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Abstract

It is proved that the system of string equations of the disipatess 2-Toda hierarchy which
arises in the planar limit of the hermitian matrix model alsalerlies certain processes in
Hele-Shaw flows.

1 Introduction

The Toda hierarchy represents a relevant integrable ateugthich emerges in several random
matrix models [1]-[3]. Thus, the partition functions

Zn(Hermitian) = /dH exp(tr( > tka)>, (1.1)

k>1

Zy(Normal) = /dM dMTexp(tr (MM + 3 (tM<+5M™)) ), (1.2)
K>1

of the hermitian i = H™) and the normal matrix model$M,M'] = 0) , whereN is the matrix
dimension, are tau-functions of the 1-Toda and 2-Toda tikyarespectively. As a consequence
of this connection new facets of the Toda hierarchy have besmovered. Thus the analysis of the
largeN-limit of the Hermitian matrix model lead to introduce ararolated continuous version of
the 2-Toda hierarchy: thdispersionful2-Toda hierarchy (see for instance [4]). On the other hand,
the leading contribution to the lardé-limit (planar contribution) motivated the introductio @
classicalversion of the Toda hierarchy [4] which is known as thgpersionles®-Toda (d2-Toda)
hierarchy.

Laplacian growth processes describe evolutions of tweedsional domains driven by har-
monic fields. It was shown in [5] that the d2-Toda is a releviatggrable structure in Lapla-
cian growth problems and conformal maps dynamics. For elagnifpa given analytic curve
y (z=12z(p), |p| = 1) is the boundary of a simply-connected bounded domain, fteamlves with
respect to its harmonic moments according to a solutionefifiToda hierarchy. These solutions
are characterized by the string equations

Z=m, M=-z 1.3)
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Here (z,m) and(z,m) denote the two pairs of Lax-Orlov operators of the d2-Todadichy. As

it was noticed in [5]-[9], this integrable structure alsoages in the planar limit of the normal
matrix model (1.2) and describes the evolution of the suppfazigenvalues under a change of the
parameters, of the potential.

The present paper is motivated by the recent discovery [fl&h integrable structure provided
by the dispersionless AKNS hierarchy which describes thileubreak-off in Hele-Shaw flows.
In this work we prove that this integrable structure is albaracterized by the solution of a pair
of string equations

Zz=2z m=m, (1.4)

of the d2-Toda hierarchy. Since the system (1.4) descrimeplainar limit of (1.1), it constitutes a
common integrable structure arising in the Hermitian miattodel and the theory of Hele-Shaw
flows.

Our strategy is inspired by previous results [11]-[12] otuson methods for dispersionless
string equations. We also develop some useful standardatady of the theory of Lax equations
in the context of the d2-Toda hierarchy.

The paper is organized as follows:

In the next section the basic theory of the d2-Toda hierardtey method of string equations
and the solution of (1.4) are discussed. In Section 3 we stmwthe solution of (1.4) appears
in the planar limit of the Hermitian matrix model and the H8kaw bubble break-off processes
studied in [10].

2 The dispersionless Toda hierarchy

2.1 String equations in the d2-Toda hierarchy
The dispersionless d2-Toda hierarchy [4] can be formulatéerms of two pair§z, m) and(z,m)
of Lax-Orlov functions, where andz are series in a complex variabpeof the form

u —- Vv
z:p+u+61+---, Z= Vot vip-, (2.1)

while mandmare series iz andz of the form

[oe]

i X S o o

m=5 jtZ S+ 5 g, m= Y jgd -
=1 zZ 5z =

NI X
N

41
= 2.2

The coefficients in the expansions (2.1) and (2.2) dependoamgplex variablex and two infinite
sets of complex variables:(ty,t,...) andt := (t1,1,...). The d2-Toda hierarchy is encoded in
the equation

dzA dm = dZ/ dm = d(log pax -+ i ((zj)+dtj (@) dt_j>). 2.3)
=1
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Here the(+) parts ofp-series denote the truncations in the positive and striwtlyative power
terms, respectively. As a consequence there exisattionfunctionsSandS verifying

dS= mdz+logpdx+ 5 <(zj)+dtj + (zi),dt‘,-),
=1

dS=mdz+logpax+ § <(Zj)+ dtj +(Z)- dt—J) :
=1

and such that they admit expansions

© S, = 2__ o Sis1
S= Y tZ+xlogz— § 52 S= V7 —xlogz— S+ Y =~ 2.4
leJ ° J; 1z le J ’ J;JZJ+l @4
From (2.3) one derives the d2-Toda hierarchy in Lax form
ox i ox :
W:{(ZJ)-‘M‘%/}’ a—t_:{(zj)—vfz/}v (25)
j j

whereJ# =z, m, z, M, and we are using the Poisson bracketg} := p(fo 0« — fx0p).

The following result was proved by Takasaki and Takebe (&pe [

Theorem 1. Let (P(z,m),Q(z,m)) and (P(z,m), Q(z,m)) be functions such that
{PQ}t={zm}, {P,Q}={zm}.

If (z,m) and(z,m) are functions which can be expanded in the f¢211)-(2.2) and satisfy the pair
of constraints

P(zm) =P(zm), Q(zm)=0Q(zm), (2.6)
then they verify{z, m} = {z m} = 1 and are solutions of the Lax equatio(&5) for the d2-Toda
hierarchy .

Constraints of the form (2.6) are calleispersionless string equation$n this paper we are
concerned with the system (1.4). The first equatienz of (1.4) defines the 1-Toda reduction of
the d2-Toda hierarchy

z=2= p+u+%, 2.7)
where
u=4S, logv=—-4S. (2.8)

As a consequence the Lax equations (2.5) imply thandv depend or(t,t) through the combi-
nation t—t.
Due to (2.7) there are two branchesés a function ot
1 %
— ~((z— —u2— —Z - U——4-..
p(z) = 2((2 u)+14/(z—u) 4v> Z-U——+
(2.9)

5(2)=%<(Z—u)— (z—u)2—4v> :\_z/+m'
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To characterize the members of the d1-Toda hierarchy ofiabde systems as well as to solve
the string equations (1.4) it is required to determize_(p(z)) and(Z')+ (p(2)) in terms of(u, V).

By using (2.7) it is clear that there are functias, B;, aj, B;j), which depend polynomially, in
such that

3,82 = (2)+(p2) = aj +Bip(2), S =(2)-(p(2) =a +@ P(2),

0,82 = (2)+(P2) =a;+ B P(2), &S(2)=(2)_(p(2) = a; + B P(2),
and

a=2-a; Bj=-p (2.10)
Now we have

0+ Bip@) =480 =2 +0(3), a+BpE =480 = -a%+0(3). @1

so that
aj:%(zj—dtjé)_(p+5)ﬁj>@a B = (psz) (2.12)

where( ) and( ) stand for the projection afseries on the positive and strictly negative powers,
respectively. Thus, by introducing the generating functio

z z rkuv
Ri=—~_— 0=1 2.13
P—Pp /(z—u)? o ( )
we deduce
. 1 — .
@)4(p@) =7~ 5%~ 5= (7 'R)
R 1
~S@ S+ - (rHl—ur)w( ) (2.14)
Hence

‘?tjg):_rjv aISZ ( j+1— Urj),
so that the equations of tld.-Toda hierarchy are given by
du— (rjp1—urj), 0OyVv=Voxrj. (2.15)

Furthermore, we have found

@) (p@) = 375+ 55 (27R) . (@).(B2) =r;+ (@) (p(2) 216)

Hence, the first terms of their asymptotic expansions-asw are

@)-(p@) = o (s -ur) +0( ). @)(BD) =17+ o5 (s —ury) +6( ). @17)

Notice that sinceg = 1 andr, = u, these last equations hold fpe= 0.
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2.2 Hodograph solutions of thel-dToda hierarchy

In the above paragraph we have used the first string equatitin4). Let us now deal with the

second one. To this end we set

m=m=7S jtj(@ Y, + 3 i§(@Y)-,
=1 =1

which leads to the following expressions for the Orlov fumas (m, m)

= ijt"zj_l+ ij 6 —t) (@ H-(p(2)),
= =

9= 3 1577 3 1G4 @ ()

In order to apply Theorem 1 we have to determirendv and ensure thdin, m) verify the correct

asymptotic form (2.1)-(2.2). Both things can be achieveddulucing (2.18) to the form

§+ ,;z_lisj - ,le t—t) (@ H-(p(2),

—‘+ZZ S = ZJ ) (21 (p(2),

and equating coefficients of powers ofindeed, from (2.17) we see that identifying the coeffi-
cients ofz~1 in both sides of the two equations of (2.19) yields the sarfaioa. This equation
together with the one supplied by identifying the coeffitseof the constant terms in the second
equation of (2.19) provides the following systemhaidograph-typeequations to determingi, v)

St —tri1=0,

> ZJ G —t)rj=x
It can be rewritten as
d V,
z , _o,

y 27 (z—u)2—4v

dz z\,

S S N
y 21 \/(z—u)2 - 4v

)

whereyis a large enough positively oriented closed path\&rakenotes the derivative with respect

to z of the function

t—t i
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The remaining equations arising from (2.19) charactemeefmnctlonsS<0 andS(0 forj>1in
terms of(u,v). Therefore we have characterized a solutipm) and(z, m) of the system of string
equations (1.4) verifying the conditions of Theorem 1 arahsequently, it solves the d1-Toda
hierarchy.

3 Planar limit of the Hermitian matrix model and bubble break -off
in Hele-Shaw flows
3.1 The Hermitian matrix model

If we write the partition function (1.1) of the Hermitian miatmodel in terms of eigenvalues and
slow variables t= ¢t, wheree = 1/N, we get

Zn(Nt) = /R” I!j (d x(eNV(Xk’t))(A(xl,--- )2, V(zt) = I(;tkzk. (3.1)

The largeN-limit of the model is determined by the asymptotic expansbZ,(Nt) for n=N as
N — oo

N(ND) = /RNﬁ(d ><keNV(Xk7t))(A(x1,--- )2, (3.2)

It is well-known [3] thatZ,(t) is a 7-function of the semi-infinite 1-Toda hierarchy , then there
exists ar-function 7(&, x,t) of the dispersionful 1-Toda hierarchy verifying

T(€,en,t) = Zy(Nt), (3.3)
and consequently

T(g,1,t) = Zn(NY). (3.4)
Hence the larg®&\-limit expansion of the partition function

Zn(NY) :exp(NzF), F— kZoWF (29, (3.5)

is determined by a solution of the dispersionful 1-Todadmeny atx = 1.

As a consequence of the above analysis one concludes tHaatlieg term (planar limitf (©)
is determined by a solution of the 1-dToda hierarchy at1. Furthermore, the leading terms of
the N-expansions of the main objects of the hermitian matrix rhode be expressed in terms of
guantities of the 1-dToda hierarchy. For example, indhe-cutcase , the density of eigenvalues

p(2) =M(2) v (z—a)(z—b),

is supported on a single intervil, b]. These objects are related to the leading tevffl of the
one-point correlator [13]

1o 1 1, 1 alogzN(Nt)

1
W(z) == Zﬁ trM1) = = 4 = ,
N s zi+1 Z N2 ;121-1-1 J
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in the form

W& = —EVZ(Z) +imp(2).
On the other hand, it can be proved (see for instance [14{) tha

WO =m(z1,t)— Z jtiz 1, (3.6)
so that (2.16) and (2.18) yield

—%Vz( 2)+imp(z i (@271 _(p(2)

3.7)
12 12 1 > -
:EZ JGrj1— EZ jtjz 1+ E(p—ﬁ);lti (ZJ 2R>®7

Since we are setting = 0,V > 1, according to the first hodograph equation (2.20) the first
term in the last equation vanishes. Therefore the densigigeinvalues and its suppdét b] are
characterized by

p(2) = i(#) Z-a)z-b),

2ni\\/(z=a)(z-b)/ ¢
(3.8)
a:=u—2V, b:=u+2W,
where we sex = 1 in all thex-dependent functions. Observe that according to (3.7)
. 1 X 1
inp(z) = EVz(z)jterﬁ’(?» Z— oo, (3.9

so that the constrai’t= 1 means that the density of eigenvalues is normalized onijisat

/abp(Z)dZZ

Moreover, from (2.21) we obtain

E# =0, EL =2 (3.10)
y2m \/(z—a)(z—b) y2m \/(z—a)(z—b)
with y being a positively oriented closed path encircling theridk[a,b]. These are the qua-
tions which determine the zero-genus contribution or pldinat to the partition function of the
hermitian model [14]-[18].
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3.2 Bubble break-off in Hele-Shaw flows

A Hele-Shaw cell is a narrow gap between two plates filled witb fluids: say oil surrounding
one or several bubbles of air. LBtdenote the domain in the complex plaieof the variableA
occupied by the air bubbles. By assuming that analgebraic domair{10], the boundaryy of
D is characterized by &chwarz functio$ = S(A) such that

A*=S(A), Aey. (3.11)

The geometry of the domaifi— D is completely encoded Hiand it can be conveniently described
in terms of theSchottky doubl§9]: a Riemann surfacg? resulting from gluing two copiell.. of
C — D troughy, adding two points at infinitye, %) and defining the complex coordinates

A(A)=A, AeH.,
A(A)=A* AeH_.

In particularSdA can be extended to a unigue meromorphic differentian % .

The evolution ofy is governed by D’Arcy law: the velocity in the oil domain isgportional to
the gradient of the pressure. In the absence of surfacetensiessure is continuous acrgssnd
then if the bubbles are assumed to be kept at zero pressusgevead to the Dirichlet boundary
problem

AP =0, onC-D,
Z =0 ony, (3.12)
P — —loglz, z— .

If one assumes D’Arcy law in the form= —202, then by introducing the function
PA):=¢AN)+iP(A), (3.13)

whereé and & are thestream functiorand the pressure, respectively, D’Arcy law can be rewritten
as

&S = 2id) D, (3.14)

wheret stands for the time variable.

In the set-up considered in [10] air is drawn out from two fixeints of a simply-connected
air bubble making the bubble breaks into two emergent bghbléh highly curved tips. Before
the break-off the interface oil-air remains free of cuglsingularities and develops a smooth
neck. As it is shown in [9]-[10], the condition for bubbleshe at equal pressure implies that the
integral

I'I:::—L%w,
2Jp

wherew is the meromorphic extension 8idA to % andf is a cycle connecting the bubbles, is
a constant of the motion. Since at break-8ftontracts to a point, it is obvious that a necessary
condition for break-off is thalfl vanishes.
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QOil

The following pair of complex-valued functions were intemed in [10] to describe the bubble
break-off near the breaking point

%(A+SMD, Y(A) =

(A -s@)). (3.15)

X(A):= >

They analytically extend the Cartesian coordingbésy’) of the interfacey

X=ReA, Y=ImA, A€y, (3.16)
and allow to write the evolution law (3.14) in the form

A Y (X) = —dx D(X). (3.17)

The analysis of [10] concludes that after the break-off theal structure of a small part of
the interface containing the tips of the bubbles falls intiversal classes characterized by two
even integerg4n,2), n > 1, and a finite numberr2of real deformation parametetis By assum-
ing symmetry of the curve with respect to tReaxis, the general solution for the curve and the
potential in the4n, 2) class are

Y:( = Ux )\/x A _b), ®=—/(X—a)(Y_b), (3.18)

a)(X—b)

wherea andb are the positions of the bubbles tips and
2n .
UX.n:=Yy tj g X)L (3.19)
=1
Here the subscripb denotes the projection of-series on the positive powers. Due to the physical
assumptions of the problem, the functiérinherates two conditions for its expansionXas- o
2n o0 Yn

Y00 = 5 (DX +
AU g

(3.20)

which determine the positiorg b of the tips. The conditions are
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1. From (3.12)® — —ilogA asA — «. Hence (3.17) implies that the constant teYmin
(3.20) should be equal to

2. The coefficient; in front of X~ turns to be equal tBl, so that it must vanish for a break-off
[10].

As it was shown in [10], imposing these two conditions on @3.2ads to a pair of hodograph
equations which arise in the dispersionless AKNS hiera¢tgwever, from (3.18) it is straight-
forward to see that these equations coincide with the heaghtgequations (2.20) associated with
the system of string equations (1.4) provided one sets

X=z Y=2m-V, ®=z—u—-2p,
(3.22)

. M
tj=0, Vi=2n+2; t=ty, xzizo,

For instance, we observe that the evolution law (3.17) dsrim a very natural form from the
d1-Toda hierarchy. Indeed, from (2.9) and (3.18) we have

p= %(Z—U—CD),
so that (3.21) implies
oY =20,m(2) —1=20,(2)+ —1=20,(p+u) — 1= -0, = —0xP.

In this way the integrable structure associated to the gystestring equations (1.4) of the
d2-Toda hierarchy manifests a duality between the plamndt &if the Hermitian matrix model and
the bubble break-off in Hele-Shaw cells. According to tlekationship the density of eigenvalues
p and the end-pointg, b of its support in the Hermitian model are identified with théesirface
functionY and the positions of the bubbles tips, respectively, in teerEhaw model.
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