
Journal of Nonlinear Mathematical Physics Volume 15, Supplement 3 (2008), 137–143 ARTICLE

Interchannel Soliton Collisions in Periodic Dispersion
Maps in the Presence of Third Order Dispersion

Francisco J D́ıaz-Oteroa and Pedro Chamorro-Posadab
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Abstract

We study the effects of third order dispersion (TOD) on the collision of wavelength divi-
sion multiplexed solitons in periodic dispersion maps. Theanalysis is based on a proposed
ODE model obtained using the variational method which takesinto account third order dis-
persion. The impact of TOD on the performance of high-speed optical transmission systems
is discussed. The analysis presented focuses on the collision-induced frequency shifts of the
pulses.

1 Introduction

The use of Dispersion Management (DM) techniques has permitted long-distance high-speed op-
tical soliton based communication systems to become a practical reality [8]. This has been due
mainly to a lessening of the penalties associated to certaindegradation effects such as Gordon-
Haus timing jitter, four-wave mixing (FWM) and collision induced frequency shifts and also to an
improvement in the signal-to-noise ratio [10, 5].

Interchannel soliton collisions in wavelength division multiplexed (WDM) optical DM trans-
mission systems induce shifts of their center frequencies which result in a crosstalk between chan-
nels and can severely impair system performance [1, 5, 10, 11]. The accurate modeling of WDM
DM soliton transmission requires the inclusion of TOD, eventhough such effects have been rou-
tinely excluded in previous studies. Moreover, as the transmission requirements move to 40 Gb/s
and 160 Gb/s for the synchronous optical network (SONET) andsynchronous digital hierarchy
(SDH), the impact of third order dispersion becomes quite appreciable even for a single channel
transmission [6, 9, 7]. In this paper, we present an analysisof the impact of TOD effects in WDM
DM soliton transmission systems by means of a new ODE model which takes into account TOD
effects which has been obtained using the variational method [3]. To the authors knowledge, it’s
the first time that a TOD term is included in such a study.
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2 Derivation of the ODE model using the variational method

The normalized complex envelopeu(Z,T) of an optical pulse in a periodic dispersion map evolves
according to

j
∂u
∂Z

+
1
2

D(Z)
∂ 2u
∂T2 +S(Z) |u|2 u− jδ (Z)

∂ 3u
∂T3 = 0, (2.1)

whereδ (Z) models the effect of TOD andD(Z), T and Z represent the fiber dispersion, the
retarded time and propagation distance, respectively.S(Z) accounts for the effects of gain and
loss.D(Z) defines the dispersion map and is a periodic function of the propagation distance with
alternating valuesD+ and D− in sections of fiber with lengthsZ+ and Z− and average value
Dav. ∆D = D+ −|D−| and Z0 = Z+ + Z− is the map period. TOD effects arise fromd3β/dω3

where β (ω) is the mode propagation constant at frequencyω . The effects of the periodic loss and
amplification in the system can be neglected in this analysissimply setting the termS(Z) equal
to 1. Such approach can be used in the approximate modeling ofsystems using novel Raman
amplification schemes [4]. For the sake of simplicity, we assume a constant value for the TOD
parameterδ .

In order to study the interchannel interactions between WDMsolitons, we substituteu(z, t) =
u1(z, t) + u2(z, t) in (2.1), whereul , l = 1,2, are the waveforms of two pulses propagating in
adjacent channels. We consider the frequency spacing between channels large enough in order to
justify neglecting phase-sensitive terms and assume that interaction behavior is dictated by cross-
phase modulation (XPM) effects alone. We obtain a system of two coupled generalized NLS
equations

j
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D(Z)
∂ 2ul

∂T2 +S(Z)|ul |2ul +2S(Z)|u3−l |2ul − jδ
∂ 3ul

∂T3 = 0 l = (1,2). (2.2)

The variational method [3] permits to reduce the full complexity of (2.2) to that of system
of ODEs which capture the most relevant features of the evolving solutions in an approximate
manner. The starting point is a Lagrangian densityL (ul ,u∗l ) from which the condition [9]
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yields (2.2). The Lagrangian density

L (ul ,u
∗
l )= j (ul u

∗
lZ −u∗l ulZ)+D(Z) |ulT |2−S(Z) |ul |4− jδ (ulT Tu∗lT −u∗lTTulT )−4S(Z) |u3−l |2 |ul |2

(2.4)

satisfies such condition.
Next, we assume that under strong dispersion management|∆DZ0| ≫ 1 [10] the pulse is well

approximated by a Gaussian shape and use the ansatz

ul (Z,T) =

√

El√
π
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pl (Z)exp
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− pl (Z)2

2
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]

(2.5)
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whereEl , pl (Z),Cl (Z),ωl (Z),Tl (Z),θl (Z) are the energy, inverse pulse width, linear chirp, center
frequency, center position and phase of the pulse, respectively.

Substituting the ansatz in the Lagrangian density and integrating in the transverse coordinate T
permits to obtain the Lagrangian for the reduced dynamical system
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2p2
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[
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l C

′
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where the primes stand for the derivatives with respect toZ and
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√
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√

p2
l + p2

3−l

. (2.7)

Finally, taking the variation with respect to each of the pulse parameterspl ,Cl ,ωl ,Tl , we obtain
the equations of motion
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where

τl = P∆Tl , (2.12)

∆Tl = Tl −T3−l (2.13)

and

S(Z) = g0 exp(−2ΓZ) (2.14a)

g0 =
2ΓZa

1−exp(−2ΓZa)
. (2.14b)

Figure 1 shows the evolution of the parameters describing the pulse in theω1 =−17.75 channel
during the collision with another pulse simultaneously propagating in the same fiber link in the
ω2 = 17.75 channel. Both the results obtained from the integration of the ODE system (2.8)-(2.11)
and the parameters estimated from the results of the numerical integration of the PDE (2.1) using
the split-step Fourier method [2] are displayed and excellent agreement is found between the two
sets of values. The map parameters used in the simulation are∆D = 20,δ = 5e−4 andDav = 1.



140 F J Dı́az-Otero and P Chamorro-Posada

0 1 2 3
0.85

0.9

0.95

1

1.05
∆D=20;δ=5e−4

Dispersion Maps

In
ve

rs
e 

pu
ls

e 
w

id
th

 (
p

1)
0 1 2 3

−0.5

0

0.5

C
hi

rp
 (

C
1)

0 1 2 3
−30

−20

−10

0

Dispersion Maps

P
ul

se
 p

os
iti

on
 (

T
1)

 

 

7 8 9

−17.75

−17.745

−17.74

P
ul

se
 fr

eq
ue

nc
y 

(
ω

1)

PDE
ODE

Figure 1. Evolution of the pulse parametersp1, C1, T1 andω1 as obtained from the ODEs
(2.8)-(2.11) and estimated from the results obtained of thenumerical solution of the PDE
(2.1).The lower right panel shows an expanded view of the collision area.

3 Results and discussion

When compared to the corresponding variational equations in the absence of TOD [10], the evo-
lution equations derived in the previous section reveal a correction of the effective dispersion as
De f f = D− 6δω . This also results in an effective modification of the map parameters for each
channel. In fact, for sufficiently large values ofω , one works in a regime where the periodic DM
solutions no longer exist.

Figure 2 illustrates how the properties of a single channel stationary pulse vary withδ due
to the changes in the effective dispersion. For the analysis, we setE2 = 0 in Eqs. (2.8)-(2.11)
and keep only the results of the parameters for thel = 1 pulse. As for all the simulations in this
section, we considerp(0) = 1 pulses launched in the chirp-free pointC(0) = 0 at the midpoint
of the anomalous dispersion segment of a normalized map withZ+ = Z− = 0.5 andDav = 1. In
the absence of interactions, we find from Eq. (2.11) thatωl (Z) = ωl (0). The left panel shows the
pulse energyE required for the pulse to exhibit a periodic evolution in themap as a function of the
dispersion difference∆D for both theω1 = −17.75 (top) and theω1 = 17.75 (bottom) channels.
Whenδ > 0, the change in effective dispersion results in an increaseof the required input energy
E for the ω < 0 channel and a decrease ofE for the ω > 0 channel. The right panel shows the
dynamical evolution of the system in the(p,C) plane for theω1 = −17.75 case. For each value
of δ , as the energy required to maintain the periodicity of the solution at the(p,C)= (1,0) point
becomes greater, the size of the trajectory in the phase plane increases. The reciprocal situation is
found for theω1 = 17.75 pulse: the trajectory in the phase plane contracts as the required input
energyE decreases. Forδ < 0 the situation is reversed and the required energy is greater for
ω > 0.

We now consider the simultaneous propagation of two pulses with ω1(0) = −ω2(0) = −17.75
and initial positionsT1(0) =−T2(0) =−22.2. The group velocity dispersion will drive the motion
of the pulses with non-vanishing frequency shift in the normalized framework as given by Eq.
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Figure 2. Single-channel pulse periodic solution properties in thepresence of TOD for
different frequency channels. Left panel: Input pulse energy required for stable pulse prop-
agation for different values ofδ for ω1 = −17.75 (top) andω1 = 17.75 (bottom). Right
panel: Phase-plane dynamics for lossless DM transmission in theω1 = −17.75 channel for
different values of the TOD parameterδ .

(2.10). If we neglect the last term in (2.11), which isO(δ ), the pulse trajectories are approximately
described by

Vl ≃−Dωl +3δω2
l , (3.1)

whereVl is thetransverse velocityof the l−th pulse and it is related with the inverse of its group
velocity.

As a pulse propagates in the dispersion map, it describes a zigzag trajectory where the direction
of the displacement alternates following the changes in thesign ofD(Z) (see Figure 1). WhenVl

has a different average value forl = 1 and l = 2 two pulses with a large initial separation are
brought together and collide. Soliton collisions in WDM DM transmission lines cause residual
frequency shifts which, in turn, produce timing jitter at the receiver [10]. This effect can severely
degrade the system performance.

In order to analyze qualitatively how TOD affects the collisions, we use the approximate result
given in Eq. (3.1) and assumeω1 ≃ −ω ≃ −ω2, with ω > 0. First, we find that the symmetry in
the movement of the two solitons is lost, since|V1| 6= |V2|. Nevertheless, the net relative transverse
velocity for any value ofδ is V1,2 = V1 −V2 ≃ −2Dω which is approximately the same as the
value found forδ = 0. So, the asymmetry of the interaction process does not affect the strength of
the nonlinear interaction due to XPM.

Figure 3.a displays the frequency shift for thel = 1 channel. One finds that the main effect
of TOD is to decrease the residual frequency shift for this channel, while maintaining both the
characteristic oscillatory profile along the dispersion difference axis and the positions of the local
minima for the frequency shift at∆D = 4n+ 6. In the inset, we observe a 6 per cent reduction
of the residual frequency shift forδ = 5e−4 and a 47 per cent forδ = 5e−3 at ∆D = 12. Figure
3.b shows the corresponding results for thel = 2 channel and we observe the converse effect: an
increase of the residual frequency shift. A change in the sign of δ produces a swap in the roles of
the two channels.
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Figure 3. Residual freq shift vs. dispersion difference in a periodicDM line with parameters
as described in the text forω1 = 17.75 (a) andω2 = −17.75 (b).

The results shown in Figure 3 can be explained in terms of the values of the required input
energy for the two channels. TOD produces a variation of the effective dispersion, so, for fixed
δ > 0, asω increases, larger values ofE1 and smaller values of areE2 are required for the input
pulses. This means that thel = 2 channel experiences stronger nonlinear interaction due to XPM,
as described in Eq. (2.11), whereas the impairment is smaller for thel = 1 channel. The results can
be extrapolated to a larger number of channels: each channelsuffers of stronger nonlinear effects
due to those neighboring channels with smaller carrier frequencies than from those with larger
frequencies. This sets a privileged situation for the channel at the lower end of the frequency
multiplex. The degradation due to nonlinear interaction should worsen as the position in the
frequency multiplex moves to higher frequencies. If the sign of δ is reversed, the whole picture is
reversed and the “preferred” channel is that with the smaller frequency.
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