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Abstract

We present a geometric analysis of the model of Stirling.efl]. In particular we analyze
the curvature of a heart rate time series in response to dikéemcrement in the exercise
intensity. We present solutions for the point of maximumvetumre which can be used as a
marker of physiological interest. This marker defines thimpafter which the heart rate no
longer continues to rapidly rise and instead follows eithsteady state or slow rise. These
methods are then applied to find analytic solutions for a mexpmnential model which is
commonly used in the literature to model the response to aenatel exercise intensity. Nu-
merical solutions are then found for the full model and pagtanvalues presented in Stirling
et al. [14].

1 Introduction

In this paper we investigate geometric features of the mofibkart rate kinetics in response to
exercise developed by Stirling et al. [14] (see also Sgréhal. [17, 15], Zakynthinaki and Stirling
[25] and Zakynthinaki et al. [24, 23]). We aim to find a featofeéhe curve corresponding to the
heart rate time series in response to exercise which canural fosing rigorous mathematical
techniques and which can act as a marker. The term markeedstasnean a point on the curve
which marks the transition from one response to anotherh Sancepts are standard in exercise
physiology and medicine [19]. By tracking changes in thekeafor different exercise loads or
following changes in an individuals level of fitness, im@mtt physiological information can be
obtained [1, 5, 12]. In this paper we use the point of maximunvature as a marker for the
heart rate kinetics in response to step function like irs@ean the exercise intensity. In particular
we find analytic solutions for the point of maximum curvatfoe short term moderate exercise
intensities were the heart rate reaches a plateau. We atsadimerical solutions for short term
slightly higher exercise intensities where the heart rationger plateaus but instead continues to
rise slowly (i.e. in the case of the so called slow component)
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The point of maximum curvature provides physiologists vetmeans of finding the time and
heart rate for which we move from an steeply rising functima plateau or slowly rising function
(as in the slow component). Our method works with both the arexponential model used in
the literature and the coupled ordinary differential etpramodel we introduced in Stirling et al.
[14] (see also Zakynthinaki and Stirling [25], Zakynthinak al. [23] and Stirling et al.[17, 15]).
It should be noted that in general for the model of Stirlinglet[14] (see also Zakynthinaki and
Stirling [25], Zakynthinaki et al. [23] and Stirling et alf, 15]) there is no rate constants it is
not an exponential model.

In section 2.3 we define the curvatuteand show how to calculate the point of maximum
curvature in the direction by solving for the derivativ%{f = 0. Here however we introduce why
the point of maximum curvature if of interest physiologigalThe point of maximum curvature
occurs when the rate of change, as one moves along the curtleefbieart rate time series, of
the tangential angle to thehr(t) time series is a maximum. In a correctly scaled graph of the
heart rate time series this would mark the point when thesecisange from a rapidly increasing
function ofhr to a slowly increasing or steady state function, see figurksla result knowledge
of this point both in terms of heart rate and time give us funeatal physiological important
information about the kinetics. In particular it will allous to know how long it takes for the body
to stabilize or at least slow its reaction to a specific demdhavill also allows us to calculate
after what percentage of the demand the kinetics ceases dordy@dly increasing function. It
should be remembered that the rapidly increasing respamsé¢ha slowly increasing or steady
state response represent important differences at théopdgisal level and as such the point of
maximum curvature allows us to differentiate between the tw
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Figure 1. Showing the point of maximum curvatukel andK2 for two heart rate time series, one which
has a plateau and one which shows slow component behavior.

In the following section we first present the model and thepnmyto calculate the curvature and
point of maximum curvature. This is followed by an analytidusion for the point of maximum
curvature for a physiologically interesting case. We thersent numerical solutions based on data
presented in Stirling et al. [14] and Zakynthinaki and 8t@l[25]. We finish with mathematical
and physiological conclusions.



398 J R Stirling and M S Zakynthinaki

2 The model and how to find the point of maximum curvature

2.1 Model and the normalized version

We defineHR(V,T) to be the function that describes the heart rate response &xexcise of
intensityV for time T. In Stirling et al. [14] (see also Stirling et al. [17, 15] addkynthinaki
and Stirling [25]) the following equations are used to mattiel heart rate kinetics for the case
where the exercise intensiy is a constant. These equations are similar to those usedhén ot
applications by the same authors [21, 20, 18, 16].

E

d B c
—HR(V,T)=A[HR(V,T) - HRmin} [H Rmax— HR(V,T)} [G(V) - HR(V,T)} (2.1)
dT

d
grV =0 (2.2)

where the functionf)(V,T) denotes the heart rate demand and the param®tBr€, E control the
shape of the curve (see [14, 17] for more details).

ParameteA has dimensions ofoeatg min)1~8-C-Emin~1 whilst parameter®,C andE are
dimensionless. The variables are written in upper casenotdeheir non normalized state. For
this paper we make the usual approximation in exercise ploggi that the heart rate demand
D(V) is a constant for a particular constant exercise intensignd hence is not a function of
time for the short term and sufficiently low exercise intéasithat we considered here. It should
be noted that longer term, even moderate, exercise raislstbmperature producing body fluid
shifts and losses that lead to a gradual increase in the raartdemand) (V) as a function of
time.

In what follows hr(v,t) will refer to the normalized version of the heart rate sucht th<
hr(v,t) < 1. The normalized variabler(v,t) is derived from equation 2.1 as follows

HR(V,T) — HRnin
H Rmax— H I:\)min
The variabldg will refer to the normalized time= % where we defing, as the time to achieve

a heart rate equal tdR(tp) = HRmin + 0.95(HRmax— HRmin) for a demand (V) = HRynax and
initial resting condition which we standardize in this pafmebe such thaiti R(0) = 70 beats/min.
This value oft, is obtained numerically from our model once the parametae lbeen fit, by
solving for the timef, to achieveHR(t,). It should also be noted that all graphs are plotted from
t = 0 — tp so not to add confusion due to the scale of the graph. Thei@mbX(v) corresponds

to the normalized demand. Equation (2.1) hence takes tmeatiazed form

hr(V,T) = (2.3)

S0 =t () B[l—hr(v,wﬂmw ~hr(u) E @4

which is the equation we will be working with what follows. & normalized parametéyis

A= A(hrmax— hrpin)BTCHE-L (2.5)

A,B,C andE are as in the non-normalized case.



The Point of Maximum Curvature as a Marker for Physiologikiaie Series 399

dhr(wt) dhr(ut) g dhr(ut)

2.2 The derivatives—g—, — g ae

dhr(t)
Tdt

Equation 2.1 gives the first derivative of the heart rate wétspect to time
derivative is

. The second

% _ (dh:ﬁ”t) ) i [Bhr(v,t)l —C(1—hr(vt)) L —E(D(v) —hr(vt)) 1
(2.6)
which we write as
dhr(vt) (22
a2 hrvwt)(1— hr(v,(tjg)(D(v) “hr(v,t)) [V(V’t)] 2.7)
where
y(vt) = B(l— hr(v,t)) (D(v) — hr(v,t)) —Chr(vt) (D(V) - hr(v,t)> —
—Ehr(vt) (1— hr(v,t)). (2.8)

It should bg: remembered that as we assume that the demant asfunaction of time then
BV — 0 and 2 = 0. The third derivative is now found to be

3 3 ,
%t(;m - <%¥’t)) <2[B(hr("’t))_l—c(l—hr(v,t))‘l—E(D(v)_hr(v,t))—l] _

—Bhr(v,t) 2 —C(1—hr(vt)) 2 —E(D(v) — hr(v,t))2> (2.9)

which we write as

dhr(vt) (2orit) )3
Code hr(v,t)2(1— hr(v,td)t)Z(D(v) —hr(vt))2 [Zy(v,t)z * 6(\/,t)} (2.10)
where

2

0(vt) = —B(l— hr(v,t)) i <D(v) - hr(v,t)> i —Chr(v,t)? <D(v) - hr(v,t)> -

2
—Ehr(vt)? <1— hr(v,t)) . (212)

These derivatives can now be used to calculate the curydtuard the point of maximum
curvature.
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2.3 Curvature and the point of maximum curvature

The curvaturek of a curve is defined ds= ‘cé—‘g‘ whereg is the tangential angle argis the arc
length. The curvatur& can be found as follows

_|do| | ¥
k= ds :‘ﬂtzs (2.12)

the arc lengtts of the heart rate time series in the normalized coordinattesy now gives us

ds = 4/dt2+dhr(vt)2 (2.13)

therefore we have

ds dhr(vt)\?
a—\/”( it ) | (2.14)

The tangential angle now gives us

dhr(v;t) N dtang  d%hr(vt)

tangp = Ot T (2.15)
hence
dtan d
- ? _ (1+tar? (p)d—(f (2.16)
using equations 2.15 and 2.16 we have
2
dp d?hr(vt)y 1 o 217
dt  dZ l+tafe R '
1+ ( i )>
Using 2.14 and 2.17 the curvatukés now
d?hr(vt)
k= dt® . (2.18)

(]

Using equations 2.1, 2.8 and 2.11 equations 2.18 can bessqutenly in terms offir(v,t).
Note only for the follow equation 2.19 we drop the past) to condense the formula.
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tp2A%hr?B(1—hr)X(D — hr)% [B(l— hr)(D — hr) —Chr(D — hr) — Ehr(1— hr)}
k= 3
hr(1— hr)(D — hr) [1+t|§A2hrZB(l— hr)2C(D — hr)ZE} i

(2.19)

Maxima or minima of the curvature in thealirection can therefore be found via the derivative
of er?uation 2.18 (or 2.19) with respecttl;cwhen%‘ =0. Forg—'t‘ =0 then assuminé% =+ o0
we have

d3hr(vt) dhr(v;t) ) 2 d?hr(v,t) \ *dhr(v,t)
—g [1+(7dt >]—3( 52 > G =0 (2.20)

substituting equations 2.7 and 2.10 we now h%%w =0or

dhr(v,t)

2
<T> (B(v,t) — y(v,t)z) + 2y(v,t)2+ f(vt)=0 (2.21)

3 Special solutions for the maximum curvature: the case oE = 1,
B=C=0andA+#0

For these parameter values the model is in its most basic ¥atimno ability to produce slow
kinetics [22, 7, 11, 2, 3] either during exercise or recoveriis form of the equations however
is of interest as it has been recognized since 1923 in a papklillband Lupton [9] that such
physiological signals rise approximately exponentiadiifdwing the onset of an exercise of mod-
erate intensity. More recently the mono-exponential gimegquations 3.3 has been used to model
heart rate [11, 8, 4, 6] and oxygen uptake kinetics in resptmsufficiently low exercise intensi-
ties [22, 7,11, 2, 13, 10]. Anindependent time delay is oftseed with these models to ensure the
data is fit most optimally. The analytic solutions are vatidghort term moderate intensities only.
The equation

dhr

= tpA(D — hr(t)) (3.1)

(3.2)
has the following general solution
hr = hr(0) + [D — hr(0)](1 — e ™). (3.3)

wherehr(0) is the initial value ohr for t = 0 andD is the constant demand. The second derivative
is given by
d?hr

Sz = ~HAYD—hr(t) (3.4)
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This gives
. _ ~tZA’(D—hr(t)) | | —tjA*(D—hr(0))e PN 3.5)
(1+82A%D— hr(t)]2)?| | (1+12A2[D — hr(0)2e 2oAt) '
ask > 0 then
_ t2A%(D — hr(t)) _ t3A%(D — hr(0))e A 3.6)
(1+12A%D—hr(t)]2)?  (1+12A2[D — hr(0)]2e 2oAt)?
hence
[ 1-22A2(D — hr(t))?
dk_ _2azpy pA (D —hrt)” (3.7)
dt (1+1t2A2(D —hr(t))2)2

which implies that for the point of maximum curvature we miave 1— 2t3A*(D — hr(t))? = 0,
as we are not interested in the solutidr- hr(t) = 0. The heart rateyry,, at which the maximum
curvature occurs is given by

1
hr, =D+ 3.8
kmax AV (3.8)
and the time at which this occurs is given by
1 1
k.. =——In 3.9
ke T A (tpA(D - hr(O))\/§> (39)

Note that as expected by increasiAghe point of maximum curvature occurs closer to the
demandD and does so in less time. Equations 3.8 and 3.9 can be rawiritte non normalized
termsHRandT giving

1
HR.... = HRuin+ (HRmax— HRmin) (DitpA—\/é>

1 1
L v (310

We choose, based on the data presented in Stirling et al fitifakynthinaki and Stirling [25]
A= 0.045 andD = 0.7 for a value ohr(0) = 0.2 andt, = 246s.

Using equations 3.8 and 3.9 we fihg,, = 0.6361t,, = 0.1859 or in non normalized terms
HR,., = 132 beats/minTy, ., = 46 s,D = 142 beats/min. The point of maximum curvature can
be observed to equal to that seen in figure 1. It can also glbarseen in figure 1 that the point of
maximum curvature is a good marker of the transition frompadtg rising response to a steady
state.
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Figure 2. The point of maximum curvatuter, = 0.6495t, . = 0.16375 for the mono-exponential.

4 Numerical solutions for the maximum curvature

We now study the numerical solutions for the maximum cumeatusing parameters found by
optimizing the fit of the model to a set of real heart rate d&& do so graphically as analytic
solutions for the general cases of physiological interiestiE = 1 andA # B # C # 0) cannot be
found. The numerical analysis is valid for short term bothderate and slightly higher exercise
intensities, inclusive of the so called slow component tigpkavior which as shown in Stirling et
al. [14] (see also Zakynthinaki and Stirling [25], Zakymthki et al. [23] and Stirling et al.[17, 15])
can be modelled using a constant demBxid ).

We use the optimal parameter values found in Stirling et4] §hd Zakynthinaki and Stirling
[25], these values were found using stochastic optimimatgakynthinaki and Stirling [25] and
Zakynthinaki and Saridakis [26]). These valuesAre 0.54 B =1.63 C =175 andE = 1. The
initial condition for the normalized heart ratelis(0) = 0.2, this corresponds to a non-normalized
heart rate of 70 beats/min for an individual with minimum andximum heart rates equal to
HRmin = 40 beats/min antH Rax = 185 beats/min respectively. The valud&nax and HRmin
were obtained experimentally, with th¢R.x being the maximum heart rate observed in com-
petition andHRy,, being the minimum heart rate observed during an extenddddoef deep
relaxation. It should be noted that the valueHtRnin = 40 is low however it is physiologically
reasonable as the subject was a well trained marathon randesuch values are not uncommon
amongst these athletes [12]. We estimate using the defirgiien in section 2.1 thdp, = 246
seconds.

From figure 3 and table 1 we can see how the point of maximunatun changes with.

One of the interesting facts of physiological importancat tan be observed in figure 3 and
table 1 is that the decreasetjgax With increasing demand is very small when compared to the
increase imrymax. This is showing that there is very little difference in tivad it takes to reach the
point of maximum curvature for different demands given thms initial conditions, even though
there are large differences in the heart faigax.
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Figure 3. The point of maximum curvature for the 4 different demandsshin table 1.

Table 1. The point of maximum curvature, normalized and non norredlifor different demands.

D(V) | hrymax | tkmax | D(V)(beatg min) | HRmax(beatg min) | Tymax(S)
1 0.81 | 0.16 185 157 40
0.9 | 0.762 | 0.165 171 150 41
0.8 | 0.702 | 0.17 156 142 42
0.7 | 0.628 | 0.175 142 131 43

5 Conclusions

We show how to calculate the curvature and as a result theé pbimaximum curvature for the
model of the heart rate time series presented in Stirlind. dtld]. In particular we analyze the
curvature for the case of a heart rate response to a stepikennent in the exercise intensity
For the analysis we present we make the usual assumptionadjgnesed in exercise physiology
that the deman@®(v) is constant for a particular exercise intensitgf sufficiently short duration
and low intensity.

The point of maximum curvature is as a marker which definesafoorrectly scaled graph,
the point after which the heart rate changes from a rapidisefmsing function to a steady state or
slowly increasing function.

Analytic solutions for both the heart rakgnax at which the curvature is maximum and the
time tynax at which this occurs are presented for the case of a mono erfiahmodel which
is commonly used in the literature to model the response tdemate exercise intensities. The
analytic solutions presented in section 3 are for excliyisiort term moderate exercise.

Numerical solutions are also presentedHiyg,ax andtymax for the model and optimal parameter
values presented in Stirling et al. [14]. The numerical gsialin section 4 is not just for short
term moderate exercise, but includes slightly higher noderate short term exercise intensities



The Point of Maximum Curvature as a Marker for Physiologikiaie Series 405

(where the heart rate is 185) for which we showed in the papers of Stirling et al. [1sH4 also
Zakynthinaki and Stirling [25], Zakynthinaki et al. [23] @rstirling et al.[17, 15]) we can still
assume the demand to be constant. For higher exerciseiiiemghere the demand is a function
of time see Zakynthinaki et al. [23]. A physiologically inésting observation was found for these
parameter values, which was that there was very little diffee in the timéynax after which we
changed from a steeply rising function to a slowly rising teasly state function, even though the
difference in the deman(v) and alsdhrymax Was large.
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