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Abstract

We consider universal statistical properties of systems that are characterized by phase states
with macroscopic degeneracy of the ground state. A possibletopological order in such sys-
tems is described by non-linear discrete equations. We focus on the discrete equations which
take place in the case of generalized exclusion principle statistics. We show that their exact so-
lutions are quantum dimensions of the irreducible representations of certain quantum group.
These solutions provide an example of the point where the generalized exclusion principle
statistics and braid statistics meet each other. We proposea procedure to construct the quan-
tum dimer models by means of projection of the knotted field configurations that involved
braiding features of one-dimensional topology.

1 Introduction

The universal behavior of low-dimensional strongly correlated systems at low temperatures is
determined to a great extent by the topology of the manifolds, determined by the ground state and
the low-lying excitations. In strongly correlated electron liquids, with high degree of degeneracy of
the ground state, such a manifold is presented by a collection of string-like structures, which may
form arbitrarily tangled and knotted filaments. The processes of fusion and decay of the strings
give rise to modifications of the tangle and, consequently, of the character of topological phase
state order. Being a result of detailed study of electron liquids in the states with fractional Hall
effect, this conclusion was supported recently by the results, obtained during studying dynamics
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of spin [46, 18, 36] and charge [39, 16] degrees of freedom in other low-dimensional electron
systems.

It is well known that statistics of excitations in(1+ 1)- and (2+ 1)-dimensional systems
is connected with the braid group [31, 49, 50]. Quantum states in such systems are classi-
fied by irreducible representations of the braid group, instead of the even (for bosons) or odd
(for fermions) irreducible representations of the permutation group as (3+1)-dimensional sys-
tems. One-dimensional irreducible representations of thebraid group correspond to Abelian
anyon states, while multi-dimensional irreducible representations describe the non-Abelian states
of anyons. Statistics of anyon excitations is called eitherbraid statistics or fractional statistics,
because it leads to the existence of particles with a fractional charge and spin. In the long-
wavelength limit the description of the non-Abelian anyonsis based on the effective action of
topological field theories [53] containing the Chern-Simons term. An important particular is the
case with gauge symmetrySU(N) and integer quantized coupling constantk, or k-level Wess-
Zumino-Witten-Novikov theory(see [9, 10]). This case corresponds to a find the representations
of the quantum groupSU(N)k.

Another approach, based on the generalized exclusion principle [22], shows that the particle
distribution functions can be derived from to the thermodynamic Bethe ansatz [54, 8, 38, 12, 20,
21, 55]. Determining the minima of the free energy of the model, one is lead to the Hirota’s differ-
ence equation [52, 26]. From the theory of nonlinear equations, it is well known that this discrete
equation yields to known integrable hierarchies of integrable nonlinear PDE’s in the continuous
limit [27]. In the derivation of discrete equation from the generalized exclusion principle, an im-
portant feature is the absence of any reference to the dimensionality of the space, unlike in braid
statistics case. So, formally generalized exclusion principle statistics [22] may take place not only
in low-dimensional systems, but also in 3 - dimensional space models. However, ten years ago
[41] it was proved that explicit solutions exist only in low-dimensional systems. The reason of this
emergence is that the discrete equation encodes the particle fusion rules in the limit of large values
of momentum, reflecting the conformal invariance of the theory. Going over to the limitk≫ 1 in
discrete equations of motion, the peculiarities of the low-dimensional theory disappear.

The features of considered statistics are summed up by the theory of tensor categories [48, 4].
Coherently this theory unifies the processes of braiding andfusion of the string manifolds, which
are images of quasi-particle world lines. The theory of symmetric tensor categories [48, 51, 32]
is applicable also to(3+ 1)D systems. In the last case, restrictions on solutions of equations of
motion are so strong, that all anyon states are excluded, andonly bosons (α = 2π) and fermions
(α = π) survive.

To solve the problems of the theory of strongly correlated systems on a lattice, it is often
convenient to use the theory of the braid group representations, or the Temperley-Lieb algebra
(TLA) representations [14] with a special value of the TLA parameter. In the continuous limit, we
can also employ the effective Chern-Simons action [19, 2]. In particular, to classify the hierarchy
of phase states described by(3+ 0)-dimensional spinor Ginzburg-Landau functional [3], it is
convenient to use the Hopf invariant [42, 43], which is the(3+ 0)D analog of the Chern-Simons
term.

The construction of a lattice model out from the continuous theory (even inheriting its essential
properties) is evidently an ambiguous procedure. Some intuitive insight of how this can be done,
based on the mentioned properties, may include the following consideration. It is well known
that the Chern-Simons term in the action of(2+ 1)-dimensional systems encodes the invariant
description of fluctuating Aharonov-Bohm vortices. The action of the doubled Chern-Simons
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models (for exampleSU(N)k ×SU(N)k [32, 19, 2]) describing systems whit time reversal and
parity symmetries, include pairs of Aharonov-Bohm vortices with the opposite chiralities. It is
natural to suppose such a neutral pair of Aharonov-Bohm vortices as plane slices of a string loop
(living in the 3-dimensional space). A pair of Aharonov-Bohm vortices are traces of a loop cut
by a plane. This means on the whole that small loops, characterized by a common length scale of
the order of the lattice constant, induce dimerized configurations of the currents, when these are
projected on the plane. Such a projected loop, or equivalently the dimer configuration, can be a
building block for the formation of self-organized mesoscale structures in the form of nets. The
increased interest to quantum dimer distributions [2, 33, 23] is connected not only with the theory
of resonance valence bonds, but it has a support originatingfrom the exact solvable models [45]
and, also, it is motivated by recent results in the field of non-Abelian gauge theory [18].

In this paper we will consider the solutions of nonlinear discrete equations of the thermody-
namic Bethe ansatz and will show their relation with the characteristics arising in the approach,
based on the use of braid statistics. They are characterizedby the quantum dimension, which is
obtained as the solution of the mentioned discrete equations. We will give also some arguments in
favor of stability of arising mappings of string nets, builtof golden chains [13].

2 Discrete equations of exclusion statistics

Let us consider a system, which contains a set,{Na} of particles with typesa. The collective index
a = (α , i) contains the indexα for denoting internal degrees of freedom and indexi enumerates
rapidities of particles. If we fix the variables of all particles, except thea-th one, theN-particle
wave function can be expressed via the one-particle function of thea-th particle. LetDa be the
dimension of such a basis. Then the rate of changing the number of vacant states due to addingNb

particles determines [22] the matrixgab of statistical interaction in the following way

∂Da

∂Nb
= −gab. (2.1)

Assuming that the matrixgab does not depend on the set of numbers{Na}, we have the solution
of the Eq. (2.1):

Da = −∑
b

gabNb +D0
a . (2.2)

The Eq. (2.2) contains the number of particlesNb, added to the system, and the number of vacant
statesD0

a of thea-th type in the initial state without particles. The number of holesDa determines
the statistical weight as follows

W = ∏
a

(Na +Da−1+ ∑bgabδab)!
(Na)!(Da−1+ ∑b gabδab)!

. (2.3)

In the casesgab = 0 andgab = δab the Eq. (2.3) yields well-known statistical weights of Boseand
Fermi particles.

The statistical weightW allows to find the entropyS= lnW and thermodynamical functions.
The free energy in the equilibrium state

F = −T ∑
a

D0
a ln(1+w−1

a ) (2.4)
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is determined by the functionwa, which can be found from the equation

(1+wa)∏
b

(

1+w−1
b

)−gab = e(ε0
a−µa)/T (2.5)

The variablewa can be expressed via so-called pseudo-energiesε = T ln(Da/Na) by means
of the parametrizationwa = eεa/T . In Eq. (2.5),T, µa andε0

a are the temperature, the chemical
potential and the bare energy of quasiparticles of the typea.

We consider the solution of the equation (2.5) in the limitT ≫ ε0
a − µa. In this case the Eq.

(2.5) can be written down in the form

wa = ∏
b

(

1+w−1
b

)Nab (2.6)

which is typical for the thermodynamic Bethe ansatz. HereNab = gab−δab.
Below we will be interested in the case of ideal statistics [8, 20, 41], when phases of the

scattering matrix, being functions of rapidities, have thestructure of step functions. In this case
the integral equation (2.6) transforms into the algebraic transcendental equation. The matrixNab

can be expressed [44, 25, 11, 37] via the incidence matrixGab = δa+1,b + δa,b+1 of Lie algebra
with the help of the identityN = G(2−G)−1. The matrix 2−G is the Cartan matrix of the graph
Ak+1/Z2 [44]. Using this identity in Eq. (2.6) and replacingwa = d2

a −1 it is easy to see that the
Eq. (2.6) has the form

d2
a = 1+

[k/2]

∏
j=1,b=2 j

dGab
b =







1+d2, a = 1,
1+da−1da+1, a = 2, ..., [k/2]−1,
1+d[k/2]−1d[k/2], a = [k/2].

(2.7)

Here indexa is connected with the value of the spinj by the relationa = 2 j, and the upper limit
of the product fixes the Jones-Wenzl projector [14, 19]. We will show in Appendix that the Eq.
(2.7) is presented in fact the special limit of the Hirota equation [28].

The distribution function

na =
1
d2

a
=

1
wa+1

=
1

eεa/T +1
(2.8)

in our case coincides with the probabilityp(aā→ 0) [40] of annihilation of a particle-antiparticle
pair in the system of two linked loops of world lines which describe the process of annihilation of
two pairs.

We can find the solution of the Eq. (2.7) taking into account the appropriate boundary condi-
tions by comparing it with the identity

[a]2
q −1 = [a+1]q[a−1]q . (2.9)

Here[a]q = (qa−q−a)/(q−q−1), q= eiπ/(k+2) is the deformation parameter of theSU(2)k Chern-
Simons theory. Identifyingda = [a+ 1]q, we can see that solutions of the Eq. (2.7) are quantum
dimensions [40, 47, 15, 1, 24]

da =
sin[π(a+1)/(k+2)]

sin[π/(k+2)]
, (2.10)
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which are expressed via the Chebyshev polynomials of the second kind,Um = sin[(m+1)θ ]/sinθ
with specificationθ = π/(k+ 2) for Ak+1 algebra. In the limitk ≫ 1, da=2 j equals 2j + 1. The
meaning of the quantum dimension is as follows. The quantum dimensionda determines the rate
dN

a at which the dimension of the topological Hilbert space grows after particles are added.
We pay our attention to the fact that the Eq. (2.7) is a fermionic representation [7, 29, 30] of the

recursion relation for the Chebyshev polynomials of the second kind., The bosonic representation
of recursion relations has the formUm+1(x)+Um−1(x)−2xUm(x) = 0. From this point of view,
we can call the Eq. (4.3) (see Appendix) the anyon representation of recursion relations for the
Chebyshev polynomials of the second kind. In result, recursion relations for different representa-
tion have following form:

Ps+1(x)+Ps−1(x)−2xPs(x) = 0, in Bose representation, (2.11)

b2
m = 1+bm−1bm+1, in Fermi representation, (2.12)

YtYt = (1+Yt+1)(1+Yt−1), in anyon representation. (2.13)

The roots of the Chebyshev polynomials, being the eigen values of the matrixG, are equal to

xm,k = qm+1 +q−(m+1) = 2cos

(

(m+1)π
k+2

)

. (2.14)

The greatest eigen valuex0,k of the incidence matrixG is given by the Beraha numbers [6, 34, 5, 35]

d = 2cos[π/(k+2)] . (2.15)

In particular for the special valuek = 3, we have the golden ratiod = (1+
√

5)/2 which is the
solution of the algebraic equationd2 = d+ 1. Fork = 2, the Beraha numberd and the quantum
dimensiond2 j=1 =

√
2 coincide.

To clarify the meaning of thed’s one should emphasize that (i) the numbersd determine eigen
values of Wilson operator for the contractible unknotted loop [14, 19]. (ii) For special values of
the parameterd = q+q−1, the generatorsBi = I −qei satisfy the relations of a braid group under
the condition, that the generatorsei satisfy the relatione2

i = dei of the Temperley-Lieb algebra.
(iii) The values of the parameterd are nontrivial restriction, which leads to the finite-dimensional
Hilbert spaces. (iv) The wavefunctionΨ, defined on the one-dimensional manifold, which is a
joining up of the arbitrary tangleα and the Wilson loop©, i.e. Ψ(α ∪©), equalsdΨ(α) [19].
Thus the parameterd has the meaning of the weight of the contractible unknotted Wilson loop,
andd2 acquires the meaning of fugacity [17]. (v) Besides, it turnsout, that for the mentioned
values ofd, the theory is unitary.

Summarizing one can say that the points of intersection of braid statistics and statistics with the
generalized exclusion principle are the set of the Beraha pointsd = 2cos[π/(k+2)] [6, 34, 5, 35],
where the processes of braiding and fusion of string manifolds are self-consistently united.

3 Discussion

The problem of the coexistence [2] of locality and braiding can be solved by constructing Hamil-
toniansH = ∑i Hi of the Rokhsar-Kivelson (RK) type [45]. Each termHi = Q+

i Qi in the sum

with Q =

(

1 −1
−1 1

)

acts at the RK point as a projector builted by dimer configurations. If we
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Figure 1: (Color online). A planar representation of the net. Shaded regions show distributions of
the fluxes.

locate the dimers on the opposite links of plaquetts we will encounter contradiction due to spatial
separation of the braiding phenomena. The best way to solve this problem is the distribution of
dimer states between odd and even sites of the lattice [13]. The checkerboard distribution of linked
dimer degrees of freedom with defects in the order of effective fluxes (Fig. 2) may be one of the
possible ways to solve the problem.

The realistic candidate for the Hamiltonian with such a typeof the ground state is the Hamil-
tonianH = −∑i Hi which contains the Temperley-Lieb generatorsei in the form of the projectors

Hi =
1
d

ei (3.1)

to the singlet states. ObviouslyH2
i = Hi due to the Temperley-Lieb commutation relatione2

i =
dei . The d’s here are the Beraha numbers [6, 34, 5, 35] from the second section. Because of
the rank-level symmetry, i.e.SU(N)k = SU(k)N, and the argument based on small values of
integers, theSU(2)2×SU(2)2 theory is a good candidate. The matrix of the 6j-symbols [40] in this

case is equal to± 1√
2

(

1 1
1 −1

)

and the braid operator is

(

1 0
0 i

)

. Another important model

with computational universal rules is based [13] on a goldenchain builted bySU(2)3 ×SU(2)3

Fibonacci anyons.
In summary, we found the quantum dimensions as exact solutions of discrete equations en-
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coding brading and fusion processes. By means of projectionof knotted field configurations we
proposed the quantum dimer models which incorporated braiding properties of one-dimensional
topology.

4 Appendix

Let us show that the Eq. (2.7) is a particular case of the Hirota equation (see seminal papers
[26, 28])

Ta
t (u+1)Ta

t (u−1)−Ta
t+1(u)Ta

t−1(u) = Ta+1
t (u)Ta−1

t (u) . (4.1)

Herea is the index of the agebraAk+1, t is the discrete time andu is the discrete values of rapidities.
The functionsTa

t (u) are the eigen values of the transfer-matrix [28]. For the gauged functions
Ya

t (u) = Ta
t+1(u)Ta

t−1(u)/
(

Ta+1
t (u)Ta−1

t (u)
)

the following equation

Ya
t (u+1)Ya

t (u−1) =
(1+Ya

t+1(u))(1+Ya
t−1(u))

(1+(Ya+1
t (u))−1)(1+(Ya−1

t (u))−1)
(4.2)

is valid. In theA1-algebra case the functionY1
t (u) ≡Yt(u) satisfies the equation

Yt(u+1)Yt(u−1) = (1+Yt+1(u))(1+Yt−1(u)). (4.3)

PuttingYt = b2
t −1 in this equation, in the limitu≫ 1 we get the equationb2

t = 1+bt+1bt−1 which
coincides with (2.7). We see that the functionYt equalswt .
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