International Journal of Networked and Distributed Computing, Vol. 3, No. 2 (April 2015), 79-88

Optimal Number of Clusters for Fast Similarity Search Considering Transformations of
Time Varying Data

Toshiichiro Iwashita+
Dept. of Information Science, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku
Kyoto 606-8585, Japan

Teruhisa Hochin
Dept. of Information Science, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku
Kyoto 606-8585, Japan
E-mail: hochin@kit.ac.jp

Hiroki Nomiya
Dept. of Information Science, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku
Kyoto 606-8585, Japan
E-mail: nomiya@kit.ac.jp

Abstract

This paper proposes a method of determining the optimal number of clusters dividing the multiple transformations
for the purpose of the efficient processing of query against the results of applying the transformations to time
series. In this paper, the moving average is used as a transformation for simplicity. The model of query time to the
number of clusters is constructed for determining the optimal number of clusters. As the query time could be
represented with the concave function of the number of clusters, it is shown that the optimal number of clusters for
the best query time can be obtained. The verification experiment confirms the validity of the model constructed. It
is revealed that the optimal number of clusters could be determined by the times obtained from a single query
execution.

Keywords: Time series, Transformation, Retrieval, Cluster, Optimal number.

*Currently, with Fujitsu Ten Technology Ltd.

Published by Atlantis Press
Copyright: the authors
79

Toshiichiro Iwashita et al.

1. Introduction

As the computer technology has rapidly been
developed, the computer could treat a variety of
multimedia data such as image stills, pieces of music,
and movies. However, it is still difficult to retrieve
appropriate data from an enormous amount of data
adequately and promptly. The time varying data are
included in such data. Change of stock price, change
of temperature, change of the position of a cellphone,
and changes of the position and the diameter of a
typhoon are examples of such data. The former two
changes are time series data, in which values change
according to time. On the other hand, the latter two
ones are spatial as well as temporal. In this paper,
time series data are treated because of simplicity.

There are many research efforts of addressing to
the problem finding time series similar to a time
series. '” The simplest way is the one using the
Euclidean distance between the points in &
dimensional Euclidean space when a time series is
represented with & values as dissimilarity of time
series. As k is very large in general, the dimension of
this space is very high. When the dimension is very
high, curse of dimensionality occurs. This is the
phenomena that every point is almost equally far
from a point in a high dimensional space. In such
space, similarity test does not work well because the
distance between any pair of points is almost the
same. Reducing dimensions is strongly required.
Several dimension reduction methods have been
proposed.”® One of these methods is based on the
transformation from the time domain to the frequency
domain. This method reduces dimensions by using
only several low frequency components.™® Although
only low frequency components are used, similar
time series can be retrieved because approximate
tendency of a time series is sufficiently represented
with them.

Here, the time series obtained by applying a
transformation to time series which are similar to the
one obtained by applying the transformation to the
retrieval key time series may be required to be
obtained. For example, the ten-day moving averages
of the sequences of stock prices similar to the one of
a retrieval key sequence of stock prices are required
to be retrieved. Moving averages are widely used in
stock data analysis. They could smooth short term
fluctuations of stock prices out, and show the basic

trend of stock prices. Rafiei et al. have proposed an
algorithm of efficiently processing this kind of
query.' This method uses the multidimensional index
such as an R-tree index, which manages multi-
dimensional data by using minimum bounding
rectangles (MBRs). The method efficiently processes
such queries by applying the transformation to
MBRs.

Rafiei have proposed the -efficient
algorithm for the queries with multiple
transformations as well as the one for those with
single transformation.! For the query with multiple
transformations, a set of transformations 7' is used.
The time series obtained by applying a
transformation in 7 to time series which are similar to
the one obtained by applying the transformation to
the retrieval key time series are retrieved. The query
processing method for the query with multiple
transformations divides the transformations in 7 into
several clusters. The transformations in a cluster are

et al

managed as an MBR in a multidimensional index.
This index is called an MT index. The effectiveness
of the MT index has experimentally been shown. It
has also experimentally been shown that the best
retrieval performance can be obtained when a cluster
contains six to eight transformations for 24 to 48
transformations. Although the condition for the best
retrieval performance has been shown, the underlying
mechanism is not clear. It is not guaranteed that the
best retrieval performance can be attained under such
condition.

This paper proposes a method of determining the
optimal number of clusters, at which the fastest
retrieval performance can be obtained. The moving
average is used as a transformation for simplicity.
The model of query time to the number of clusters is
constructed by building models of the search time
and the postprocessing time. The verification
experiment confirms the validity of the model
constructed. It is revealed that the optimal number of
clusters could be determined by the times obtained
from a single query execution.

The remaining of this paper is as follows:
Section 2 describes the related works including the
ST index and the MT index. The model of query time
is constructed in Section 3. Section 4 conducts an
experiment for confirming the model constructed.
Section 5 confirms the agreement of the model of

Published by Atlantis Press
Copyright: the authors

80

query time and the optimal number of clusters
obtained from the experiment. Lastly, Section 6
concludes this paper.

2. Related Work
2.1. Fast similarity search of time series

For the purpose of deriving patterns from time-series
data, similarity of two sequences of data must be
judged. There are two major approaches in judging
the similarity of the sequences. One compares two
sequences directly in a time domain.*® The Adaptive
Constant ~ Approximation (APCA)*
approximates a sequence into a sequence of steps,
and uses the areas between the steps and the axis. The
Multi-resolution Vector Quantized (MVQ)’ divides a
sequence into segments, and approximates it by using
a sequence of the representative values of the
segments. The ratio of the representative values of a
candidate sequence to those of a key one is their
similarity. These methods, however, could not
properly handle the sequence slightly different from
the one in the time direction. For example, the
similarity of a sequence and the slightly shifted one
becomes very low. In order to adapt this situation, the
dynamic programming approach is often taken. The
Dynamic Time Warp (DTW)®is a popular method.
The other approach compares two sequences in
the frequency domain.**° The sequence of data is
transformed to a set of data in the frequency domain.
The Fourier transformation is often used as such a
transformation. It has been shown that similar

Piece-wise

sequences can be retrieved by using a few Fourier
coefficients.”> This also brings the dimensionality
reduction. We can construct an index for fast retrieval
by using only these coefficients.*”

By applying Fourier transformation to a
sequence of data, Fourier coefficients are obtained.
These except for the 0th one are complex numbers,
which is composed of a real number and an
imaginary one, while the 0" coefficient is a real
number. The Oth coefficient represents the mean
value of the data in the sequence. By using these
coefficients, we could compare two segments in the
frequency domain. The coefficients of low orders
correspond to those of low frequencies, while those
of high orders correspond to those of high
frequencies. By using coefficients of several lowest

Optimal Number of Clusters for Fast Similarity Search

orders (all of orders, respectively), we could
approximately (precisely) compare two segments.

2.2. Multi-dimensional index structure

When the first & Fourier coefficients are used as
feature values of a time series, it is represented with a
point in a (2k - I)-dimensional space. These points
are usually managed by using a multidimensional
index such as the R-tree family” for the efficient
query processing. An R-tree index is constructed by
using Minimum Bounding Rectangles (MBRs)
including their descendent MBRs. A non-leaf node of
an R-tree index structure is the form of (MBR, ptr),
where MBR is the MBR of all the entries in a child
node, and ptr is the pointer to the child node. A leaf
node is the form of (MBR, oid), where oid is the
identifier of an object in a database, and MBR is the
MBR of the object. When an object is a point, its
MBR is also a point because a point has no size.

MBRs at the same tree level may overlap. This
overlap degrades the retrieval performance. An R*-
tree index structure tries to minimize the overlap of
MBRs by using several criteria.'’

2.3. Treatment of transformation

Here, the methods proposed by Rafiei et al. ' are
described. After the transformations treated are
described, the query processing for single
transformation and that for multiple transformations
are explained.

2.3.1. Transformation
Transformations treated by Rafiei et al. are limited to
scaling and translation, ' while affine transformations
also include rotation and shear.
A transformation is represented with a pair (a,
b), where a specifies a stretch and b represents a
translation. Additionally, applying a transformation
t=(a, b) to a sequence X is represented with #(X). This
application follows the calculation of Eq. (1).
t(x)=Conv(a, X) + b @)
Here, Conv(X, y) means the convolution of X and
y. The jth element of the convolution of X and Y,
whose length is n, is given by Eq. (2).

Conv(a, x);= Y34 X Vi J=0.1,-,n-1 (2)

Published by Atlantis Press
Copyright: the authors

81

Toshiichiro Iwashita et al.

Eq. (1) represents the transformation in the time
domain. In the frequency domain, the transformation
X is represented by Eq. (3) where A, B, and X are the
representations in the frequency domain of a, b, and
X, respectively.

t(X)=A*X+B 3)

Here, X * Y is the element-to-element
multiplication of two vectors X and Y. Eq. (3) is more
easily computed than Eq. (1).

Lastly, we describe the representation of the
mean average with the form of (a, b). The m mean
average of a series, whose length is n, tmae=(a, b) is
represented with a and b of Eq. (4).

a=[=,—,,=00, 0]
m m m
m
' A ')
b=0

Here, 0 is zero vector whose size is n.
2.3.2. Single transformation

Next, the method of the query processing with a
transformation applied to time series is described. Let
us consider the following proximity query as a
typical one.

Query 1. Given a query point g, a transformation ¢
and a threshold €, find all points X in the data set such
that the Euclidean distance D(#(X),) < €.

The method proposed by Rafiei ef al. uses an R-
tree index. ' A time series is transformed to in the
frequency domain by using Fourier Transformation.
The first k& Fourier coefficients are inserted into the
R-tree index as a point. Query is processed to the R-
tree index built in this way. The algorithm of
processing Query 1 is as follows:

Algorithm 1.

(i) Preprocessing:

(a) Transform ¢ and g into the frequency domain
if they are in the time domain. Let us denote
the first £ Fourier coefficients of ¢ and g by
tyand gy, respectively.

(b) Build a search rectangle .. for g, A
search rectangle is the minimum bounding
rectangle that contains all points within the
Euclidean distance € of q. Building a search
rectangle is straightforward in the
rectangular coordinate system; it is simply
(Q-€ q+¢ fori=1..2%k

(ii) Search:

(c) If N is not a leaf, apply ¢ to every
(rectangle) entry of N and check if the
resulting rectangle overlaps Q... For all
overlapping entries, call Search on the index
whose root node is pointed to by the
overlapping entry.

(d) If N is a leaf, apply ¢ to every (point) entry
of N and check if the resulting point
overlaps Q,.... If so, the entry is a candidate.

(iii) Post-processing:

(e) For every candidate point X, check its full
database record to determine if the
Euclidean distance between X and Q is at
most €. If so, the entry is in the answer set.

2.3.2. Multiple transformation

Next, using a set of transformations 7 is considered.
Let us consider the following proximity query to an
R-tree index built for a data set S:

Query 2. Given a query time series q and a set 7 of
transformations, find every time series s in S and
transformation ¢ in 7 such that the Euclidean distance

D), (@) < €.

This query is processed by using the following
algorithm:

Algorithm 2. Given an R-tree index which is built on
the first £ Fourier coefficients of time series and
whose root is N, a set of transformations 7, a
threshold €, and a search sequence Q, use the index to
find all sequences that become within distance € of
after being transformed by a member of T.
(i) Decompose T into sets 7, T,
clustering algorithm.

using a

Published by Atlantis Press
Copyright: the authors

82

(i1) Do Steps (iii) to (vi) for every set T}

(iii1) Build an MBR for points in 7;and project it into
a mult-MBR and an add-MBR, which are the
MBRs for a and b of a transformation,
respectively.

(iv) If N is not a leaf, apply the mult-MBR and the
add- MBR to every (rectangle) entry of N and
check if the resulting rectangle intersects Q.
For every intersecting entry, go to Step (iv) and
do this step on the index rooted at the node of the
intersecting entry.

(v) If Nis aleaf, apply the mult-MBR and the add-
MBR to every (point) entry of N and check if the
resulting rectangle intersects (... If so, the entry
is a candidate.

(vi) For every candidate entry, retrieve its full
database record, apply all transformations in 7;to
the sequence, and determine transformations that
reduce the Euclidean distance between the data
sequence and the query sequence to less than €.

3. Model of Query Time

The model of query time is constructed for obtaining
the optimal number of clusters. The transformations
treated are limited to the moving average. A cluster is
assumed to be created by merging transformations
one by one. Each cluster has the same number of
transformations in it.

3.1. Models of times
3.1.1. Query time

The time treated here is the time in processing Query
2 by using an MT index. The time of creating clusters
is not considered. That is, the time #.,, Which is
taken from Step (iv) to Step (vi) of Algorithm 2, is
considered. Here, Step (iv) and Step (v) are for
searching candidates, while Step (vi) confirms
whether they truly satisfy the retrieval condition,
which is the post-processing. The times required for
them are referred to as fewen ANd Lhosprocessings
respectively. The time of processing a query g e is
the sum of fyeqren aNd Lyosiprocessing:

Optimal Number of Clusters for Fast Similarity Search

3.1.2. Search time

In the query processing using an MT index, retrieval
is repeated N times, where N¢ is the number of
clusters. It is assumed that the retrieval time
Lsearch on_index 15 constant. As the retrieval time #yec; 1S
proportional to Nc, ¢, is obtained by Eq. (5).

search = N c’ tsearchianiindex (5)
3.1.3. Post-processing time

In Step (vi) of Algorithm 2, for each time series
retrieved from each cluster, the confirmation is
repeated N; times, where N; is the number of
transformations in the ith cluster. The number of
these confirmations is called the number of
candidates N_gugidae- Let the time of confirming a
candidate be denoted as f.ouim answe 1he post-
processing time #youprocessing 1S Obtained by Eq. (6).

tpostprocessing: candidate” tco;zfirm_answer (6)

3.2. Number of candidates

It is assumed that data are uniformly distributed. The
number of candidates N uugidue 1S proportional to the
ratio of the rectangle R obtained by applying the
transformation rectangle to a time series to the whole
area Ry, which is the MBR obtained by applying the
transformation rectangles in a cluster to a time series.

Let Ny be the total number of transformations.
The number of transformations in a cluster is Ny/N¢
because it is assumed that each cluster has the same
number of transformations. For each dimension, the
width of the retrieval rectangle is considered to be
decided by the number of transformations in a
cluster. For the number of dimensions #, the volume
Vg of the hyper-rectangle R obtained by
transformation is obtained in Eq. (7).

, Ny
Vr=ay: (R,‘]é) @)

Here, o, is a constant.

Let Npbe the number of data. There are Np- N¢
rectangles such as R. When overlaps of Rs could be
ignored, the sum Vg, of the volumes V' is obtained

by Eq. (8).

Published by Atlantis Press
Copyright: the authors

83

Toshiichiro Iwashita et al.

Ve Np- Ne
N n
a; - (32) - Np- N ®)

ay - Np - Ny 'Nc?bn

Rj!ﬂ'?’l

Il

Here, the total number of candidates is Np - Nc.
Assume that the probability of a hit is represented
with o' Ve by using some constant a,. The number
of candidate N g 1S Obtained by Eq.

).

a2 * Vegym *No * Nr
ay @y Np-NiF-NEg - Np - Np (9)
= a:;’Ng-'n

Ncandida te =

Here, (2.’3 = a1a2N¥+1Ng
3.3. Optimal number of clusters

The retrieval time fguery is obtained by Eq. (10).

Lauery = N Licarch_on_ index+ Az * N& ™ * Leonfim_answer (10)

Let the retrieval time .., of Eq. (10) be a
function of the number of clusters N. This is because
Lsearch on index AN Eeonfirm answer are considered to be
constant, and a3 is a constant. As the function
tuen(Nc) 18 @ concave function, this function has a
minimum value. When d#y,../dNc = 0, Eq. (11) is
obtained.

Lsearch on index

-n
NC =

an

a3z (n=1)teonfirm_answer

As Ncis larger than zero, Nc¢is obtained by Eq. (12).

NC — ?ijra:g s (ﬂ _ 1) . tconfim_answer (12)

tsearch_on_index

Eq. (12) says that N¢, which minimizes tquery, can be
obtained when the number of dimensions n, the time
of an index retrieval fyuch on index> the post-processing
time feonfirm answer» and the constant o are obtained.

4. Verification Experiment

The model of query time constructed in the previous
section is experimentally confirmed.

4.1. Experimental method

The retrieval times are measured 1,000 times on a
Linux computer (Intel Xeon E5620, 2.40GHz, 4 core,
8 thread x 2, 16GB memory, CentOS 5.7). The
results are evaluated in the average. Unit of time is
milliseconds. The experimental environments are as
follows:

* Target time series data are the following artificial

ones:

X = [-’Cr]a X, =x.;+ 7
Xy, Z; random values of [-500,500]

(13)

This randomization makes the distribution of
data uniform.

e The number of dimensions, the length, and the
number of time series are 4, 256, and 6000,
respectively.

o The average is used as the
transformation. The following three sets of
moving averages are used: 1 to 50 units, 1 to 75
units, and 1 to 100 units. The numbers of
transformations are 50, 75, and 100, respectively.

e The numbers of transformations in a cluster are
the divisors of the number of transformations.

running

The transformations are sequentially stored into
clusters.

* Key time series are randomly selected in R

« Following the previous work, ' € is set according
to Eq. (14).

e=2(n-1D(1-p)

Here, n is the length of a time series, and p =
0.96.

(14

4.2. Experimental result
4.2.1. Query time and optimal number of clusters

The retrieval times #,,.,,. measured and averaged are

shown in Fig. 1. Those against the small N, whose
range is [0, 30], are shown in Fig. 2 for improving
visibility. The retrieval time f,., is a concave
function as shown in Fig. 1 and Fig. 2. As we can see

Published by Atlantis Press
Copyright: the authors

84

in Fig. 2, the retrieval time 7., becomes minimum at
N c= 5.

120
ONT=100
100
ONT=75
80 ANT=50
E
—= 60
4
g
3 a0
_ <
20 =
£ &
o &
P E-S=h . : . ;
0 20 a0 60 80 100
N_C

Fig. 1. Retrieval time t,., against the number of
clusters N for the number of transformations Ny =
100, 75, 50.

120
100 16 © NT=100
ONT=75
80
'E' ANT=50
—60
S
L]
T
40 18
20
AO
o -]
0 +—AOOH & = : 3
0 10 20 30

Fig. 2. Retrieval time t,,,, against the small number
of clusters N¢ ([0, 30]) for the number of
transformations Ny=100, 75, 50.

4.2.2. Query time and optimal number of clusters

The search times ., are shown in Fig. 3. It can be
seen that the search time #,,, is proportional to the
number of clusters Nc.

The search times using an index fyeqch on index ar€
shown in Table 1. Table 1 includes the middle value.
It can be seen that the values except for those at N =
1 are around the middle value.

Optimal Number of Clusters for Fast Similarity Search

35
¢ NT=100
Y, R T—
rs
O NT=75 -
2
25 1 A NT=50 7T
-~ ,’/’,A
m A
E 20 iy O
= - /,’-D
£ " 2
s i
215 A7
- /,_5-"
o wenmeeee NT = 100
10 ot
/5.’:-' ———.NT=75
5 4
/ET —..— NT=50
0 T T T T)
o 20 40 60 80 100
N_C

Fig. 3. Search time #.,.; against the number of
clusters N for the number of transformations Ny =
100, 75, 50 and its approximation curve.

Table 1. Search time using indeX Zsearch_on_index [MS]

Ne Np=100 Nr=175 Nr=50
100 0.244 - -
75 = 0.260 -
50 0.284 - 0.296
25 0.275 0.308 0318
20 0.289 - -
15 B 0.287 -
10 0.313 - 0.343

5 0329 0.349 0.355

4 0.351 - -

3 - 0377 -

2 0.487 - 0.445

1 0.921 0.789 0.631

Middle value 0.313 0.328 0.349

4.2.3. Query time and optimal number of clusters

The post-processing time #,,srocessing 15 Shown in Fig.
4. It can be seen that the post-processing time
Loosprocessing decreases according to the number of
clusters Nc.

The sum of the volumes of hyper-rectangles
Visum 18 shown in Fig. 5. Here, the one is omitted
when N¢ = N7 because Vi, is equal to zero. Fig. 5
includes approximation curves, which are based on
the power function. It is considered that Vpg,, is
proportional to the power of -3.5 of Nc.

Published by Atlantis Press
Copyright: the authors
85

Toshiichiro Iwashita et al.

100

¥
b ©NT =100
- 10 ONT=75
£
NT =50
g a
g 1 P;
- (]
g o
-~ 011+
A oo
o & <
001 - ; : 0
0 20 40 60 80 100

N_C
Fig. 4. Post-processing time #,,gprocessing against the
number of clusters N for the number of
transformations Ny= 100, 75, 50.

1E413

1E+12 =

4 © NT=100
16411 7% O NT=75
1€410 }Pﬂ & NT=50

\%_
B B
PN

: [—-=—= NT=75

2100000000

o ---= NT=50

1000000 - SRy = dEa2
AT —— G = 4E+11x3 40
100000 - — e T
=y = 1E+1 1378
10000
1000 .
0 10 20 20 40 50

Fig. 5. Sum of the volumes of hyper-rectangles ¥z,
against the number of clusters N¢ for the number of
transformations Ny = 100, 75, 50 and its
approximation curve.

Table 2. Number of candidates N,,,4idate

Ne Np=100 Nr=175 Nr= 350
100 0.169 - B
75 E 0.111 B
50 0.252 - 0.109
25 0.576 0.273 0.170
20 0.805 - -
15 - 0.650 -
10 3.13 - 0.570
5 18.8 7.68 2.06
4 37.8 - -

3 - 34.35 B

2 352.4 - 26.0
1 2482 1183 293.8

The numbers of candidates N,,4idae are shown in
Table 2. The values obtained by subtracting the
minimum values from the original ones are shown in
Fig. 6. Fig. 6 also includes approximation curves

based on the power function. It can be seen that the
number of candidates N_ugidae 1S proportional to the
power of -2.7.

10000 ~
¢.> ¢ NT=100
1000 1§
d:? 0 NT=75
100 4 & NT=50
i
N S
8 10—y S
o -==-NT=75
g RS
1 L. T -~ == NT=50
5 BB g
- ST
01 - By = 1816 72 80
oot S y= 866U
T = 19638
0,001 . " i y
4] 10 20 30 40 50

N_C

Fig. 6. The number of candidates N,,,idue against the
number of clusters N for the number of
transformations Ny = 100, 75, 50 and its
approximation curve.

The confirmation time f.opiym answer 1S Shown in
Table 3. Table 3 also includes middle values. It can
be seen that the values except for those at No = Ny are
around the middle values.

Table 3. Confirmation time #,o,m_answer [MS]

Ne Ny =100 Ny=75 Nr =350
100 0.160 - -
75 - 0126 -
30 0.075 - 0.156
25 0.057 0.048 0.076
20 0.040 - -
15 - 0.035 -
10 0.049 - 0.061
5 0.043 0.045 0.044
4 0.044 - -
3 - 0.044 -
2 0.043 - 0.415
1 0.040 0035 0.042
Middle value 0.046 0.045 0.061

Table 4. The times tsearchioniindex and tcor_lﬁrmiunswen
and the constant o; obtained.

J'\rT "xmrrh__mi__imfﬂr [l‘llSI "roluﬁmr__mrsuw I]nSJ as
30 0.343 0.051 370.0
75 0.287 0.035 2194

100 0.289 0.040 6440

Published by Atlantis Press
Copyright: the authors

5. Evaluation
5.1. Time and constant
5.1.1. Search time

The search time ., is proportional to the number
of candidates N¢ as shown in Fig. 3. Therefore, it is
confirmed that Eq. (5) is valid.

5.1.2. Post-processing time

The sum of the volumes of hyper-rectangles Vq,,, is
proportional to the power of -3.5 of N¢ as shown in
Fig. 5. It is considered that the tendency of Vi, is
quite similar to that of Eq. (8).

The number of candidates Nougidae 18
proportional to the power of -2.7 as shown in Fig. 6.
It is also considered that the tendency of N.ugidaze 18
quite similar to that of Eq. (9).

When we use the confirmation times Zeonfirm_answer
at Nc = Ny / 5 shown in Table 3, the typical times
may be obtained for every Nr. The confirmation
times Zconfirm_answer Obtained are 0.061[ms], 0.035[ms],
and 0.040[ms] for N7 = 50, 75, 100, respectively.

5.1.3. Constant
The constant a; is represented with N,ugidase * Nt
based on Eq. (9). The constant a3 is obtained by using
the number of candidates N, ,u4igare, Shown in Table 2,
at No = Ny/5, as in the retrieval time and the
postprocessing one. The constants o obtained are
570.0, 2193.8, and 6440.0 at Ny = 50, 75, 100,
respectively.

The times Zsearch on_index AN Leonfirm answer, and the
constant o3 obtained up to here are shown in Table 4.

5.2. Optimal number of clusters
The optimal numbers of clusters N¢sg, Nc7s, and Nejgo
obtained by using Eq. (12) in four dimensions are
4.2, 5.3, and 7.2, respectively. Therefore, the query
time is the minimum when N¢ is equal to 5 for all of
the numbers of transformations: 50, 75, and 100.

On the other hand, it can be seen that the query
time is the minimum when N¢ is equal to 5 in the
experiment as shown in Fig. 1 and Fig. 2.

Optimal Number of Clusters for Fast Similarity Search

As we have seen, both of the model of query
time and the experimental result show that the
optimal number of clusters N¢ is 5. Moreover, Eq.
(10) is agreed with the experimental result shown by
Rafiei e al.’

The optimal number of clusters Nc can be
obtained by wusing Eq. (12) with fewch on inder
Leonfirm_answer» aNd a3 obtained under the condition that
Nc=Nr/ 5.

6. Conclusion

This paper proposed a method of determining the
optimal number of clusters dividing the multiple
transformations for the purpose of the efficient
processing of query against the result of applying the
transformations to time series. In this paper, the
moving average is used as a transformation for
simplicity. The model of query time to the number of
clusters was constructed by building models of search
time and postprocessing time for determining the
optimal number of clusters. The verification
experiment confirmed the validity of the model
constructed. It was revealed that the optimal number
of clusters could be determined by the times obtained
from a single query execution.

In this paper, the experiment is conducted under
the fixed environment: the fixed data sets, the fixed
number of transformations, and the fixed dimensions.
Experiments under other conditions are required to be
conducted. This paper treats only the moving average
as a transformation. Confirming the validity of the
model for other kinds of transformation including
time shift is also in future work. The model is also
required to be confirmed when other clustering
methods are adopted. In this paper, time series data
are treated as time varying ones. The value changes
according to the time in a time series. There are time
varying data such that the position and/or the size in
two or three dimensional space may change
according to the time. Treating the time varying data
whose changes are spatial as well as temporal is in
future work.

References

1. D. Rafiei and A. O. Mendelzon, Querying time
series data based on similarity, [EEE
Transactions on Knowledge and Data

Engineering, 12(5) (2000), pp. 675-693.

Published by Atlantis Press
Copyright: the authors

87

Toshiichiro Iwashita et al.

2. R. Agrawal, C. Faloutsos, and A. N. Swami,
Efficient similarity search in sequence databases,
in Proc. 4th Int'l Conf. on Foundations of Data
Organization and Algorithms (FODO'93)
(1993), pp. 69-84.

3. C. Faloutsos, M. Ranganathan, and Y.
Manolopoulos, Fast subsequence matching in
time-series databases, in Proc. 1994 ACM
SIGMOD Int'l Conf. on Management of Data
(1994), pp. 419-429.

4. E. J. Keogh, K. Chakrabarti, S. Mehrotra, and
M. J. Pazzani, Locally adaptive dimensionality
reduction for indexing large time series
databases, in Proc. 2001 ACM SIGMOD Int'l
Conf. on Management of Data (2001), pp. 151-

162.
5. V. Megalooikonomou, Q. Wang, G. Li, and C.
Faloutsos, Multiresolution Symbolic

Representation of Time Series, in Proc. 21st
IEEE Int'l Conf. on Data Engineering (2005),
pp- 668-679.

6. S.-W. Kim, S. Park, and W. W. Chu, An Index
Based Approach for Similarity Search
Supporting Time Warping in Large Sequence
Databases, in Proc. 17th Int'l Conf. on Data
Engineering (2001), pp. 607-614.

7. T. Hochin, K. Koyama, H. Nakanishi, M.
Kojima, and LABCOM group, Extension of
frequency-based dissimilarity for retrieving
similar plasma waveforms, Fusion Engineering
and Design, 83(2) (2008), pp. 417-420.

8. T. Hochin, Y. Yamauchi, H. Nomiya, H.
Nakanishi, and M. Kojima, Fast subsequence
matching in plasma waveform databases, in
Proc. 5th Int'l Conf. on Intelligent Information
Hiding and Multimedia Signal Processing (IIH-
MSP2009) (2009), pp. 759-762.

9. T. Hochin, Y. Yamauchi, H. Nakanishi, M.
Kojima, and H. Nomiya, Indexing of plasma
waveforms for accelerating search and retrieval
of their subsequences, Fusion Engineering and
Design, 85(5) (2010), pp. 649-654.

10. N. Beckmann, H.-P. Kriegel, R. Schneider, and
B. Seeger, The R*-tree: an efficient and robust
access method for points and rectangles, in Proc.
1990 ACM SIGMOD Int'l Conf. on Management
of Data (1990), pp. 322-331

Published by Atlantis Press
Copyright: the authors
88

