query 
time and the experimental result show that the 
optimal number of clusters NC is 5. Moreover, Eq. 
(10) is agreed with the experimental result shown by 
Rafiei et al.1 

The optimal number of clusters NC can be 
obtained by using Eq. (12) with tsearch_on_index, 
tconfirm_answer, and α3 obtained under the condition that 
NC = NT / 5. 
 
6. Conclusion 
 
This paper proposed a method of determining the 
optimal number of clusters dividing the multiple 
transformations for the purpose of the efficient 
processing of query against the result of applying the 
transformations to time series. In this paper, the 
moving average is used as a transformation for 
simplicity. The model of query time to the number of 
clusters was constructed by building models of search 
time and postprocessing time for determining the 
optimal number of clusters. The verification 
experiment confirmed the validity of the model 
constructed. It was revealed that the optimal number 
of clusters could be determined by the times obtained 
from a single query execution. 

In this paper, the experiment is conducted under 
the fixed environment: the fixed data sets, the fixed 
number of transformations, and the fixed dimensions. 
Experiments under other conditions are required to be 
conducted. This paper treats only the moving average 
as a transformation. Confirming the validity of the 
model for other kinds of transformation including 
time shift is also in future work. The model is also 
required to be confirmed when other clustering 
methods are adopted. In this paper, time series data 
are treated as time varying ones. The value changes 
according to the time in a time series. There are time 
varying data such that the position and/or the size in 
two or three dimensional space may change 
according to the time. Treating the time varying data 
whose changes are spatial as well as temporal is in 
future work. 
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