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Abstract

We study the effects of third order dispersion (TOD) on th#ision of wavelength divi-
sion multiplexed solitons in periodic dispersion maps. &halysis is based on a proposed
ODE model obtained using the variational method which takEsaccount third order dis-
persion. The impact of TOD on the performance of high-spgeita transmission systems
is discussed. The analysis presented focuses on the @oliisiiuced frequency shifts of the
pulses.

1 Introduction

The use of Dispersion Management (DM) techniques has gedridng-distance high-speed op-
tical soliton based communication systems to become aipahceality [8]. This has been due
mainly to a lessening of the penalties associated to cediegnadation effects such as Gordon-
Haus timing jitter, four-wave mixing (FWM) and collisiondnced frequency shifts and also to an
improvement in the signal-to-noise ratio [10, 5].

Interchannel soliton collisions in wavelength division Itiplexed (WDM) optical DM trans-
mission systems induce shifts of their center frequencl@swesult in a crosstalk between chan-
nels and can severely impair system performance [1, 5, J0,The accurate modeling of WDM
DM soliton transmission requires the inclusion of TOD, etteough such effects have been rou-
tinely excluded in previous studies. Moreover, as the trassion requirements move to 40 Gb/s
and 160 Gb/s for the synchronous optical network (SONET)smthronous digital hierarchy
(SDH), the impact of third order dispersion becomes quitgegable even for a single channel
transmission [6, 9, 7]. In this paper, we present an anabfdise impact of TOD effects in WDM
DM soliton transmission systems by means of a new ODE modilhatakes into account TOD
effects which has been obtained using the variational ndeflBp To the authors knowledge, it's
the first time that a TOD term is included in such a study.
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2 Derivation of the ODE model using the variational method

The normalized complex envelop€Z, T) of an optical pulse in a periodic dispersion map evolves
according to

24 3y
j% + %D(Z)g_l_2 +S2)|ufu—js(2) ZT3 0, (2.1)
where 6(Z) models the effect of TOD an®(Z), T and Z represent the fiber dispersion, the
retarded time and propagation distance, respectiv§(y) accounts for the effects of gain and
loss. D(Z) defines the dispersion map and is a periodic function of tbpgwgation distance with
alternating valuesD, and D_ in sections of fiber with lengthsZ, and Z_ and average value
Dav. AD =D, —|D_|and Zy=Z, +Z_ is the map period. TOD effects arise froo?3/dw?
where 3(w) is the mode propagation constant at frequentyT he effects of the periodic loss and
amplification in the system can be neglected in this analisiply setting the tern$(Z) equal

to 1. Such approach can be used in the approximate modelisgstdms using novel Raman
amplification schemes [4]. For the sake of simplicity, weuass a constant value for the TOD

parameted.
In order to study the interchannel interactions between W4dlons, we substituta(zt) =
ui(zt) + ux(zt) in (2.1), whereu, | = 1,2, are the waveforms of two pulses propagating in

adjacent channels. We consider the frequency spacing eetefennels large enough in order to
justify neglecting phase-sensitive terms and assumeritexiction behavior is dictated by cross-
phase modulation (XPM) effects alone. We obtain a systenwofdoupled generalized NLS
equations
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The variational method [3] permits to reduce the full comjile of (2.2) to that of system
of ODEs which capture the most relevant features of the @wplgolutions in an approximate
manner. The starting point is a Lagrangian densftju;, u/) from which the condition [9]
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yields (2.2). The Lagrangian density
LW, 0) = j (W — iuz) +D(Z) jur[*~S(Z) |u[*~ 8 (urTuir — irrum) —4S(Z) [us-1[*|u |
(2.4)

satisfies such condition.
Next, we assume that under strong dispersion managem®i,| > 1 [10] the pulse is well
approximated by a Gaussian shape and use the ansatz

u(Z,T)=, /\/E;_T\/Q (Z)exp[—
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whereE;, pi(2),C(2),w (2),T(2),6(Z) are the energy, inverse pulse width, linear chirp, center
frequency, center position and phase of the pulse, resp8cti

Substituting the ansatz in the Lagrangian density and iatiey in the transverse coordinate T
permits to obtain the Lagrangian for the reduced dynamigcstesn

E
L= Z—F;z [PFCl +2p PG + D(Z) p(1+CP) — 280 p(1+CF) — 40 Clpf]
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where the primes stand for the derivatives with respeztaod
_ V2pips_

NN

Finally, taking the variation with respect to each of thesgybarameterg,,C, w, Tj, we obtain
the equations of motion

—432)

P

2.7)

dp

B _cp¥(D-

47 Cp(D—60w) (2.8)

dG pPS(2) T?

4z = (1+C|2)(D—65m)p|2—ﬁ E) + 2E3-1pf (1— 1) exp ——2' (2.9)

O D +36R+ 25 (1+C) 2.10

qz =~ “Pa Lot s (1+C) pi (2.10)

da  263482) o, [ T

iz~ o nPTexpl - (2.11)
where

1| = PAT, (2.12)

ATy =T —Ta (2.13)
and

S(Z) =goexp(—2rz) (2.14a)

B 2rz,
% =7T exp— 2 Za)” (2.14b)

Figure 1 shows the evolution of the parameters describiagtitse in they, = —17.75 channel
during the collision with another pulse simultaneouslygamgating in the same fiber link in the
wp = 17.75 channel. Both the results obtained from the integratfdhedODE system (2.8)-(2.11)
and the parameters estimated from the results of the nuah@rtegration of the PDE (2.1) using
the split-step Fourier method [2] are displayed and exeeligreement is found between the two
sets of values. The map parameters used in the simulatiakDase 20, 6 = 5e~* andD,, = 1.
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Figure 1. Evolution of the pulse parameteps, C1, T1 and w,; as obtained from the ODEs
(2.8)-(2.11) and estimated from the results obtained ohtlmaerical solution of the PDE
(2.1).The lower right panel shows an expanded view of thisstmh area.

3 Resaultsand discussion

When compared to the corresponding variational equatiotisel absence of TOD [10], the evo-
lution equations derived in the previous section revealreection of the effective dispersion as
Detf = D —6d0w. This also results in an effective modification of the mapapasters for each
channel. In fact, for sufficiently large values @f one works in a regime where the periodic DM
solutions no longer exist.

Figure 2 illustrates how the properties of a single chantalahary pulse vary withd due
to the changes in the effective dispersion. For the analygssetE, = 0 in Egs. (2.8)-(2.11)
and keep only the results of the parameters for thel pulse. As for all the simulations in this
section, we considep(0) = 1 pulses launched in the chirp-free po@(0) = 0 at the midpoint
of the anomalous dispersion segment of a normalized mapZyits Z_ = 0.5 andD,, = 1. In
the absence of interactions, we find from Eq. (2.11) th&Z) = « (0). The left panel shows the
pulse energ¥ required for the pulse to exhibit a periodic evolution in thap as a function of the
dispersion differenc&D for both thew, = —17.75 (top) and thev, = 17.75 (bottom) channels.
Whend > 0, the change in effective dispersion results in an incre&fiee required input energy
E for the w < 0 channel and a decreaseffor the w > 0 channel. The right panel shows the
dynamical evolution of the system in tkip,C) plane for thecwyy = —17.75 case. For each value
of 4, as the energy required to maintain the periodicity of tHatem at the(p,C) = (1,0) point
becomes greater, the size of the trajectory in the phase planeases. The reciprocal situation is
found for thew, = 17.75 pulse: the trajectory in the phase plane contracts asthéred input
energyE decreases. Fad < 0 the situation is reversed and the required energy is gréate
w>0.

We now consider the simultaneous propagation of two pulstsay (0) = —wp(0) = —17.75
and initial positionsT;(0) = —T,(0) = —22.2. The group velocity dispersion will drive the motion
of the pulses with non-vanishing frequency shift in the nalieed framework as given by Eq.
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Figure 2. Single-channel pulse periodic solution properties inpghesence of TOD for
different frequency channels. Left panel: Input pulse gneequired for stable pulse prop-
agation for different values a¥ for wn = —17.75 (top) andw; = 17.75 (bottom). Right
panel: Phase-plane dynamics for lossless DM transmissitreiy, = —17.75 channel for
different values of the TOD parametér

(2.10). If we neglect the last term in (2.11), whichO$d), the pulse trajectories are approximately
described by

Vi ~ —Daw + 33wy, (3.1)
whereV is thetransverse velocitpf thel —th pulse and it is related with the inverse of its group
velocity.

As a pulse propagates in the dispersion map, it describgzagtrajectory where the direction
of the displacement alternates following the changes irsidye of D(Z) (see Figure 1). Whe¥
has a different average value foe= 1 andl = 2 two pulses with a large initial separation are
brought together and collide. Soliton collisions in WDM Dkansmission lines cause residual
frequency shifts which, in turn, produce timing jitter attfeceiver [10]. This effect can severely
degrade the system performance.

In order to analyze qualitatively how TOD affects the cidiiss, we use the approximate result
given in Eq. (3.1) and assume ~ —w ~ —wyp, with w > 0. First, we find that the symmetry in
the movement of the two solitons is lost, sinfdg # |V2|. Nevertheless, the net relative transverse
velocity for any value ofd is V1, = Vi — V> ~ —2Dw which is approximately the same as the
value found ford = 0. So, the asymmetry of the interaction process does nattdfffe strength of
the nonlinear interaction due to XPM.

Figure 3.a displays the frequency shift for the: 1 channel. One finds that the main effect
of TOD is to decrease the residual frequency shift for thianctel, while maintaining both the
characteristic oscillatory profile along the dispersidffiedénce axis and the positions of the local
minima for the frequency shift &D = 4n+ 6. In the inset, we observe a 6 per cent reduction
of the residual frequency shift fay = 5e=* and a 47 per cent fad = 5¢~3 at AD = 12. Figure
3.b shows the corresponding results for the 2 channel and we observe the converse effect: an
increase of the residual frequency shift. A change in the ef@d produces a swap in the roles of
the two channels.
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Figure 3. Residual freq shift vs. dispersion difference in a peridaiid line with parameters
as described in the text feo; = 17.75 (a) andw, = —17.75 (b).

The results shown in Figure 3 can be explained in terms of #hgeg of the required input
energy for the two channels. TOD produces a variation of ffective dispersion, so, for fixed
0 > 0, asw increases, larger values Bf and smaller values of af&, are required for the input
pulses. This means that the- 2 channel experiences stronger nonlinear interaction ¢,
as described in Eqg. (2.11), whereas the impairment is snfatléhel = 1 channel. The results can
be extrapolated to a larger number of channels: each chauafiets of stronger nonlinear effects
due to those neighboring channels with smaller carrieruegies than from those with larger
frequencies. This sets a privileged situation for the ckhian the lower end of the frequency
multiplex. The degradation due to nonlinear interactionuth worsen as the position in the
frequency multiplex moves to higher frequencies. If thex§0 is reversed, the whole picture is
reversed and the “preferred” channel is that with the sméiguency.
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