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Abstract

We consider universal statistical properties of systeratdhe characterized by phase states
with macroscopic degeneracy of the ground state. A posgiblelogical order in such sys-
tems is described by non-linear discrete equations. Wesfonuhe discrete equations which
take place in the case of generalized exclusion principlssics. We show that their exact so-
lutions are quantum dimensions of the irreducible repragiems of certain quantum group.
These solutions provide an example of the point where thergéned exclusion principle
statistics and braid statistics meet each other. We progppsecedure to construct the quan-
tum dimer models by means of projection of the knotted fieldfigurations that involved
braiding features of one-dimensional topology.

1 Introduction

The universal behavior of low-dimensional strongly catetl systems at low temperatures is
determined to a great extent by the topology of the manifaldsermined by the ground state and
the low-lying excitations. In strongly correlated electtauids, with high degree of degeneracy of
the ground state, such a manifold is presented by a colleofistring-like structures, which may

form arbitrarily tangled and knotted filaments. The proesssf fusion and decay of the strings
give rise to modifications of the tangle and, consequenflyh® character of topological phase
state order. Being a result of detailed study of electrounidig in the states with fractional Hall

effect, this conclusion was supported recently by the tesabtained during studying dynamics
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of spin [46, 18, 36] and charge [39, 16] degrees of freedomtlierolow-dimensional electron
systems.

It is well known that statistics of excitations ifl + 1)- and (2 + 1)-dimensional systems
is connected with the braid group [31, 49, 50]. Quantum st@tesuch systems are classi-
fied by irreducible representations of the braid group,eadtof the even (for bosons) or odd
(for fermions) irreducible representations of the perriatagroup as (3+1)-dimensional sys-
tems. One-dimensional irreducible representations ofbifaéd group correspond to Abelian
anyon states, while multi-dimensional irreducible reprdations describe the non-Abelian states
of anyons. Statistics of anyon excitations is called eithraiid statistics or fractional statistics,
because it leads to the existence of particles with a fraaticharge and spin. In the long-
wavelength limit the description of the non-Abelian anyamdased on the effective action of
topological field theories [53] containing the Chern-Simderm. An important particular is the
case with gauge symmet§U(N) and integer quantized coupling consténtor k-level Wess-
Zumino-Witten-Novikov theory(see [9, 10]). This case egponds to a find the representations
of the quantum grou@U(N ).

Another approach, based on the generalized exclusionijpleni22], shows that the particle
distribution functions can be derived from to the thermatiyic Bethe ansatz [54, 8, 38, 12, 20,
21, 55]. Determining the minima of the free energy of the nhoalee is lead to the Hirota’s differ-
ence equation [52, 26]. From the theory of nonlinear equatid is well known that this discrete
equation yields to known integrable hierarchies of intbganonlinear PDE’s in the continuous
limit [27]. In the derivation of discrete equation from thergralized exclusion principle, an im-
portant feature is the absence of any reference to the diomaiity of the space, unlike in braid
statistics case. So, formally generalized exclusion plactatistics [22] may take place not only
in low-dimensional systems, but also in 3 - dimensional spacdels. However, ten years ago
[41] it was proved that explicit solutions exist only in ladimensional systems. The reason of this
emergence is that the discrete equation encodes the pdusibn rules in the limit of large values
of momentum, reflecting the conformal invariance of the the&oing over to the limik > 1 in
discrete equations of motion, the peculiarities of the timensional theory disappear.

The features of considered statistics are summed up by ¢loeytlof tensor categories [48, 4].
Coherently this theory unifies the processes of braidingfasidn of the string manifolds, which
are images of quasi-particle world lines. The theory of sytrio tensor categories [48, 51, 32]
is applicable also t§3+ 1)D systems. In the last case, restrictions on solutions oftemsaof
motion are so strong, that all anyon states are excludedomigdbosons ¢ = 2m) and fermions
(a = m) survive.

To solve the problems of the theory of strongly correlatesteayps on a lattice, it is often
convenient to use the theory of the braid group represensgtior the Temperley-Lieb algebra
(TLA) representations [14] with a special value of the TLAgaeter. In the continuous limit, we
can also employ the effective Chern-Simons action [19,i2pdrticular, to classify the hierarchy
of phase states described ¥+ 0)-dimensional spinor Ginzburg-Landau functional [3], it is
convenient to use the Hopf invariant [42, 43], which is {Be- 0)D analog of the Chern-Simons
term.

The construction of a lattice model out from the continudweoty (even inheriting its essential
properties) is evidently an ambiguous procedure. Soméiirgunsight of how this can be done,
based on the mentioned properties, may include the follgwionsideration. It is well known
that the Chern-Simons term in the action(@f+ 1)-dimensional systems encodes the invariant
description of fluctuating Aharonov-Bohm vortices. Thei@ttof the doubled Chern-Simons
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models (for exampl&SU(N)yx x SJ(N)k [32, 19, 2]) describing systems whit time reversal and
parity symmetries, include pairs of Aharonov-Bohm voiiceith the opposite chiralities. It is
natural to suppose such a neutral pair of Aharonov-Bohniocesrias plane slices of a string loop
(living in the 3-dimensional space). A pair of Aharonov-Bolvortices are traces of a loop cut
by a plane. This means on the whole that small loops, chaizeteby a common length scale of
the order of the lattice constant, induce dimerized conditioins of the currents, when these are
projected on the plane. Such a projected loop, or equivgléme dimer configuration, can be a
building block for the formation of self-organized mesdscstructures in the form of nets. The
increased interest to quantum dimer distributions [2, 3Bj2connected not only with the theory
of resonance valence bonds, but it has a support originftimg the exact solvable models [45]
and, also, it is motivated by recent results in the field of-Adelian gauge theory [18].

In this paper we will consider the solutions of nonlinearcdige equations of the thermody-
namic Bethe ansatz and will show their relation with the abtaristics arising in the approach,
based on the use of braid statistics. They are charactdbizdide quantum dimension, which is
obtained as the solution of the mentioned discrete equatMe will give also some arguments in
favor of stability of arising mappings of string nets, buiftgolden chains [13].

2 Discrete equations of exclusion statistics

Let us consider a system, which contains a{gg4} of particles with types. The collective index
a= (a,i) contains the indexr for denoting internal degrees of freedom and indexnumerates
rapidities of particles. If we fix the variables of all paltis, except th@-th one, theN-particle
wave function can be expressed via the one-particle fumaifadhea-th particle. LetD, be the
dimension of such a basis. Then the rate of changing the nuphlbacant states due to addihg
particles determines [22] the matiy, of statistical interaction in the following way

0D,
Ny

= —0Oab- (2.1)

Assuming that the matrig,, does not depend on the set of numbg¥g}, we have the solution
of the Eq. (2.1):

Da= _%gabNb‘f'Dg- (2.2)

The Eqg. (2.2) contains the number of partichs added to the system, and the number of vacant
statesD? of the a-th type in the initial state without particles. The numb&holesD, determines
the statistical weight as follows

~  (Na+Dg— 14 5p0an0ap)!
W= ] (N (D = 1 3 )

(2.3)

In the casegap = 0 andgap = dap the Eq. (2.3) yields well-known statistical weights of Basel
Fermi particles.

The statistical weightV allows to find the entropyp = InW and thermodynamical functions.
The free energy in the equilibrium state

F=-TYDJIn(1+w;?) (2.4)
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is determined by the function,, which can be found from the equation

(1+wa) [T(1+wp ) * = gled—Ha)/T (2.5)
b

The variablew, can be expressed via so-called pseudo-eneigiesT In(Da/Na) by means
of the parametrizatiomv, = €2/T. In Eq. (2.5),T, ua and &2 are the temperature, the chemical
potential and the bare energy of quasiparticles of the ype

We consider the solution of the equation (2.5) in the lifit> €9 — ua. In this case the Eq.
(2.5) can be written down in the form

Nap

W, = |:| (1+w,h) (2.6)

which is typical for the thermodynamic Bethe ansatz. H{e= gap — Oap.

Below we will be interested in the case of ideal statistics48, 41], when phases of the
scattering matrix, being functions of rapidities, have $treicture of step functions. In this case
the integral equation (2.6) transforms into the algebna@indcendental equation. The matNy,
can be expressed [44, 25, 11, 37] via the incidence m&giX= dar1 + dap+1 Of Lie algebra
with the help of the identitiN = G(2 — G)~1. The matrix 2- G is the Cartan matrix of the graph
Axi1/Zo [44]. Using this identity in Eq. (2.6) and replacing, = d2 — 1 it is easy to see that the
Eq. (2.6) has the form

[k/2] 1+dp,a=1,
=1+ [] dp*=1 L+da1dars,a=2..,[k/2]-1, (2.7)
j=1.b=2] 1+ dy2-10dx/2, a= [k/2].

Here indexa is connected with the value of the spjrby the relationa = 2j, and the upper limit
of the product fixes the Jones-Wenzl projector [14, 19]. Wi skiow in Appendix that the Eq.
(2.7) is presented in fact the special limit of the Hirota atipn [28].

The distribution function

1 1 1

= — = = 2.8
d2 wa+1 eR/T+1 28)

Na

in our case coincides with the probabilipfaa — 0) [40] of annihilation of a particle-antiparticle
pair in the system of two linked loops of world lines which ddise the process of annihilation of
two pairs.

We can find the solution of the Eq. (2.7) taking into accourtdppropriate boundary condi-
tions by comparing it with the identity

[al7 — 1= [a+1]g[a— 1q. (2.9)

Here[aq = (¢*—q7?)/(q—q1), = €V +2 is the deformation parameter of tB&)(2)x Chern-
Simons theory. Identifyingl, = [a+ 1]q, we can see that solutions of the Eq. (2.7) are quantum
dimensions [40, 47, 15, 1, 24]

_sinfm(a+1)/(k+2)]

&7 sinm/(k+2)] (2.10)
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which are expressed via the Chebyshev polynomials of trenseand,Up, = sin[(m+1)8]/sin@
with specificationg = 1/(k+ 2) for A1 algebra. In the limik > 1, do—»j equals 2+ 1. The
meaning of the quantum dimension is as follows. The quantumemkiond, determines the rate
dY at which the dimension of the topological Hilbert space gaifter particles are added.

We pay our attention to the fact that the Eq. (2.7) is a ferigiogpresentation [7, 29, 30] of the
recursion relation for the Chebyshev polynomials of thesddkind., The bosonic representation
of recursion relations has the fofd,;1(X) +Um-1(X) — 2xUn(X) = 0. From this point of view,
we can call the Eq. (4.3) (see Appendix) the anyon representaf recursion relations for the
Chebyshev polynomials of the second kind. In result, recarselations for different representa-
tion have following form:

Psi1(X) + Ps—1(x) — 2xRs(x) = 0, in Bose representatian (2.11)

b,,zn =1+ bm_1bme1, in Fermi representation (2.12)

YiY: = (14 VYi4+1)(1+ Yi—1), in anyon representation (2.13)

The roots of the Chebyshev polynomials, being the eigeregaddi the matri>xG, are equal to
1

Xenk = Q™14 g (™) — 2C°S<%T> ' (2.14)

The greatest eigen valugy of the incidence matri is given by the Beraha numbers [6, 34, 5, 35]
d =2cogm/(k+2)]. (2.15)

In particular for the special value= 3, we have the golden rati= (1+ +/5)/2 which is the
solution of the algebraic equatiaif = d+ 1. Fork = 2, the Beraha numbet and the quantum
dimensiondyj_1 = /2 coincide.

To clarify the meaning of thd’s one should emphasize that (i) the numbetdetermine eigen
values of Wilson operator for the contractible unknotteaplgl4, 19]. (ii) For special values of
the parameted = q+q 1, the generatorB; = | — gq satisfy the relations of a braid group under
the condition, that the generatagssatisfy the relatiore? = dg of the Temperley-Lieb algebra.
(iii) The values of the parameteérare nontrivial restriction, which leads to the finite-dirsemal
Hilbert spaces. (iv) The wavefunctioH, defined on the one-dimensional manifold, which is a
joining up of the arbitrary tangle and the Wilson loog)), i.e. W(a U()), equalsd¥(a) [19].
Thus the parameteat has the meaning of the weight of the contractible unknotteldd loop,
andd? acquires the meaning of fugacity [17]. (v) Besides, it tuons, that for the mentioned
values ofd, the theory is unitary.

Summarizing one can say that the points of intersectionaiitstatistics and statistics with the
generalized exclusion principle are the set of the Beraia$d = 2 cogrm/(k+ 2)] [6, 34, 5, 35],
where the processes of braiding and fusion of string matsfare self-consistently united.

3 Discussion

The problem of the coexistence [2] of locality and braiditag be solved by constructing Hamil-
toniansH = Y H; of the Rokhsar-Kivelson (RK) type [45]. Each tefth = Q;"Q; in the sum

with Q = ( _11 _11 ) acts at the RK point as a projector builted by dimer configonat If we
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Figure 1: (Color online). A planar representation of the i&#taded regions show distributions of
the fluxes.

locate the dimers on the opposite links of plaquetts we wiiticginter contradiction due to spatial
separation of the braiding phenomena. The best way to sbisgtoblem is the distribution of
dimer states between odd and even sites of the lattice [1#] clieckerboard distribution of linked
dimer degrees of freedom with defects in the order of effediuxes (Fig. 2) may be one of the
possible ways to solve the problem.

The realistic candidate for the Hamiltonian with such a tgpéhe ground state is the Hamil-
tonianH = — 5 H; which contains the Temperley-Lieb generatars the form of the projectors

H = %a (3.1)

to the singlet states. Obvioushy? = H; due to the Temperley-Lieb commutation relatigh=
dg. Thed's here are the Beraha numbers [6, 34, 5, 35] from the secartibse Because of
the rank-level symmetry, i.eSU(N)x = SU(K)n, and the argument based on small values of
integers, th&U(2), x J(2), theory is a good candidate. The matrix of tjesymbols [40] in this
i _11 ) and the braid operator ié é
with computational universal rules is based [13] on a goldeain builted bySU(2)3 x 3J(2)3
Fibonacci anyons.

In summary, we found the quantum dimensions as exact sotutid discrete equations en-

case is equal t&% < ? > Another important model
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coding brading and fusion processes. By means of projedfikmotted field configurations we
proposed the quantum dimer models which incorporated ibgaiosroperties of one-dimensional
topology.

4 Appendix

Let us show that the Eq. (2.7) is a particular case of the Hiemjuation (see seminal papers
[26, 28])

THU+DTAU-1) = T3 (WT2 4 (u) = T Hu T (). (4.1)

Hereais the index of the agebm 1, t is the discrete time andlis the discrete values of rapidities.
The functionsT?(u) are the eigen values of the transfer-matrix [28]. For theggdufunctions
YA(u) = T2 (T2, (u)/ (T2 (u) T2 *(u)) the following equation

(1+Y22(U)(1+Y24(u)

YU e ) D A 0 ) D) 2
is valid. In theA;-algebra case the functioft (u) = Y;(u) satisfies the equation
V(U DY (U= 1) = (1+ Y (W) (14 Yeog (u)). (4.3)

Putting¥; = b? — 1 in this equation, in the limit >> 1 we get the equation’ = 1+ by, 10,1 which
coincides with (2.7). We see that the functigrequalsw;.

Acknowledgments. We thank S. Bravyi, P. Fendley, A. Ludwig, R. Moessner, A.Ardesyan,
P. Pearce, A. Tsvelik for stimulating and useful discussiorhis work was supported in part by
the E.I.LN.S.T.E.IN grant (M.L., A.P.), RFBR grants (A.P.\W Nos. 06-02-16561, 06-02-92052,
and the programs (A.P.) RNP 2.1.1 (grant No. 2369) and “Prablof nonlinear dynamics”
of Presidium of the Russian Academy of Sciences. The autidarewledge also the INFN for
support in part by the project LE41 as well as the Internaticd@entre for Theoretical Physics,
Trieste, Italy, where a part of this work was performed.

References

[1] AFFLECK I and LubwiG A, Phys. Rev. Letb7 (1991), 161.
[2] ARDONNEE, FENDLEY P and RADKIN E, Ann. Phys310 (2004), 493.
[3] BABAEV E, FADDEEV L D and NEMI A J, Phys. Re\B 65 (2002), 100512(R).

[4] BakaLov Band KiRILLOV A JR, Lectures on Tensor Categories and Modular Functbhsiver-
sity Lecture Series 21, AMS, Providence, RI, 2001.

[5] BAXTER R J,J. PhysA 20 (1987), 5241.
[6] BERAHA S, KAHANE J and WEISSN J,J. Comb. Theor 28 (1980), 52.

[7] BERcoVICHA ,Nucl. PhysB431 (1994), 315.



360

L Martinaet al.

(8]

9]
(10]
(11]

(12]

(13]

(14]
(15]
(16]

(17]

(18]
(19]

(20]

(21]
(22]
(23]
(24]
(25]
(26]
(27]
(28]

(29]
(30]
(31]
(32]

BERNARD D and WU Y-S, in New developments of integrable systems and long-rangeation
modelsed. Ge M L and Wu Y-S, World Scientific, Singapore, 1995.

BOUWKNEGT P, Lubwic A W W and SSHOUTENSK, Phys. LettB 359 (1995) 304.
CecoTTI S and AFA C, Comm. Math. Phy$3 157 (1993) 139.

DASMAHAPATRA S, KEDEM P, KLASSENT R, McCoy B M and MeLZERE, Int. J. Mod. Phys.
B 7(1993), 3617.

Isakov S B, Phys. Rev. Let73 2150 (1994).
Int. J. Mod. PhysA9 (1994), 2563.

FEIGUIN A, TREBSTS and LUDWIG A, et al, Interacting anyons in topological liquids: The golden
chain cond-mat/0612341.

FENDLEY P and RADKIN E, Phys. Re\B 72 (2005), 024412.
FENDLEY P and 3\LEUR H, J. PhysA 27 (1994), L789.
FENDLEY P and £HOUTENSK, Phys. Rev. Letd5 (2005), 046403.

FIDKowsKI L, FREEDMAN M, NAYAK C, WAKKER K and WANG Z, From String Nets to Nonabe-
lons cond-mat/0610583.

FREEDMAN M, NAYAK C and $HITENGEL K, Phys. Rev. Let®4, 147205.

FREEDMAN M, NAYAK C, SHTENGEL K, WALKER K and WANG Z, Ann. Phys310 (2005), 428
(2004).

Fukuil T and KawakAmi N, Phys. RevB51(1995), 5239.
J. Phys A28 6027.

GURUSWAMY S and $HOUTENSK, Nucl. PhysB556 (1999), 530.

HALDANE F D M, Phys. Rev. Let67 (1991), 937.

HuseD A, KRAUTH W, MOESSNERR and $SNDHI S L, Phys. Rev. Let@1 (2003), 167004.
KASSEL C, Quantum groupsGraduate Texts in Mathematics 155, Springer, Berlin, 1995
KEDEM P, KLASSENT R, McCoY B M and MELZER E, Phys. LettB307 (1993), 68.
KLUMPER A and FEARCEP A, J. PhysA 183 (1992), 304.

KRICHEVER |, WIEGMANN P and 2ABRODIN A, Commun. Math. Phy493 (1998), 373.

KRICHEVER |, LIPAN O, WIEGMANN P and 2BRODIN A, Commun. Math. Phy<.88 (1997),
267.

KUNIBA A, Nucl PhysB389 (1993), 209.
KUNIBA A, NAKANISHI T and Suzuki J,Int. J. Mod. PhysA 9 (1994), 5215; 5267.
LEINAAS J and MYRHEIM, Nuovo Cimentd® 37(1977), 1.

LEVIN M and WEN X-G, Rev. Mod. Lett77(2005), 871.
Phys. RewB 71 (2005), 045110.



Where Do Braid Statistics and Discrete Motion Meet Each €the 361

(33]
(34]
(35]
(36]
(37]
(38]
(39]
[40]

[41]
[42]
[43]
(44]
[45]
[46]

[47]
(48]
[49]
[50]

[51]
[52]
(53]
(54]
[55]

MOESSNERR and ®NDHI S L, Phys. Rev. LetB6 (2001), 1881.

MAILLARD J-M and RRMMAL R, J. PhysA 16 (1983), 353.

MARTIN P P,J. PhysA 20 (1987), L339.

MOESSNERR, SONDHI S L and RRADKIN E, Phys. RewB 65 (2001), 024504.

NAHM W, RECKNAGEL A and TERHOEVENM, Mod. Phys. LettA 8 (1993), 1835.

NAYAK C and WLCZEK F, Rev. Rev. Let3 (1994), 2740.

POLLMANN F, BETOURASJ J, $SITENGEL K and FULDE P, Phys. Rev. LetB7 (2005), 170407.

PRESKILL J, Topological quantum computatio@hapter 9 of Lecture Notes on Quantum Compu-
tation, http://www.theory.caltech.edu/people/prd4iil229/ (2004)

PROTOGENOVA P, VERBUSV A, Mod. Phys. LettB 11 (1997), 283.
PROTOGENOVA P, VERBUSV A, JETP Lett.76 (2002), 60.

PROTOGENOVA P, Physics-Uspek9 (2006), 667.

RAVANIN F, VALLERIANI A and TATEO R, Int. J. Mod. PhysA 8(1993), 1707.
ROKHSARD S, KIVELSON S A, Phys. Rev. Letb1 (1988), 2376.

SENTHIL T, VISHWANATH A, BALENTS L, SACHDEV S, HSHER M P A, Science303 (2004),
1490.

SLINGERLAND J K, Bais F A, Nucl. PhysB 612(2001), [FS] 229.
TURAEV V G, Quantun invariants of knots and 3-manifoltlé. de Gruyter, Berlin-New York, 1994.
WiLczek F, Phys. Rev. Letd9 (1982), 957.

Wu Y-S, Phys. Rev. Letb2 (1984), 2103.
ibid 53, 111 (1984).

WEN X-G, Ann. Phys316 (2005), 1.

WIEGMANN P, Int. J. Mod. PhysB11 (1997), 75.
WITTEN E, Commun. Math. Phy421 (1989), 351.
WU Y-S, Phys. Rev. Letf3 (1994), 922.

ZAMOLODCHIKOV AL B, Phys. LettB253(1991), 391.



